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ABSTRACT. Zellweger syndrome is the prototype of a are deficient, usually in association with the absence or deficiency 
growing group of genetic diseases caused by an absence or of peroxisomal structures (6, 11). In addition, there are several 
deficiency of peroxisomes. The defect causes the enzyme recent reports of patients with some aspects of the Zellweger 
catalase to remain in the cytosol instead of being packaged syndrome phenotype but in whom liver peroxisomes were nor- 
into peroxisomes. This mislocalization can be easily de- mal in size and structure (15-17). In one of these patients, two 
tected by sedimentation analysis. Amniocytes were homog- peroxisomal oxidases were initially reported to be deficient (16) 
enized and then centrifuged to pellet organelles. Catalase and subsequently a thiolase deficiency was found (1  7). The 
was found to sediment with the peroxisomes in the homog- existence of this heterogeneity presents a challenge to the prenatal 
enates of normal cells, but to remain in the supernatant diagnosis of peroxisomal disorders, because it is possible that in 
with Zellweger syndrome amniocyte homogenates. This some affected fetuses one or more of the current prenatal assays 
striking difference is unambiguous and reproducible, and might not reveal abnormalities. 
provides a simple method for prenatal diagnosis. More- Herein we present an approach to the prenatal diagnosis of 
over, it allows one to differentiate diseases in which per- Zellweger syndrome that is based on a different principle than 
oxisomes are deficient from other peroxisomal diseases in most of the existing analytical or enzyme assays. This approach 
which the organelle is intact, but one enzyme is defective. measures by sedimentation analysis the subcellular distribution 
Electron microscopic observations support the biochemical of catalase, an enzyme that normally is located mainly in the 
determinations. Normal amniocytes contain small peroxi- peroxisomal matrix but in Zellweger syndrome is mainly cyto- 
somes in which a weak cytochemical reaction for catalase solic. A related approach was employed by Wanders et al. (IS), 
may be demonstrated. Zellweger amniocytes appear to lack who determined the subcellular location of catalase in amnio- 
these organelles, although some cells have rare structures cytes by assaying its latency as a function of digitonin concentra- 
that might be residual or abnormal peroxisomes. (Pediatr tion. The procedure described herein provides a convenient and 
Res 24:63-67, 1988) readily quantifiable chemical measure of membrane-bounded 

catalase. Over and above its diagnostic value, this technique may 
Abbreviation prove of general interest for the study and understanding of 

peroxisomal disorders. We also investigated the ultrastructural 
ALD, adrenoleukodystrophy appearance of peroxisomes in amniocytes, which has not been 

previously described except for a brief symposium report (19). 
In an attempt to correlate our biochemical data with ultrastruc- 
ture, we canied out electron microscopic cytochemistry of per- 

Recently several sets of methods have been developed for the OxisOmes On the amniOcyte 
prenatal diagnosis of the Zellweger cerebro-hepato-renal syn- 
drome, an autosomal, recessive, fatal disorder associated with METHODS 
multiple congenital defects and CNS dysfunction (I) .  Most of 
these diagnostic methods depend either on the demonstration of Tissue culture methods. Amniotic fluid cells, obtained from 
impaired plasmalogen synthesis (2-5) or of abnormally high pregnancies at risk for Zellweger's syndrome or X-linked ALD, 
levels of very long chain fatty acids (6, 7). Both of these abnor- were diagnosed by their high content of very long chain fatty 
malities are thought to be secondary to deficiencies of enzymes acids (C26/C22) (6). Control cells were from routine amniocen- 
normally located in the peroxisome (8, 9). Peroxisomes have tesis of pregnancies with advanced maternal age which showed 
been shown to be greatly diminished or absent in the Zellweger normal cytology. The amniocytes, which had been stored in 
syndrome (10) and a related disorder, neonatal adrenoleukodys- liquid nitrogen after 2 to 4 passages, recovered well. 
trophy (1 1). These findings have led to the hypothesis that there Monolayer cultures of amniocytes were grown to -90% con- 
exists a group of peroxisomal disorders, analogous to the better fluency in Dulbecco's modified Eagle medium supplemented 
known lysosomal disorders. Evidence is developing that the with 20% fetal bovine serum in 80 cm2 tissue culture flasks at 
peroxisomal disorders are heterogeneous: some, such as X-linked 37" C in a humidified environment with 5% COz. Cells were 
ALD, may involve the deficient activity of a single peroxisomal detached from the flasks by trypsinization, suspended in phos- 
enzyme (12- 14), whereas in others several peroxisomal enzymes phate-buffered saline containing trypsin inhibitor (GIBCO, 
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imidazole, pH 7, and 0.1% ethanol by means of 50-100 strokes 
of a Dounce homogenizer with a tight-fitting pestle. One flask of 
cells would be more than sufficient for routine diagnoses. In one 
experiment, cells were suspended in the above medium and 
gently sonicated at 4" C in an L & R sonicating water bath 21 
times for 15 s each (with 10-s rests in between). 

Half of the sample was centrifuged for 30 min at 10,000 rpm 
in a Somall HB-4 rotor with adapters for microfuge tubes. The 
supernatant was pipetted off and the pellet was resuspended in 
the starting volume of buffered sucrose. 

Assays. Catalase was assayed by the disappearance of H202 at 
O" C (20). The sample (20 ~ 1 )  was first mixed with an equal 
volume of 2% Triton X-100 in order to disrupt membranes. The 
reaction was started by the addition of 1 ml of ice cold substrate, 
consisting of 2 mM Hz02 in 20 mM imidazole buffer, pH 7, 
with 1 mg/ml of bovine serum albumin. The reaction was 
stopped after 15 min with 1 ml of TiOS04 in 1.3 N H2S04 which 
forms a yellow complex with the remaining H202. After 10 min 

I Amniocyte Fractionations I 
Cotolose NABGASE L D H  

Peroxisomes Lysosomes Cytosol 

I I 

Fig. 1. Subcellular localization of catalase in amniocytes. Cells were 
homogenized and centrifuged as described in "Methods." Catalase and 
marker enzymes were assayed on homogenates, pellets, and supernatants; 
the recoveries are given in Table 1. NABGASE, N-acetyl-P-glucosamini- 
dase, a lysosomal marker; LDH, lactate dehydrogenase, a cytosol marker; 
C, control; Zell, Zellweger; ALD, X-linked ALD. 

or more of color development at room temperature, the yellow 
complex was measured spectrophotometrically at 410 nm. The 
reaction has first order kinetics and a Qlo of 1.1. One unit of 
activity is defined as the amount of enzyme that causes a 10-fold 
decrease in the Hz02 concentration/min at 0" C in a volume of 
50 ml (after the old "Kat. f." unit) (20). Thus: U/ml = loglo(initial 
A410/final A410) X (reaction volume/50 ml) x (sample volume-') 
X (reaction time-'). The initial A410 was determined with water 
in place of sample. The reaction time may be varied from 1 min 
to 1 h and the sample volume may be varied from 5 to 50 ~1 
(always using an equal volume of detergent). The TiOS04 was 1 prepared by stirring 7 g of TiOS04 (ICN K + K Laboratories, 
Plainview, NY) in 1 liter of 2 N on a heating stirrer until 
the suspension reached the boiling point. After gradual cooling 
and settling of undissolved material, the supernatant was filtered I 
(if not perfectly clear) and diluted with 0.5 liter of 2 N H2SO4 ~ 
(21). 

N-acetyl-P-glucosaminidase was assayed by measunng the hb- 
eration of p-nitrophenol from p-nitrophenyl-2-acetyl-P-D-glucos- 
amide (22). The reaction mixture contained, in a final volume 
of 1 ml, 1.5 mM substrate, 0.2 M sodium citrate, pH 4.5, and 
0.01% Triton X-100. The reaction was started by the addition 
of amniocyte sample (5~1) and was incubated for 60 min at 37" 
C in a shaking water bath. The addition of 1 ml of 0.5 M sodium 
hydroxide stopped the reaction and the absorbance was measured 
at 4 10 nm (E = 17 M-' cm-I). 

Lactate dehydrogenase was assayed at 37" C in the reverse 
direction by following the oxidation of NADH at 340 nm with 
pyruvate as substrate. The 1-ml reaction mixture contained 0.5 
mM pyruvate, 30 mM phosphate buffer, pH 7.4, 0.14 mM 
NADH, 0.01% Triton X-100, and 5 p1 of amniocyte sample. E 
= 6.4 mM-' cm-'. Protein was determined according to Lowry 
et al. (23) with bovine serum albumin as standard. 

Morphology and cytochemistry. Cells were fixed in 2% glutar- 
aldehyde in 0.1 M cacodylate buffer, pH 7.4, for 15-30 min at 
4" C, and then washed with cacodylate buffer. They were incu- 
bated in the 3,3'-diaminobenzidine medium for the cytochemi- 
cal demonstration of catalase (24, 25) as described previously 
(26) except that incubation was for 1 h at a temperature of 45" 
C as recommended for human samples (27). Subsequent proc- 
essing for electron microscopy was as described (26) except that 
the sections were viewed either unstained or lightly contrasted 
with lead citrate. 

Table 1. Enzyme activities in amniocytes broken by homo~enization* 

Catalase N-acetyl-P-glucosaminidaset Lactate dehydrogenase 
n (mU/mg protein) (mU/mg protein) (mU/mg protein) 

Control 5 3.2 + 1.8 59 + 42 1.5 + 0.2 
Zellweger 6 5.9 +. 1.4 48 + 14 1.6 + 0.3 
ALD 3 2.9 k 1.0 33 -t 7 1.8 + 0.2 
Recovenest 112 + 13% 111 +. 13% 117 + 12% 

* Mean specific activities k SD of homogenates; total protein ranged from 1-4 mg. Companion data to Figure 1. 
t n = 4 for control and Zellweger samples. 
$ (Pellet + supernatant)/homogenate x 100%; average for all amniocytes. 

Table 2. Centrifugation of amniocytes broken by sonication 
Soluble (nonsedimentable) activity* 

Catalase Lactate dehydrogenase N-acetyl-P-glucosaminidase 
(peroxisomes) (cytosol) (lysosomes) Catalase/lactate dehydrogenase 

(%I (%) (%) 

Control 7 64 6 I I 
ALD 1 29 88 23 33 
Zellweger 1 6 1 73 15 84 
Zellwener 2 64 69 7 93 

* Percent of soluble plus sedimentable activities. Recoveries were 70-1 3 1 %. 
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Biochemical studies. Amniocytes were homogenized and cen- 
trifuged in order to pellet nuclei, mitochondria, peroxisomes and 
lysosomes (as well as any unbroken cells). Control measurements 
of the cytosolic marker enzyme, lactate dehydrogenase, demon- 
strated that at least 85-88% of this enzyme was recovered in the 
supernatant fraction (Fig. 1) indicating that most of the amnio- 
cytes were broken by the homogenization procedure. Control 
assays of the lysosomal marker enzyme, N-acetyl-P-glucosamin- 
idase, verified that the lysosomes were mostly not damaged by 
the homogenization, and were recovered to the extent of 84- 
88% in the sediments in the several amniocyte groups (Fig. I). 
The recoveries of these enzymes were satisfactory (Table 1). 
There was no difference in the behavior of these enzymes between 
the control and disease groups. Thus these experimental condi- 
tions are appropriate to evaluate the presence or absence of 
peroxisomes. 

Catalase, a marker enzyme for peroxisomes, was 77 f 8% 
sedimentable in the five controls, but was 92 f 2% soluble in 
the six Zellweger samples. In the Zellweger homogenates, sedi- 
mentable catalase (8 _+ 2%) was less than or equal to sedimentable 
lactate dehydrogenase (12 + 3%); thus the small amount of 
sedimentable catalase can be accounted for by unbroken cells or 
by residual supernatant remaining over the pellet. The sedi- 
mentability of catalase in three X-linked ALD amniocyte sam- 
ples was indistinguishable from the controls (Fig. 1). The recov- 
eries were 1 12 f 13% (Table I). 

Total catalase activity in the Zellweger amniocytes was nearly 
twice that in the control and X-linked ALD samples (p < 0.05) 
(Table 1). This suggests that catalase in the cytosol is degraded 
more slowly than catalase within peroxisomes, which normally 
turn over by autophagy (28). The specific activities of the other 
enzymes measured were similar in all three groups. 

One group of amniocytes was subjected to sonication, which 
under appropriate conditions has been shown to open fibroblasts 
without excessive damage to cell organelles (29). The sonicated 
amniocytes were centrifuged in the same fashion as the homog- 
enized amniocytes. As shown in Table 2, sonication released the 
bulk of the cytosolic marker enzyme whereas most of the lyso- 
soma1 marker sedimented. Catalase was largely soluble in the 
Zellweger samples and mostly sedimentable in the control and 
X-linked ALD samples. 

Morphological observations. Peroxisomes were present in con- 
trol amniocytes (Fig. 2A). They were generally 0.1-0.2 pm in 
diameter and had a coarsely granular content. They were iden- 
tified by a positive cytochemical reaction for catalase, which 
produced patches of electron-dense diaminobenzidine oxidation 
products within the organelle. There were approximately 20 
peroxisomes/1000 pm2 of cytoplasm. The peroxisomes were 
frequently found in clusters, such that some cell sections showed 
several whereas many micrographs had none. These clusters 
often occurred in the vicinity of the endoplasmic reticulum, 
although connections between peroxisomes and endoplasmic 
reticulum were not seen. 

Amniocyte peroxisomes differ from those of rat liver in that 
they are smaller, much less abundant, lack crystalloid cores, and 
give a cytochemical reaction for catalase that is considerably less 
intense and does not always fill the organelle. In these respects, 
the peroxisomes of amniocytes resemble those of adrenal cortex 
(30), heart (3 I), intestine (32), and cultured skin fibroblasts (29, 
33). 

Peroxisomes in the amniocytes of X-linked ALD patients (Fig. 
2B) were similar to those in amniocytes of normal individuals 
in size and in number. Organelles with the morphological and 
cytochemical characteristics of the peroxisomes seen in ALD 
and normal individuals were not found in Zellweger amniocytes 
(Fig. 2C). However, some possibly diaminobenzidine-positive 
structures were observed: they were generally smaller than the 
typical amniocyte peroxisomes and were much less numerous. 

Because of their rarity, small size, and generally less intense 
staining, they could not be identified unambiguously. In control 
cells, ALD cells, and Zellweger cells, autophagolysosomes were 
observed that contained electron-dense material (diaminobenzi- 
dine?) (not shown). Such autophagolysosomes appeared to be 
more numerous in Zellweger cells. 

DISCUSSION 

We have found a simple and reproducible method of assessing 
the presence of peroxisomes in cultured amniocytes. Catalase, a 
peroxisomal enzyme, is mislocalized to the cell cytosol when the 
organelle is missing. Hence when a homogenate is centrifuged in 
order to pellet peroxisomes, the catalase is not sedimentable but 
rather remains in the supernatant (Fig. I). This provides an easy 
means for the prenatal diagnosis of Zellweger syndrome. It 
should be equally applicable to other diseases where peroxisomes 
are deficient, such as neonatal ALD and infantile Refsum's 
disease. 

There are several advantages to this method. First, catalase is 
a stable enzyme, in contrast to some others that have been used 
for prenatal diagnosis. The only necessary precaution is to in- 
clude 0.1 % ethanol in the homogenization medium; the ethanol 
is known to maintain catalase in active form (34). Catalase is 
simple to measure and requires no radioactive substrates, lipid 
extractions, or high pressure liquid chromatography. The assay 
used herein is an easy colorimetric endpoint assay, and does not 
require the oxygen electrode and polarograph used elsewhere 
(18). The homogenization itself is easy to perform and in our 
experience the sedimentability of catalase in homogenates pro- 
vides a reliable measure of the presence of peroxisomes in cells. 
Assay of the two marker enzymes, lactate dehydrogenase (cyto- 
sol) and N-acetyl-/I-glucosaminidase (lysosomes), is an important 
control to ensure that the homogenization has ruptured the cells 
but not the organelles. With these controls one can be confident 
of the results on an individual amniocyte sample. 

The electron microscopy documents the presence of a modest 
number of small, coreless peroxisomes in normal and X-linked 
ALD amniocytes. The low intensity of the cytochemical reaction 
probably reflects the fact that the specific activity of catalase in 
normal amniocytes (3.2 mU/mg) is 100 times less than that in 
rat liver. The morphological deficiency of peroxisomes in Zell- 
weger amniocytes agrees with the biochemical results on catalase. 
The morphological results are consistent with similar reports of 
a deficiency of peroxisomes in fibroblasts cultured from the skin 
of Zellweger patients (29, 33). The rare small structures in 
Zellweger amniocytes that might contain diaminobenzidine re- 
action product could represent residual aberrant peroxisomes, 
but this could not be decided unequivocally. Because the cyto- 
chemical reaction product in the normal amniocyte peroxisomes 
is of low intensity (compared to rat liver) and has patchy distri- 
bution, and because the organelles occur in clusters (such that 
many micrographs show none), we would not attempt to do 
prenatal diagnosis by electron microscopy. 
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