107

K. Hartmann*, R. Loibl*, A. Schmitt*, U.Heinrich D. Schönberg (introd.by U. Heinrich)Dept.of Pediatric Endocrino-logy,Children's Hospital Heidelberg, FRG INSULIN-LIKE GROWTH FACTOR-1 RECEPTOR INTERNALISATION INTO HUMAN PLATELETS

Specific IGF-1 binding has been demonstrated on isolated human platelets. Maximal specific binding activity of J-125-recomb.-IGF-1 was measured after h incubation at 10°C in 0.1 M Hepes-buffer pH 7.4 (cont. electrolytes). For $4\times10(7)$ platelets maximum specific binding of J-125-IGF-1 was 1.6% with an specific binding of J-125-IGF-1 was 1.6% with an unspec. binding of 0.3%. 1/2 max.binding was shown at 20 ng/ml IGF-1, the affinity constant was 0.67x10 (9)xM(-1). IGF-1 internalisation experiments were performed by preincubation with J-125-IGF -1 and dissociation of labeled hormone after cell placement into IGF-1 free medium or displacement by inactive IGF-1.Increasingly incomplete dissociation of J125-IGF-1 was demonstrated for preincubation times > 1h. These results are confirmed by diminished displacement of cell-bound J-125-IGF-1 by unlabeled hormone after a preincubation period of >1h.Preliminary results indicate that lysed platelets contain remarkable amounts of IGF-1. - It has to be considered that platelets serve as a reserto be considered that platelets serve as a reservoir from which IGF-1.following a local injury,is released after aggregation,and together with PDGF might stimulate fibroblast growth in wound healing.

108

R. Eshet, Z. Dux, B. Klinger, A. Silbergeld, Z. Laron.

Inst. Pediat. & Adolesc. Endocrinol., Beilinson Med. Ctr., Sackler Faculty Med., Tel Aviv Univ., Israel.

ICF-I BINDING TO RED BLOOD CELLS OF SHORT AND TALL BOYS. COMPARISON WITH CH-BINDING PROTEIN LEVELS.

Binding of ^{125}I -JGF-I to red blood cells (RBC) was determined in 12 prepubertal boys aged 7-9 yrs, 6 with short stature (\ 2 SD height) and 6 with tall stature (\ 2 SD height). Concomitantly blood hGH, IGF-I and GH-binding protein (BP) was determined. The results (mean \pm SD) are:

	Short Stature	Tall Stature	p		
Plasma hCH (ng/ml) Serum IGF-I (nM/l) IGF-I receptor (No/cell) IGF-I receptor Kd (nM) GH-BP (%)	3.6± 5.2	1.4± 1.4	N.S.		
	10.6± 6.6	26.0±10.1	<0.01		
	3.9± 0.6	4.1± 0.5	N.S.		
	0.3± 0.09	0.4± 0.15	N.S.		
	55.4±13.2	102.4±14.1	<0.001		

In the present pilot study it was found that 125 I-IGF-I receptor binding does not correlate with extreme short or tall heights as does serum IGF-I and CH-BP. The ability of IGF-I to stimulate uptake of (H) amino-iso-butyric acid (AIB) by fibroblasts of the same patients is being performed.

Supported in part by a Nordisk (ESPE) grant.

109

J.M. Wit, F.A. Opmeer*, S.C. van Buul-Offers, J.L. Van den Brande. Department of Pediatrics, Wilhelmina Children's Hospital, State University, Utrecht, The Netherlands.

PLASMA INSULIN-LIKE GROWTH FACTOR (IGF)-I AND II LEVELS AND BIOASSAYABLE SOMATOMEDIN ACTIVITY IN CHILDREN WITH CEREBRAL GIGANTISM (SOTOS SYNDROME).

Cerebral gigantism (Sotos syndrome) is characterized by a large birth size, excessive statural growth, advanced bone age, mental retardation and dysmorphic features. In this study 30 plasma samples of 14 children with Sotos syndrome were assayed for IGF-I and II and bloassayable somatomedin activity (SM-act). Immunoreactive IGF-I was determined in unextracted plasma and compared to the Nichols Institute references. Immunoreactive IGF-II was measured with a nonequilibrium RIA, using the tyrosylated eight amino acid C-peptide region of IGF-II (CP-II) and an antiserum against this fragment (kindly donated by Dr. R. and an antiserum against this fragment (kindly donated by Dr. K. Hintz). SM-act was determined with the porcine cartilage bioassay. All but 3 values of IGF-I were within the ± 2 SD range for age. When the data were expressed as a Z-score for age, mean IGF-I decreased from -0.1 (range -1.0 to +1.0, n=6) at 0-3 years to -1.1 (range -2.0 to 0.3, n=7) at 3-5 years. IGF-II levels were generally within the reference range. SM-act was usually low between 1 and 5 years of age (mean -2.2 SD, range -5.0 to 3.6, n=11) and in the lower normal range thereafter. These IGF-I and SM-act results are in contrast to the data in constitutions. and SM-act results are in contrast to the data in constitutional tall stature. The relatively low somatomedin levels between 1 and 5 years of age concur with the deceleration of growth which is usually seen after the first year of life in children with Sotos syndrome.

110

W.F.Blum*, R.Handgretinger*, H.Lingel*, J.Treuner*, M.B.Ranke University Children's Hospital, Tübingen, Federal Republic of Germany SOMATOMEDINS POTENTIATE INTERLEUKIN 2 INDUCED STIMULATION OF NATURAL KILLER CELL ACTIVITY

Natural killer (NK) activity of peripheral blood lymphocytes (PBL) is reduced in GHD. We, therefore, investigated whether or not IGF-I and IGF-II have any influence on NK activity in the presence or absence of interleukin 2 (IL-2). PBL were obtained by fractionation of blood cells on a Ficoll gradient. After incubation in RPMI 1640 medium with or without IL-2 (100 U/ml), IGF-I and/or IGF-II (25 ng/ml) for 15 h cytotoxicity was measured by a 4-h 51-Cr-release assay utilizing the cell line K562. sured by a 4-h 51-Cr-release assay utilizing the cell line K562. IGF-I and IGF-II alone or in combination had no effect on NK activity. The stimulatory effect of IL-2 (100%) was not significantly enhanced by further addition of IGF-I (123 ± 48%) or IGF-II (118 ± 36%), if inter-individual means (N=11) were regarded, although in some individuals a significant potentiation (p<0.001) was observed (maximal values with IGF-I: 232%, IGF-II: 194%). In contrast, addition of both IGF-I and -II potentiated the IL-2 effect significantly (p<0.001) even if the inter-individual mean was regarded (146 ±25%). In 7 out of 11 individuals the combined effect of IGF-I and -II was clearly more than additive. Dose-response curves of IGF-I and -II in the presence of IL-2 exhibited a significant increase of NK activity between 0.1 and 10 ng/ml. It is concluded that (1) somatomedins are modulators of NK cell function and (2) that IGF-I and -II may act synergistically in particular systems.

111

C.De Campo*, T.Torresani, E.Schoenle, M.Zachmann. Department of Pediatrics, University of Zurich Zurich, Switzerland. SERUM LEVELS OF IGF-I AND IGF-II IN CHILDREN TREATED WITH RECOMBINANT HUMAN GROWTH HORMONE (r-hgh) WITHOUT METHIONINE.

Results	of	IGF-	[aı	nd 1	GF-	II ı	easu	red	1 n	70	GH	def1	cie	nt chi	ildren
(51m, 19)f) 1	treate	be	wit	h r	-hGI	l for	up	to	18	mont	hs a	nd	groupe	ed ac-
cording	ı to	sex a	and	BA	at :	stai	rt of	th	erap	у.	are	shov	n i	n the	table
Honths	of !	theraj	РY	0		3	6		9	-	12	ì	8	n	IGF
	BA (Group	1:	boy	s(1)	1.5	yrs.	, g	irls	<10	yrs	3.			•
IGF-I	Nev	Pts.		15.	1 2	22.	l 21	.6	23.	0	29.€	4	1.0	21	10
nmol/l			f	14.	6	18.4	21	. 2	20.	2	29.4	1 3	3.2	10	7
	Tra	nsfer	1	21.	3 2	23.	21	. 2	22.	8	25.€	3	6.2	15	
IGF-II	Nev	Pts.	R	63.	5	64.4	58	. 5	61.	8	71.4	5	3.5	21	15
nmol/l			f	74.	8 (68.	7 59	.9	61.	0	77.5	5 5	0.5	10	7
	Tra	nsfer		81.	2	84.4	87	.0	65.	5	74.8	5	8,7	15	13
BA Group 2: boys>11.5 yrs., qirls>10 yrs.															
IGF-I	Nev	Pts.		13.	7 :	25.2	2 25	.0	29.	1	30.0	8 (1.6	7	4
nmol/1			f	18.	7 :	27.	1 18	. 9	20.	1	26.1	2	6.2	6	5
	Tra	nsfer		27.	.1 :	30.9	9 32	. 9	35.	4	38.0) 5	9.8	8	4
			f	34.	8	30.4	23	,7	31.	6	39.8	3 3	9.8	3	2
IGF-II	Nev	Pts.		71.	1	71.	7 76	.8	70.	5	69.5	7	4.8	7	6
nmol/1			f	73.	8	69.0	5 38	. 9	64.	9	65.2	2 9	2.4	6	4
	Tra	nsfer	R	76.	6 '	70.	1 78	. 4	56.	2	100	5 5	3.8	8	7
			f	10)6	12	5 1	03	11	2	94.	.7		3	2
During treatment we observed a significant transient decrease of															
IGF-I	in :	25/51	a a	nd	14/	19f	and	of	IGE	- I I	in	41/5	1m	and 1	4/19f.
After 1	18 m	onths	of	the	rap	γ,	IGF's	ve	re r	or	alis	ed i	n a	11 gr	oups.

O.Naville*, P. Chatelain, A.Ruitton*, M.H.Perrard-Sapori*, O.Avallet*, M.Vigier*, and J.Saez. INSERM U307 and U34 - Hop. Debrousse, 69322 Lyon-France. BIOACTIVITY OF THE IGF-I BINDING SUB-UNIT OF THE LARGE MOLECULAR WEIGHT CIRCULATING COMPLEX IN HUMAN PLASMA.

The biological activity of the partially purified insulin-like growth factor 1 (IGF-1) binding protein (BP) of the large MW circulating complex (145 K) in human plasma was evaluated using our IGF-1 Leydig (LI cell bioassay model that specifically differenciates under IGF-1 action (Bernier J. Cell.Physiol. 129:257.1986). This BP inhibits both the 125-IG-1 binding to the specific LC IGF type 1 receptors and the dramatic increas in testosterone secretion (in response to LH) specifically induced by IGF-1. BP also inhibits the IGF-1 dependent increment in LH-HCG receptor num-ber. These BP inhibitions of IGF-1 actions are specific and dose dependent. These data help to further understand the nature of the circulating IGF-1 large MW complex and function of its IGF-1 BP.

Partial purification of the IGF-1 BP subunit included amonium sulfate pre-cipitation. DEAE sephadex A50.S-300 sephacryl (pH-3.5) and IGF-1 affinity chromatographies then C4 reverse phase HPLC. On SDS-PAGE, DEAE peal 2 (containing BP) cross-linked to 125-IGF-1 lead to two specific bands (39 K and 24 K). This material gel filtrated (5-300. pH-7.4) lead to a 54 K complex. When cross-linking included 125-IGF-1. DEAE peak 2 and 3. SDS-PAGE lead to a major 94 K, a minor 39 K and a constant 24 K band. S-200 gel filtration then recovered a large IGF-1 MW complex. but of 125 K