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ABSTRACT. The mechanisms by which bilirubin causes 
neurotoxicity in newborns have not been well defined, but 
an involvement in synaptic transmission appears possible. 
Herein we present evidence for an inhibitory effect of 
bilirubin on both basal and depolarization-induced (50 mM 
KCl) phosphorylation of synapsin I, a synaptic vesicle- 
associated protein that may play a role in neurotransmitter 
release. Synaptosomes from rat cerebral cortices, prela- 
beled with 32P in vitro to label the intraterminal ATP pool, 
were incubated with or without bilirubin and bovine serum 
albumin (added as a stabilizer) at varying doses and for 
different time intervals. Some preparations were also de- 
polarized by high KC1 concentrations to induce Ca++ influx. 
The phosphorylation of synapsin I was monitored. Our 
results show that addition of bilirubin to the medium 
significantly decreases 32P incorporation into synapsin I, 
both under basal and depolarizing conditions, in a time- 
and dose-dependent manner, significant effects being ob- 
served already at 10 pM bilirubin after 120-min incubation 
of the synaptosomes. Separate analysis of the multiple 
phosphorylation sites in synapsin I showed that the phos- 
phorylation of both the "head" and "tail" regions of the 
protein was decreased by bilirubin. Removal of the biliru- 
bin-containing incubation medium retarded the decrease in 
synapsin I 32P content, indicating that the effect observed 
may be reversible. The nontoxic pyrrole biliverdin had no 
effect on synapsin I phosphorylation under the experimen- 
tal conditions used, indicating that the effect was specific 
to bilirubin. Our results thus suggest that bilirubin may 
achieve some of its reversible effects on the brain through 
inhibition of the phosphorylation of the synapsic vesicle- 
associated protein synapsin I. (Pediatr Res 23: 219-223, 
1988) 

Abbreviations 

BSA, bovine serum albumin 
SDS, sodium dodecyl sulphate 
PAGE, polyacrylamide gel electrophoresis 

Bilirubin is a well known cause of brain damage (1). The 
classical term "kernicterus," denoting yellow staining of the basal 
ganglia (2), has been used to describe the sometimes severe 
neurodevelopmental sequelae of neonatal jaundice (3, 4). In 
addition to such irreversible effects, clinical experience has indi- 
cated that bilirubin also may have reversible effects on brain 
function, as shown by the sluggishness and feeding problems 
often observed in a jaundiced infant, who reverts to normal when 
the serum bilirubin concentration is lowered. Modern neuro- 
physiological diagnostic techniques, such as auditory brain stem 
response and cry analysis, have given objective evidence of a 
reversible depressive effect of bilirubin on neuronal function (5, 
6), suggesting interference with synaptic transmission. 

Recent studies have implicated protein phosphorylation as an 
important regulatory mechanism in the function of nerve cells 
(7). Stimulation-dependent release of neurotransmitters appears 
to be one phenomenon that is regulated by phosphorylation of 
specific intraterminal proteins (cf. Ref. 8 for review). Synapsin I, 
a neuron-protein known to be specifically associated with syn- 
aptic vesicles (9), may be involved in this regulation. Thus, 
intracellular injection studies have indicated that the dephospho- 
rylated form of synapsin I may inhibit the release process, while 
phosphorylation of synapsin I, catalyzed by Ca/calmodulin- 
dependent kinase 11, appears to promote stimulation-dependent 
neurotransmitter release (10). 

We considered the possibility that part of the depressive effect 
of bilirubin on central nervous system function might be due to 
effects on nerve terminal function. We therefore found it of 
interest to investigate whether bilirubin would interfere with the 
protein phosphorylation systems involved in synapsin I phos- 
phorylation in intact nerve terminals, where the protein is known 
to be associated with the cytosolic surface of synaptic vesicles 
(9). For this purpose we decided to use an intact synaptosomal 
preparation, enriched in viable nerve terminals, in which prela- 
beling with inorganic 32P leads to labeling of the nerve terminal 
ATP pool (1 1). In this preparation it is possible to analyze 
whether phosphate incorporation into synapsin I under basal 
and depolarized conditions may be influenced by bilirubin. A 
summary of some of the results has been presented previously 
(1 2). 
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Other chemicals, of reagent grade, were obtained from standard 
commercial suppliers. 

Animals. Male Sprague-Dawley rats (200-300 g) were used in 
all experiments. They were stunned and decapitated, and the 
cortices were dissected out on a cold surface before being placed 
in ice-cold 0.32 M sucrose. 

Preparation of synaptosomes. Each cortex was homogenized 
in glass-Teflon homogenizers in 25 ml of ice-cold 0.32 M sucrose, 
and a crude synaptosomal fraction was prepared by differential 
centrifugation (13). The synaptosome preparation was then re- 
suspended in 6-8 ml of an oxygenated Krebs Ringer buffer (pH 
7.4) containing (mM): NaCl 132, MgS04 2.4, KC1 4.8, Hepes 
20, CaC1, 1, glucose 10. 

Prelabeling of endogenous ATP-pool. A total of 37 MBq of 32P, 
was added to 3 ml of the synaptosome suspension, which was 
then incubated at 37" C for 30 min (1 1). After this the synapto- 
somes were centrifuged at 2000 rpm for 5 min, the highly 
radioactive supernatant decanted, and the synaptosomes resus- 
pended in 3.2 ml of Krebs Ringer buffer. 

Incubation with bilirubin and BSA. Bilirubin, dissolved in 0.1 
N NaOH and stabilized by the addition of BSA in a molar ratio 
of 1:10 (BSA:bilirubin), was diluted with Krebs Ringer buffer 
such that addition of 10 of the bilirubin/BSA solution to 100 
pl of the synaptosome suspension resulted in bilirubin concen- 
trations of 1 - 160 pM in the final incubate. A BSA concentrate 
treated similarly was used for the control incubations. During 
preparation and incubation the bilirubin/BSA-containing solu- 
tions were covered by aluminum foil and shielded from light as 
much as possible. 

After the addition of bilirubin and/or BSA, the synaptosome 
suspensions were incubated for periods of 15, 60, and 120 min, 
after which the reaction was stopped by adding 50 p1 of a SDS- 
containing "stop solution" (14), followed by boiling for 2 min. 

Some incubates were depolarized for 30 s by the addition of a 
concentrated solution of KC1 (final c~ncentration 50 mM) before 
adding SDS-solution and boiling as described above. 

Analysis of synapsin I phosphorylation. The phosphorylated 
proteins were separated by one-dimensional SDS-PAGE using 
gels containing 8% acrylamide (15). After removal of the dye- 
front and brief washing in 10% isopropanol/ 10% acetic acid in 
water, the gels were dried and subjected to autoradiography. 
Synapsin I was identified on the gels as a doublet of 80186 kD 
molecular mass, cut out from the gel, and the radioactivity 
incorporated was measured by liquid scintillation counting of 
the gel pieces (1 6). 

Analysis of multiple site phosphorylution by peptide mapping. 
In order to analyze the site-specific phosphorylation of the dif- 
ferent domains of synapsin I, the gel pieces containing synapsin 
I were subjected to incomplete proteolytic digestion using S. 
aureus V8 protease (1 7). The radioactive peptide fragments were 
separated by SDS-PAGE on 15 % acrylamide gels, visualized by 
autoradiography of the dried gels and quantitated by liquid 
scintillation counting as described above. 

RESULTS 

An initial series of experiments suggested that bilirubin could 
induce a decrease in the 32P content of synapsin I in the rat 
cerebral cortex synaptosome preparation, when analyzed by one- 
dimensional SDS-PAGE (Fig. I). This phenomenon was there- 
fore studied further. 

After 30 min of prelabeling, which has been found to be 
suitable for nerve terminal labeling in this type of experiment 
(1 I), and removal of extrasynaptosomal 32P,, exposure to biliru- 
bin for 120 min led to a distinct decrease in the 32P content of 
phosphoproteins in the molecular mass range of 80186 kD, which 
mostly represent synapsin I. When compared to control incu- 
bates, this decrease in phosphate incorporation was significant at 
bilirubin concentrations as low as 10 pM (Fig. 2). The decrease 

BASAL 

C B B C C B B  
Fig. 1. Autoradiogram showing inhibitory effect of bilirubin on 32P 

incorporation into proteins in intact synaptosomes from rat cerebral 
cortex. Synaptosomes were prelabeled with 32P, and incubated with 
bilirubin (160 pM) plus BSA (16 pM) (B) or with BSA only ( C )  for 120 
min. Some samples were then depolarized for 30 s with 50 mM KC1 to 
induce Cai+ influx into the nerve terminals. Phosphorylated proteins 
were separated by SDS-PAGE and visualized by autoradiography. Syn- 
apsin Ia and Ib are indicated. 
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Fig. 2. Effect of varying doses of bilirubin on unstimulated phos- 
phorylation of synapsin I in rat cerebral cortex synaptosomes after 120 
min. Synapsin I was phosphorylated and isolated and 32P incorporation 
was quantitated as described in the text. 0, controls; 0, bilirubin treated. 
*p < 0.05. Degree of phosphorylation given as percentage of controls 
with 0.1 pM BSA. 
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in phosphorylation caused by bilirubin was also time dependent, 
with a significant loss of 32P content observed after 60 min of K*-DEPO- 
incubation with 160 pM bilirubin in unstimulated synaptosomes AS A L 
(Fig. 3A), and after 120 min in synaptosomes which had been LARlZED b 

depolarized with KC1 50 mM (final concentration) for 30 s before ..-- -. .,, c . :d .. 

stopping the reaction (Fig. 3B). BSA alone had no significant 
effect on synapsin I phosphorylation. 

Identical experiments with biliverdin, a chemically related 
pyrrole compound differing from bilirubin in the absence of a 
hydrogen atom and the corresponding presence of a double 
binding at the r position of the molecule, did not lead to chances 
in the phospho.$ation of synapsin I (data not shown). 

- 
5 . r  4 6 bu5 -Site11 Inasmuch as the 80186 kD reeion of 1-dimensional SDS- 

PAGE gels derived fro& synapto~omes also contains proteins 
other than synapsin I (18), and because synapsin I can be 
phosphorylated on more than one site (17, 19), we decided to 
specifically analyze the effect of bilirubin on the distinct sites of 
phosphorylation of the synapsin I molecule. To this end we used 
the incomplete proteolytic digestion technique developed by 
Cleveland et al. (20). This technique, when using the S. aureus 
V8 protease, separates site 11, which is phosphorylated by Ca/ 
calmodulin-dependent kinase I1 and is located in the "tail region" 
of the molecule, from site I, which is phosphorylated by CAMP- 
dependent kinase and Ca/calmodulin-dependent kinase I, and is 
located in the "head region" of the molecule (17, 21). 

Separate analysis of these phosphorylation sites showed that 
bilirubin significantly decreased phosphorylation of both sites in 
a dose- and time-dependent manner. For example, when syn- 
aptosomes were exposed to bilirubin 160 pM/BSA 16 fiM, both 
site I and site I1 phosphorylation were significantly lower than in 
the controls (p < 0.05), at 60 min (not shown) and 120 min, in 
the unstimulated and in the KC1-depolarized preparations (Fig. 
4). Significant reductions in unstimulated phosphorylation were 
observed from bilirubin concentrations of 10 and 5 fimol/liter 
for site I and 11, respectively, (data not shown). 

A final set of experiments was designed to study whether the 
inhibitory effect of bilirubin on protein phosphorylation was 
reversible. Synaptosomes were treated with bilirubin/BSA for 60 
min, collected by centrifugation, and incubation was then con- 
tinued for another 60 min, either in bilirubin/BSA or BSA 
solution. A reference level of phosphorylation was established by 
incubating synaptosomes for 60 min with BSA alone, without 
preceding exposure to bilirubin. In these experiments we ob- 
served that the rate of decrease of 32P incorporation in bilirubin- 
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Fig. 3. Effect d inemsing incubation time vaIth; bilirubin on phos- 
phorylation of synapsin E irr rat cerebral cortex synaptosomes. Synapsin 
I was phoepbqdated m d  bolated and 32P i n c e r r p ~ ~ o n  was quantitated 
as described in thetext. 0, bilirubin (160 pM)blBA (I6 pM); 0, controls 
(BM, 16 pM). *p <0:051. Degree of phosphorylahm given as percent of 
mhulared conit%ds at 16 min. a, unstimulated; 6, depolarized with 
KCE nid4 (Find cconcmWati) br; 30 s bebre s-ing the reaction. 

Fig. 4. Autoradiogram showing effect of bilirubin 160 pM for 120 
min on phosphorylation of site I and site I1 of synapsin I in rat cerebral 
cortex synaptosomes. Synapsin I was phosphorylated and isolated by 
SDS-PAGE, cut out from the gels after autoradiographic visualization, 
and subjected to partial proteolysis by S. aureus V8 protease (as described 
in the text). The fragments containing phosphorylation sites I or I1 were 
then separated by SDS-PAGE and visualized by autoradiography. B, 
bilirubin incubated; C, controls (exposed to 16 pM BSA); K+-depolari- 
zation, KC1 50 mM final concentration added 30 s before termination. 

treated synaptosomes was reduced on removal of extracellular 
bilirubin (Fig. 5). Thus, when bilirubin begins to diffuse out of 
the nerve terminals, phosphorylation of synapsin I appears to 
recover. This indicates that the effect of bilirubin is at least partly 
reversible. 

DISCUSSION 

Herein we show that bilirubin exerts an inhibitory effect on 
the incorporation of radioactive phosphate into the neuronal 
phosphoprotein synapsin I in rat cortex synaptosomes in vitro. 
These results point to several possible targets for bilirubin toxicity 
in mammalian brain. 

First, our data show that the presynaptic terminals are affected 
by bilirubin. It is well established that synaptosomes, in vitro 
preparations of "pinched-off" nerve terminals, represent good 
models for the study of physiological processes in nerve terminals 
(22,23), and as such might be used for bilirubin studies. Adding 
to this specificity is the highly restricted distribution of synapsin 
I, which appears highly enriched only in nerve terminals in 
association with small, clear synaptic vesicles (24j. Recent results, 
which implicate the phosphorylation of this protein in the regu- 
lation of transmitter release (lo), further suggest that bilirubin, 
inter alia, may interfere with this particular nerve terminal 
function. 

Use of an in vitro preparation, which avoids several problems 
of in vivo studies on bilirubin toxicity, has also allowed us to 
partly characterize the bilirubin effect regarding dose response> 
time dependency, and specificity. The significant effects of mi- 
cromolar bilirubin (but not biliverdin, its immediate precursor) 
observed after 1-2 h incubation are in general agreement with 
the range of brain bilirubin achieved in animal experiments. 
Thus, moderate hyperbilirubinemia in the young healthy rat 
gives brain bilirubin concentrations of 2-3 p M  (25,26), the use 
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Fig. 5. Effect of removal of extracellular bilirubin on synapsin I 
phosphorylation in rat cerebral cortex synaptosomes. Synaptosomes, 
prelabeled with 32Pi as described in the text, and incubated with 160 pM 
bilirubin116 pM BSA for 60 min, were collected by centrifugation and 
resuspended in fresh buffer containing 16 pM BSA (R) or 160 pM 
bilirubin116 pM BSA (B). Incubation was continued for another 60 min, 
after which synapsin I was isolated and 32P incorporation analyzed as 
described in the text. a, standard buffer composition. b, 50 mM KC1 
(final concentration) added 30 s before termination of incubation, to 
induce Ca++ influx into the nerve terminals. The reference level of 
phosphorylation (100%) was established by incubating synaptosomes 
with BSA alone for 60 min without preceding exposure to bilirubin. 

of a binding competitor can increase brain bilirubin to 10 pM 
(25), while opening of the blood-brain barrier can give brain 
bilirubin concentrations in the 50-75 pM range (27). These 
values refer to extractions of bilirubin from whole brain. More- 
over, regional differences in brain bilirubin concentration have 
also been demonstrated (28,29), and it is possible that differences 
in bilirubin concentrations between groups of cells may contrib- 
ute to the observed difference in sensitivity to bilirubin toxicity 
(30). Bilirubin enters the brain quite rapidly, and the bilirubin 
concentration in the brain has been shown to peak 1 h after 
administration of a bolus dose of bilirubin in animals with 
opened blood-brain barriers (3 1). Studies using neuroblastoma 
(N115) cell cultures have shown that uptake of bilirubin in that 
system, which probably represents a passive process, is concen- 
tration dependent, peaks by 3 h, and is relatively insensitive to 
temperature (32). The time course observed in our experiments 
suggests that nerve terminals may be permeated by bilirubin by 
the same mechanism. 

The mechanism by which bilirubin influences synapsin I phos- 
phorylation is not clear. Our studies indicate that several distinct 
phosphorylation sites on the protein molecule, which are regu- 
lated by distinct Ca++-dependent or cyclic AMP-dependent pro- 
tein kinases, respectively (17, 19), were affected by bilirubin. 
This suggests that bilirubin might have a pervasive effect on 
protein phosphorylation in synaptosomes. Other workers have 
also suggested that protein phosphorylation systems in the brain 
might be influenced by bilirubin. Analysis of histone kinase 
activities in extracts from jaundiced rabbit brains showed the 
presence of a cyclic AMP-dependent activity that appeared to be 
unchanged, while a cyclic AMP-independent activity was re- 
ported to be bilirubin sensitive (33). However, the physiological 
significance of these observations remains uncertain. 

Bilirubin inhibits oxidative phosphorylation in vitro (34, 35), 
but the results of in vivo experiments are contradictory (36, 37). 
Effects on membrane permeability have also been reported (38- 
40). Several enzymes are inhibited by bilirubin (cf. Ref. 41 for 
review). Therefore, the effect induced by bilirubin may have 
multiple causes. However, preliminary in vitro studies using 
purified preparations of synapsin I and the catalytic subunit of 
CAMP-dependent kinase (not shown), indicate that bilirubin may 

have a direct influence on the phosphorylation of synapsin I, 
independently of the presence of intact cells or respiratory activ- 
ity. Such effects, together with possible effects on oxidative 
phosphorylation or membrane transport, may contribute to the 
results found herein. 

Regardless of the mechanism involved, the significant and 
reproducible decrease of synapsin I phosphorylation shows a 
novel effect of bilirubin in the nervous system, an effect that may 
be involved in the regulation of neurotransmitter release. Future 
studies in this area may be of interest in relation to the clinical 
syndrome of lethargy and neurophysiological changes in jaun- 
diced newborns. 
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