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ABSTRACT. In this review we have summarized the large 
mass of information that has accumulated in recent years 
relative to the heterogeneous group of molecules known as 
the interleukins (IL), the lymphokines, and the cytokines 
that control the growth and differentiation of cells of the 
hematopoietic and lymphoid lineage and cells of other 
lineages. Our intent is to provide the informed generalist 
with a body of information with which to interpret and 
understand forthcoming studies of this important class of 
molecules, particularly those with clinical import. (Pediatr 
Res 24:549-557,1988) 

The nomenclature governing IL has arisen haphazardly from 
the order of their discovery and other "trivial" considerations. 
Thus, the various designations frequently have little to do with 
the origin or the function of the individual molecules. An addi- 
tional deficiency of the current nomenclature is that the IL do 
not include the various interferons and certain other factors that, 
for all intents and purposes, are also IL. On this basis, it is not 
unreasonable to expect that a new nomenclature will eventually 
be devised. In the present work, we have used the current 
nomenclature and have provided a more or less complete list of 
synonyms. As an additional frequently used convention, we 
sometimes refer to the IL as lymphokines when they are pro- 
duced by lymphocytes and as cytokines when they are produced 
by nonlymphoid cells. 

IL- 1 

IL-1 was first identified as a lymphokine by Gery and Waks- 
man (I) who showed that macrophages produce a factor capable 
of augmenting T cell responses to antigens and mitogens. This 
factor ultimately proved to have an extraordinary variety of 
functions and was in fact shown to be identical with several 
cytokines identified both before and after its discovery. Among 
the latter are endogenous pyrogen (a factor known to cause 
fever), leukocytic endogenous mediator (an inducer of acute 
phase reactants and neutrophilia) catabolin, osteoclast-activating 
factor and hemopoietin- 1 (2-4). IL- 1 is a phylogenetically old 
molecule that predates the evolution of lymphocytes and im- 
munoglobulins; on this basis it is not surprising that its activities 
"transcend" immune function. 

IL-1 consists of not one but two very distinct molecules (IL- 
1 a and IL- I/?) (Table 1) that are products of separate genes (both 
of which, in humans, are on chromosome 2) (5-8). The two IL- 
1 are structurally quite dissimilar except for a region of homology 
which is likely to be the recognition site for the IL-1 receptor (9). 
This surprising difference may reflect the fact that the two forms 
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of IL- 1 occupy separate biologic niches, IL- 1 /3 being the predom- 
inant secreted form and IL- 1 a being the main membrane-bound 
form (10). In recent years, considerable evidence has accrued 
showing that the membrane-bound form of IL- 1 is a biologically 
active molecule that can participate in the costimulation of T 
cells by antigen-pulsed macrophages. 

IL-1 is produced by macrophages and a wide variety of other 
cells such as keratinocytes, astrocytes, and mesangial cells (1 1). 
In macrophages IL-1 production is stimulated by a variety of 
agents such as lipopolysaccharide (LPS), phorbol esters, leuko- 
trienes, immune complexes, UV irradiation, and agents that 
induce phagocytosis (1 1, 12). In addition, T cells interacting with 
macrophages, either by cell-cell contact or via lymphokines, can 
induce IL- 1 synthesis (1 1, 12). Agents that suppress IL- 1 secretion 
include those which down-regulate immune responses generally 
such as cyclosporin A, corticosteroids, and prostaglandins (1 3- 
15); in addition, because IL- 1 is itself a stimulator of corticoste- 
roid and prostaglandin synthesis, IL-1 may have negative feed- 
back effects on IL-1 production. Finally, naturally occumng but 
as yet incompletely characterized IL- 1 inhibitors have been iden- 
tified in febrile patients and pregnant women; the existence of 
such inhibitors indicate that negative feedback of IL- 1 synthesis 
may normally occur in vivo (16). 

IL- 1 activity is mediated by widely distributed IL- 1 receptors. 
Recent work suggests that the latter occur as high affinity and 
low affinity receptors and that both IL-a and IL-/? bind to the 
same receptor (17, 18). IL-1 binding to its receptor on T cells is 
an activation signal accompanied by an increase in protein kinase 
C activity and increase in cytosolic calcium concentration (12). 
However, this is not the case with neutrophils, a fact that may 
explain the lack of IL-1 effects on neutrophil chemotaxis and 
oxidative metabolism. Finally, the binding of IL-1 to its receptor 
leads to internalization of the receptor-ligand complex and down- 
regulation of receptor expression; such internalized IL-1 is not 
degraded and may be transported into the nucleus where it can 
conceivably exert control on intranuclear processes (1 8, 19). 

The diverse activities of IL-1 reflect both direct effects of this 
interleukin as well as indirect effects brought about by mediators 
released secondary to IL-1 secretion. One way of organizing and 
analyzing these activities is based on the unifying view that IL- 1 
is the IL most responsible for the inflammatory changes regularly 
induced by pathogenic organisms or autoimmune processes (1, 
12). Thus, in the CNS, IL-1 acts on the hypothalamic thermo- 
regulatory center and other CNS centers to cause fever and sleep 
and acts in many areas of the CNS to increase secretion of 
various neuropeptides (including endorphins), corticotropin-re- 
leasing factor, and ACTH; the latter, in combination with direct 
effects of IL- 1 on the adrenal gland, leads to increased circulating 
steroid levels and thus the many inflammatory changes brought 
about by steroids. Similarly, IL-1 acts as an inflammatory me- 
diator in the liver, where it increases synthesis of acute phase 
reactants and metallothionines and decreases synthesis of albu- 
min. In addition, in this organ it inhibits lipoprotein lipase 
synthesis and thus causes decreased lipid utilization and lactic 
acidosis. 
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Table 1. IL 

Factor Form Synonyms Major sources Major effects 

IL- 1 

TNF 

0 Endogenous pyrogen Macrophages; also: Proliferation and differentiation 
endothelial epithelial, of T and B cells and other 
fibroblast, and other cell types. Fever, tissue catab- 
cell types olism, chemotaxis 

Membrane bound form Lymphocyte activation and dif- 
of IL-1 on macro- ferentiation 
phages 

T cell derived growth Activated T cells 
factor 

T cell replacing factor 
Killer helper factor 

Multi-CSF (human) Activated T cells 
Mast cell growth fac- 

tor (mouse) 
Burst promoting ac- 

tivity 
Erythroid CSF 
Eosinophil CSF 

BCGF 
BSF- 1 

T cells 

BCGF-I1 Activated T cells 
IgA-enhancing factor 
Eosinophil CSF 

Cofactor for growth and differ- 
entiation of T cells and B 
cells. Increased cytotoxic ac- 
tivity of T and NK cells and 
monocytes. 

Stimulates growth of multipo- 
tential stem cells and eryth- 
roid and myeloid progeni- 
tors. In mouse supports mast 
cell growth. 

Growth factor for: B cells and 
some T cells, erythroid, mye- 
loid, and megakaryocytic 
precursors, increases HLA 
Class I1 expression, Increases 
IgG 1, IgE (mouse). 

Induces differentiation of eosin- 
ophils, augments prolifera- 
tion of activated B cells (in 
mouse), enhances IgA pro- 
duction 

IFN-P Fibroblasts, macro- B cell differentiation 
BCDF phages Hepatocytes: acute phase reac- 
BSF-2 Minor: T cell lines tants 
Hepatocyte-stimulat- Weak anti-viral effects 

ing factor 

TNF 
Cachectin 

LPS stimulated Necrosis of tumors 
Macrophages Wasting of chronic disease 

Pyrogenic 
Endotoxic shock 
Bone resorption 

P Lymphotoxin Lymphocytes Same as a 

Other less organ-specific inflammatory effects of IL- 1 include 
its capacity to augment connective tissue cell growth and collagen 
formation, to increase bone resorption (osteoclast activity) and 
to induce prostaglandin synthesis. In addition, IL-1 augments 
the catabolic effects of tumor necrosis factor (TNF) and is 
synergistic with the latter in the generation of hypertension and 
the capillary leak syndrome. Finally, IL-1 has notable inflam- 
matory effects on the vascular system where it acts to deliver 
inflammatory cells to sites of tissue injury and to contain invasive 
pathologic processes. These effects include the enhancement of 
endothelial cell proliferation, the release of potent vasodilators, 
and the initiation of clot formation. 

Interfacing with these "general" activities of IL- 1 are the effects 
of this interleukin on hematopoietic and lymphoid cells. First, 
IL- 1 stimulates the synthesis of colony-stimulating factors and/ 
or acts as a colony-stimulating factor itself (hemopoietin- 1 activ- 
ity) (20, 2 1). Thus, IL-1 is an important component of the bone 

marrow responses to inflammatory influence. Second, IL- 1 plays 
a key role as a second messenger in antigenlmitogen-induced 
activation of T cells: it acts in combination with the latter stimuli 
to cause maximal expression of IL-2 receptors and the production 
of IL-2 (1 1, 22). This central activity of IL-1 is actually its 
defining feature as an IL (see Fig. 1) and establishes the molecule 
as one whose effects are primary to many other lymphokine 
effects (at least as far as the T cell is concerned) (Fig. 1). Third, 
IL-1 has important effects on other (non-T) lymphoid cells and 
on macrophages. In this context, it acts on activated B cells 
(usually in association with other lymphokines) to induce cell 
proliferation and differentiation (23, 24) and on macrophages to 
causes synthesis of prostaglandins and cytokines and to bring 
about increased macrophage cytotoxic activity (25, 26). 

These various properties of IL- I obviously help the organism 
to eliminate exogenous noxious agents or injurious processes of 
an endogenous origin. It is important to note, however, that 
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receptor 

> IL-2 

IL-1 Beta 
Fig. 1. IL-I (either as membrane-bound IL-la or soluble IL-ID) is a 

costimulant of the T cell during Ag-driven stimulation of the T cell via 
the T cell receptor (TCR). Such co-stimulation results in IL-2 production 
and IL-2 receptor expression and further T cell proliferation. MHC, 
major histocompatability complex. 

under certain circumstances these very same properties allow IL- 
1 to become a mediator of tissue injury. This is seen most clearly 
in studies of the pathogenesis of arthritis, wherein it has been 
shown that IL-1 can induce arthritis when injected into a normal 
joint and can enhance arthritis produced by other stimuli when 
given systemically (27). These pathologic effects of IL-1 may be 
due to the fact that, as alluded to above, IL-1 can act as a 
chemotactic factor, cause the release of prostaglandins and col- 
lagenase, induce osteoclasis, and bring about degranulation of 
leukocytes and the release of proteolytic enzymes and other 
destructive substances. Based on what is known about IL-1 in 
arthritis one might postulate that many autoimmune diseases 
are facilitated, if not caused by IL-1-mediated effects. On this 
basis it becomes reasonable to postulate that an IL-1 antagonist, 
perhaps one structurally related to one of the aforementioned 
natural IL-1 inhibitors, would serve as a mode of therapy for 
immunologically mediated tissue injury. 

At present there are no clearly documented diseases caused by 
primary IL- 1 deficiency or overproduction. However, given the 
potent and ubiquitous effects of this very central IL either of 
these kinds of defects may well be lethal at a very early stage and 
thus escape detection by current methods. 

The existence of mitogenic substances acting on lymphocytes 
or T cell lines has been known for over 20 yr, but it was not 
until Morgan et al. (28) and Gillis and Smith (29) showed that a 
factor was necessary for normal T cell proliferation that the 
identification and characterization of the factor that became 
known as IL-2 began in earnest. In humans IL-2 is a 15.4-kDa 
glycosylated protein encoded by a gene on the long arm of 
chromosome 4 (30). It acts on activated T cells and (to a lesser 
extent) B cells, as well as with natural killer cells and thymocytes, 
causing these cells to proliferate and/or manifest differentiated 
cell function (e.g. cytotoxicity) (30, 3 1). 

T cells display both a high affinity and a low affinity IL-2 
receptor. The high affinity receptor is a heterodimer which is 
composed of a p55 moiety (known as the Tac antigen) which 
binds IL-2 with low affinity and a p75 moiety which binds IL-2 
with intermediate affinity (32, 33). Activated lymphocytes ex- 
press both high affinity ( ~ 7 5 1 ~ 5 5 )  and low affinity (p55) recep- 
tors, whereas large granular lymphocytes (including NK cells) 
express receptors of intermediate affinity (p75) (33). IL-2 recep- 
tors are also found on B cells and various cells of the macrophagel 
monocyte lineage. Of interest, IL-2 receptor expression on 
HTLV-1-virus infected T cells is increased by 5- to 10-fold over 
that of mitogen-activated T cells. This may be due to the fact 
that the virus produces a protein (a product of the viral tat gene) 
which acts on an IL-2 receptor gene promoter to increase IL-2 
receptor transcription (34). It is reasonable to suppose that the 

tat gene product may be a homologue of a normal intracellular 
protein involved in IL-2 receptor expression. 

IL-2 is synthesized by both T cells (CD4 cells > CD8 cells) 
and large granular lymphocytes (3 1). A variety of stimuli induce 
IL-2 synthesis including specific antigens, antibodies reacting 
with cell surface molecules important in activation pathways 
(CD3 and CD2 antigens), and nonspecific activating substances 
such as phorbol esters and mitogens. As mentioned earlier, IL-1 
is necessary for maximal antigen- or mitogen-induced T cell IL- 
2 synthesis and may even be necessary for IL-2 synthesis to occur 
at all. The uncertainty relating to this issue is due to the fact that 
T cell stimulation requires some form of cell presentation of 
antigen or mitogen bound to cells which contain IL-1 in their 
membranes; thus, stimulation of T cells occuning in the absence 
of fluid-phase IL-1, may actually be due to membrane-bound 
IL- 1. This being said, T cell activation and IL-2 production can 
be brought about in the absence of IL-1 by various chemical 
stimuli (e.g. phorbol esters and ionomycin). As for inhibition of 
IL-2 synthesis, this is brought about by a variety of immunosup- 
pressive substances such as glucocorticoids, cyclosporin A, and 
prostaglandins (3 1). 

Defects in IL-2 production or IL-2 receptor expression have 
been noted in a number of disease states, but in no instance has 
it been shown that such abnormalities are a primary feature of 
the disease. Among the diseases with IL-2 production abnormal- 
ities are acquired immunodeficiency (AIDS), autoimmune dis- 
ease such as type 1 diabetes mellitus, systemic lupus erythema- 
tosus, and hypogammaglobulinemia (35-37). In the latter dis- 
ease, the IL-2 deficiency may be responsible for the defective 
(lymphokine-activated killer) activity associated with the disease. 
However, IL-2 receptor expression defects have been seen in 
immunodeficiency states, multiple sclerosis, and adult T cell 
leukemia (38, 39). 

At the moment the most important relationship of IL-2 to 
disease involves its use in the therapy of tumors. The basis of 
such therapy is that IL-2 can activate a form of natural killer cell 
(known as the lymphokine-activated killer cell or LAK cell) that 
is cytotoxic to various tumor cells (40). In preliminary studies in 
which high doses of IL-2 were administered with LAK cells 
activated in vitro, objective antitumor responses were obtained 
in about 20% of patients, including those with melanomas, renal 
cell carcinoma, and chemotherapy-resistant lymphomas (41). 
However, this therapy is associated with severe toxicity and 
requires a high degree of clinical support. Additional studies are 
now underway using other regimens, including those in which 
intermediate doses of IL-2 are administered by constant infusion 
or for prolonged periods with LAK cells. In addition, expansion 
of tumor-specific cytotoxic cells using IL-2 both in vitro and in 
vivo is being explored. Finally, it is possible that IL-2 administra- 
tion will potentiate other antitumor therapies such as those using 
cytotoxic drugs and other IL. 

Aside from its potential role as a antitumor agent, IL-2 may 
have a role as a therapeutic agent in infection, autoimmunity, 
and immunodeficiency. In this regard, it has been shown that 
IL-2 can augment specific antibody responses which are low 
because of specific Ir gene abnormalities and, as mentioned 
above, IL-2 can cause increased antigen-nonspecific cytotoxic 
function necessary for the destruction of potential pathogens 
(42). 

IL-3 AND OTHER COLONY STIMULATING FACTORS (CSF) 

IL-3 is representative of a family of cytokines involved in the 
growth and differentiation of hematopoietic and lymphoid pre- 
cursor cells. This family consists of a group of molecules known 
as the CSF and includes the lymphokines or cytokines that share 
the capacity to stimulate granulocyte and/or macrophage colony 
formation in bone marrow cultures (43, 44). Members of this 
family so far identified include: 1) M-CSF (CSF-l), a heavily 
glycosylated 47- to 76-kDa glycoprotein that stimulates the 
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growth of macrophage colonies and monocytic cell lines (45). 
This cytokine is a disulfide-linked dimer encoded by a single 
gene that gives rise to related forms of the molecule as a result 
of alternative RNA processing (46-50). Recent evidence suggests 
the existence of both membrane-bound and soluble forms (49). 
2) GM-CSF (CSF-a), a 14- to 35-kDa glycoprotein produced by 
various cells including fibroblasts, endothelial cells, and activated 
T cells that has growth-enhancing effects on granulocyte/mac- 
rophage/eosinophil colonies (43, 44, 5 I), and in combination 
with erythropoietin, on erythroid and multipotential colonies 
(52, 53). In addition, GM-CSF has effects on mature cells in that 
it causes neutrophil and eosinophil activation (54) and induces 
neutrophil phagocytosis (52). This cytokine is encoded by a gene 
on chromosome 5 (and is deleted in the 5q- syndrome) (55). 3) 
G-CSF, a 19- to 20-kDa glycoprotein produced by macrophages 
and/or endothelial cells that stimulates mainly granulocytes, but 
may have indirect effects on other precursors particularly when 
it is present in high concentration (56-58). As is the case of M- 
CSF, G-CSF is encoded by a single gene which may produce 
different forms of the molecule as a result of differential RNA 
splicing (59, 60). 4) Multi-CSF (IL-3) (also known as burst- 
promoting activity, mast cell growth factor, and P cell-stimulat- 
ing activity), a 20- to 25-kDa glycoprotein that is derived from 
activated T cells and that supports the growth of virtually all 
types of hematopoietic progenitor cells, usually at several stages 
of their development (usually in concert with other CSF) (43, 
44, 61, 62). This CSF is encoded by a gene on chromosome 5. 
5 )  Erythropoietin, a 34- to 39-kDa glycoprotein produced in the 
kidney that predominantly stimulates erythroid precursor cells 
but also has effects on other precursors in association with other 
CSF (63,64). It is produced by a gene on chromosome 7 (65). 

The activity of multi-CSF (IL-3) on mast cell development is 
of special interest. In recent years, it has become clear that mast 
cells are separable into two types (at least in rodents), connective 
tissue mast cells (or typical mast cell), and mucosal mast cells 
(or atypical mast cell) which differ in proteoglycan, mediator, 
and proteolytic enzyme content (66). The development of these 
two mast cell types appears to be under the control of separate 
cytokines, the connective tissue mast cell being influenced by a 
fibroblast-derived factor and the mucosal mast cell being de- 
pendent on IL-3 (67). Thus, during parasitic infection accom- 
panied by mast cell infiltration, T cells that secrete IL-3 play an 
essential host-defence role. 

The CSF have distinct receptors distributed on undifferen- 
tiated and mature cells of various lineages (43, 44). However, 
since multi-CSF competes with the other CSF and GM-CSF 
competes with G-CSF and M-CSF, it is apparent that CSF with 
activity on multiple cell types bind to a number of cell lineage 
specific receptors (68). Of great theoretical interest is the recent 
demonstration that the M-CSF receptor and the oncogene prod- 
uct, C-fms, are identical (69). This finding links oncogene prod- 
ucts to growth factors. To date, CSF production has been found 
in fibroblasts, endothelial cells, lymphocytes, and macrophages 
and may yet be found in other cell types as well (Fig. 2). IL-1 
and TNF appear to be inducing factors for CSF production and 
thus monocytes, the chief source of IL-l/TNF, may play a key 
role in CSF production (70). 

The therapeutic applications of CSF administration are cur- 
rently being explored. GM-CSF administration to monkeys in- 
duces striking increases in leukocytes of most types (including 
erythrocytes) (71). Similar results relative to neutrophils have 
been obtained with G-CSF (72). On the basis of these data, GM- 
CSF and G-CSF may be useful in certain disease states, such as 
those after ablative chemotherapy for bone marrow transplan- 
tation and in infections associated with neutropenia. In addition, 
efforts are underway to study the effect of erythropoietin in the 
treatment of anemia associated with uremia (73). Finally, inas- 
much as CSF may control leukemic cell growth and develop- 
ment, it is possible that these cytokines may play a role in the 
treatment of myeloid and lymphoid dyscrasias. 

Macrophage 

@ 

T Cell 

n 

Endothelial Cell /---A 

Multi-CSF 
(IL-3) 

GM-CSF 

M-CSF 
G-CSF 

Fig. 2. CSF are produced by several cells. As shown here IL-2 can 
induce CSF production by these cells. 

IL-4 (BCGF-I, BSF- I )  

In 1982 Howard et al. (74) discovered that resting normal 
mouse B cells which were costimulated with anti-p antibody 
could proliferate in the presence of a factor present in the 
supernatant of activated T cells (phorbol ester-treated-EL-4 thy- 
moma cells) (74). This factor was distinct from IL-2 and was 
initially named B cell growth factor (BCGF-1 or BSF-1). How- 
ever, with the recognition that BCGF- l is one of several cytokines 
that act on B cells and that BCGF-1 also acts on T cells in 
addition to B cells, this factor was ultimately given the designa- 
tion, IL-4 (74, 75). In humans, the IL-4 gene encodes a protein 
of 153 amino acids, including a putative 24-amino acid signal 
peptide (76); thus, the deduced relative mol. wt. of the secreted 
protein is approximately 15 kDa, not including the additional 
mass due to posttranslational glycosylation. Human IL-4 has 
approximately 50% sequence homology with murine 11-4. 

IL-4 can act on resting B cells, even before exposure to a 
primary stimulus: B cells preexposed to IL-4 undergo enhanced 
proliferation when later exposed to LPS (77). This finding cor- 
responds to the fact that IL-4 receptors are found on the cell 
membrane during the Go phase of the cell cycle, in contrast to 
IL-2 receptors that are not found on the cell membrane until the 
cell is in the G,  phase (78). This is not to say that IL-4 effects 
are limited to unactivated B cells, inasmuch as it has been shown 
that IL-4 also augment proliferation of activated B cells (79). 
Other effects of IL-4 on B cells include the induction of class I1 
major histocompatibility complex expression (80), the expression 
of CD23 (low affinity IgE receptor) (8 1) and the up-regulation of 
the IL-4 receptor itself (77); these effects allow the B cell to 
respond to other stimulatory lymphokines and to interact with 
other cells. 

Recently it has been shown that IL-4 plays an important role 
in isotype differentiation of the murine B cell: B cells stimulated 
with LPS in the presence of IL-4 preferentially express IgGl 
(rather than IgG3) and IgE (82, 83). If this effect on isotype 
expression operates at the level of the isotype switching mecha- 
nism or at the level of selection of preswitched cells is not entirely 
clear; however, the former possibility is favored by the fact that 
IgGl expression can be observed in clonal B cell populations. A 
related observation is that IL-4 induction of IgGl expression is 
inhibited by interferon-y (IFN-y) and the latter itself promotes 
IgG2a expression (84). It is thus apparent that not only IL-4, but 
other lymphokines, have important effects on B cell isotype 
differentiation (Fig. 3). The above studies clearly establish IL-4 
as a major B cell lymphokine in the mouse. It is not yet certain 
if human IL-4 will have similar activities on human B cells. 
However, data are emerging that IL-4 can selectively increase 
IgE synthesis by human peripheral blood B cells; on the other 
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Fig. 3. IL-4 (and IFN-y) play an important role in isotype differen- 

tiation. IL-4 leads to IgGl production probably by directing the switch 
IgM B cells to IgGl B cells. A similar mechanism may govern IL-4 
enhancement of IgE B cells and IFN-y enhancement of IgG2a B cells. 
As shown, a variety of factors contributes to terminal B cell differentia- 
tion. 

hand, there is some evidence that IL-4 down-regulates human 
peripheral blood B cell responses to certain mitogens. 

As alluded to above, IL-4 acts as a proliferation factor for cells 
other than B cells (85). Thus, IL-4 enhances T cell proliferation 
and causes resting T cells to undergo enhanced proliferation 
when exposed to other costimuli such as phorbol myristate 
acetate. In addition, IL-4 acts to support proliferation and ex- 
pansion of immature erythroid, myelomonocytic, and megak- 
aryocytic precursors as well as macrophages and mast cells (in 
the mouse). These observations suggest that IL-4 is a broadly 
reactive growth and differentiation factor that is not limited in 
its effects on any one cell type. 

Recently, Mosmann et al. (86) have shown that the production 
of IL-4 and other lymphokines may be a property of certain T 
cell subclasses. In particular, these authors found that murine T 
cell clones can be classified into two groups: those producing IL- 
2 and IF'N--y, so-called THI cells, .and those producing IL-4 and 
IL-5, so-called TH1 cells. The different T cell clones thus identi- 
fied in vitro may represent different functional classes of T cells 
that arise as a result of different forms of immunologic stimula- 
tion. Thus, viral infection may induce THI cells and thereby 
evoke the production of complement-fixing IgG2a antibodies, 
whereas parasitic infection may induce TH2 cells and thus lead 
to the production of IgE antibodies and mediator release. Evi- 
dence that this is actually the case comes from studies showing 
that in vivo administration of anti-IL-4 monoclonal antibody 
inhibits IgE production in Nippostrongylus brasiliensis-infected 
animals (87) and conversely, in vivo anti-IgD administration, a 
method of inducing B cell activation and production of IL-4 by 
T cells, is associated with increased IgGl and IgE production 
(84). 

At the moment disorders of IL-4 production have not been 
described, although it is possible that they will be found in 
diseases characterized by abnormal B cell function, such as 
immunodeficiency states or autoimmune diseases. If indeed IL- 
4 proves to be a key factor necessary for IgE production, then it 
may be possible to modify allergic states by antagonists of IL-4 
activity. 

IL-5 was initially identified as a factor present in supernatants 
of T cell cultures which was capable of causing B cells to either 
differentiate into cells actively producing antibody or to undergo 
proliferation; for this reason IL-5 was initially called T cell 
replacing factor or BCGF-I1 (88, 89). Further work established 
that IL-5 is both biochemically and functionally different from 
IL-4: the mol. wt. of the two lymphokines differ and IL-5 acts 
on cells only after initial activation, whereas IL-4 acts on resting 
cells (90-93). The latter fact suggests that the IL-5 receptors are 

not present on resting cells as is the case for IL-4. It has not yet 
been determined if induction of proliferation and differentiation 
by IL-5 involve the same cellular mechanisms; however, these 
effects may sometimes be dissociated because the differentiative 
effects of IL-5 can occur in the absence of proliferation (94). 

IL-5 has a molecular mass of 50-60 kDa and is a multimer of 
disulfide linked, functionally-active 18-kDa subunits (95). Clon- 
ing studies predict that the IL-5 gene encodes for a 12.8-kDa 
polypeptide core in humans, and that the actual 18-kDa molec- 
ular mass is due to glycosylation (96). Regarding the latter, there 
is one study in which it is suggested that IL-5 binds to its receptor 
via a lectin-like interaction involving in N-acetylgalactosamine 
(97). 

The IL-5 receptor is as yet poorly characterized. However, as 
alluded to above, there is considerable evidence that its appear- 
ance on the cell surface is cell-cycle dependent and that it 
recognizes carbohydrate moieties on the IL-5 molecule. In ad- 
dition, data have been reported that show that the gene encoding 
the IL-5 receptor is X-linked (98). This suggests that IL-5- 
controlled processes can underlie certain X-linked disorders. 

Recently it has been shown that IL-5 has isotype-specific 
effects: after LPS activation of B cells in the presence of IL-5, 
IgA but not IgG subclass production is increased (99). However, 
such isotype specificity may be more apparent than real, because 
LPS alone stimulates maximal IgG subclass synthesis, so that the 
apparent class-specific effect of IL-5 may simply be a result of 
the inability of LPS alone to cause maximal IgA responses. This 
view is supported by the fact that in antigen-driven systems IL- 
5 does augment IgM and IgG responses (88). Even if IL-5 effects 
are not isotype-specific, it may be of particular importance to 
IgA B cell differentiation since IgA B cells appear to be unre- 
sponsive to certain stimuli, such as LPS. 

IL-5 effects, in common with those of IL-4, are not restricted 
to B cells. In this regard, it has been shown that IL-5 has colony- 
stimulating activity for eosinophils in liquid bone marrow culture 
(100) and that IL-5 augments T cell cytotoxic capacity (101). 
The latter may relate to the fact that IL-5 induces IL-2 receptor 
expression. 

As yet IL-5 has not been implicated in human disease. How- 
ever, in view of its strong B cell proliferative and differentiative 
functions, IL-5 should be considered in the pathogenesis of the 
immunodeficiencies, particularly those marked by B cell dys- 
function. This possibility obtains added weight from the afore- 
mentioned fact that genes involved in certain B cell immuno- 
deficiencies and that encoding the IL-5 receptor may be X- 
linked. 

IL-6 (BCDF, BSF-2, IFN-(32, HEPATOCYTE-STIMULATING 
FACTOR) 

In recent years it has been shown that immunoglobulin secre- 
tion by the transformed B cell line CESS (102), by leukemic B 
cells (103), or by normal B cells stimulated with Staphylococcus 
aureus, Cowan I (104) could be costimulated by a soluble factor, 
termed B cell differentiation factor (BCDF or BSF-2) isolated 
from T cell lines or T cell hybridomas. The gene encoding this 
factor was ultimately cloned and sequenced (105) and the factor 
was designated IL-6; at this point, however, it became apparent 
that the factor was identical to IFN-02, a substance whose gene 
had been cloned at essentially the same time (106). 

IL-6 is a 26-kDa protein that has sequence and gene structure 
homology with G-CSF (106). The gene encoding this IL has 
several initiation sites that may be preferentially used in different 
tissues and that give rise to somewhat different forms of the 
molecule. Gene transcription of IL-6 is enhanced by IL-1, and 
to a lesser extent by other cytokines such as TNF, platelet-derived 
growth factor, and IFN-01; in addition, LPS increases IL-6 
mRNA synthesis in fibroblasts. 

Unlike the other type I IF'N genes (IFN-a and IFN-01 genes) 
which are located on chromosome 9, the human IL-6 (IFN-02) 
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gene is located on chromosome 7 (107). In addition, the I L 6  
gene has only a 20% homology with other type 1 IFN and differs 
from the latter in containing large introns. These differences 
notwithstanding, IL-6 mediates its effects via the same receptor 
as other type 1 IFN and shares with the latter certain properties 
such as the ability to inhibit virus replication, to induce specific 
IFN-activated genes and to have antimitogenic effects on fibro- 
blasts (108). Thus, the weight of evidence suggests that IL-6 is in 
fact an IFN, but one that has evolved significantly from the other 
IFN (108). 

IL-6 has been shown to be a terminal differentiation factor 
that causes B cells to differentiate into plasma cells in the absence 
of proliferation. This is illustrated by the fact that IL-6 is essential 
for pokeweed mitogen (PWM)-induced Ig synthesis and that 
anti-IL-6 inhibits PWM-induced Ig production. Although IL-6 
does not augment normal B cell proliferation, it has growth- 
enhancing effects on activated B cells (i.e. B cell lines). Thus, IL- 
6 effects on cells may depend somewhat on the preexisting state 
of cell activation. 

In addition to its antiviral and B cell effects, IL-6 also has 
important up-regulatory effects on the synthesis of acute phase 
reactants by the hepatocyte. In this regard, IL-6 is identical to 
monocyte-derived hepatocyte-stimulation factor (109). The very 
diverse activities of IL-6 as well as the fact that IL-6 is produced 
by a van-ety of cell types indicate that IL-6 plays a central role 
during inflammation along with IL-1 and IFN-7. Indeed, there 
is emerging evidence that many of the inflammatory activities 
usually ascribed to 1L-1 may in reality be due to IL-6 (1 10-1 12). 

TNF: TNF-a (CACHECTIN) AND TNF-(3 (LYMPHOTOXIN, 
LT) 

In 1975 Carswell et al. (1 13) showed that the serum of BCG- 
primed, endotoxin-treated animals contains a macrophage-de- 
rived factor, called TNF, which was capable of causing hemor- 
rhagic necrosis of tumors. Subsequently human TNF was puri- 
fied to homogeneity (1 14) and based on the partial amino acid 
sequence of the purified material, a cDNA clone of TNF was 
obtained from which the full amino acid sequence was ultimately 
derived (1 15). Independently of these TNF studies, other inves- 
tigators studied the mechanisms of cachexia associated with 
chronic inflammation (1 16). These studies led to the identifica- 
tion of a macrophage-derived factor that suppressed lipoprotein 
lipase synthesis (1 17) and that, when ultimately purified and 
sequenced, was found to be identical to TNF (1 18-120). 

In yet other studies factors were isolated from activated lym- 
phocytes which are able to lyse target cells (1 2 1, 122). Once the 
cDNA clone of one such factor, termed LT was identified and 
expressed (1 23, 124), it was found that the amino acid sequences 
of LT and TNF share 26% identity and 5 1 % homology when 
conservative substitutions are made. In addition, natural and 
recombinant human LT share with TNF the ability to lyse tumor 
targets. On the basis of this structural and functional similarity, 
a new nomenclature was proposed: TNF-a for the macrophage 
factor and TNF-0 for the lymphocyte factor. 

Recombinant human TNF-a has a mol. wt. of approximately 
17 kDa and consists of 157 amino acids whereas recombinant 
human TNF-0 has a mol. wt. of 25 kDa and consists of 171 
amino acids (125). Both TNF genes are located on human 
chromosome 6 near the major histocompatibility locus and in 
close proximity to one another; thus, it is likely that they have 
arisen from a common ancestral gene through tandem duplica- 
tion (126). 

I n  vivo administration of endotoxin to rabbits causes a rapid 
rise in TNF-a in plasma, followed by rapid clearance. The latter 
is thought to be caused by TNF-a membrane receptor-bearing 
cells present in the liver, skin, kidneys, lung, and gastrointestinal 
tract (127). It is now thought that many of the effects of admin- 
istration of bacterial products and LPS are mediated directly by 
production of TNF-a (126). In addition, there is considerable 

evidence that TNF-a is the central mediator of the wasting that 
accompanies chronic disease (126). LPS is a potent inducer of 
TNF synthesis by macrophages, and large doses of TNF-a mimic 
the effects of endotoxic shock, suggesting that this protein is the 
major mediator of the deleterious effects of endotoxin. 

TNF-a shares with IL- 1 the capacity to act as a potent endog- 
enous pyrogen; this is caused both by a direct effect on the 
hypothalamus and an indirect augmenting effect on I G l  pro- 
duction. Other IL- 1-like effects of TNF-a include the induction 
of prostaglandin Ez and collagenase synthesis by human synovial 
cells and dermal fibroblasts (128) and TNF-a-mediated bone 
resorption. In regard to the latter, the production of TNF-a by 
malignant B cells in multiple myeloma may be important to the 
bone lesions encountered in this disease (1 29). However, TNF-P 
has been shown to have a growth factor-like effect on human B 
cells and fibroblasts (1 30, 13 1). 

The activities of both TNF-a and TNF-0 may be due to their 
capacity to augment synthesis of other cytokines. In addition to 
the effect of TNF on IL- 1 synthesis already mentioned, the TNF 
cause production of GM-CSF (132) and IFN-02. In turn, other 
cytokines may act by causing TNF production, because it has 
been shown that IFN--y and LPS can cause increased TNF 
production (133). Finally, the antitumor effects of TNF are 
enhanced by INF-7 (134). 

Given their production by activated macrophages and lym- 
phocytes, it seems likely that the TNF play an important physi- 
ologic role in the pathogenesis of human inflammatory diseases. 
As discussed above, they are no doubt important elements in the 
acute effects of endotoxin as well as in the wasting diathesis of 
chronic disease. Thus, antagonists of TNF may be useful in the 
therapy of endotoxic shock and chronic inflammatory disease. 
Also of possible therapeutic significance is the antineoplastic 
effect of TNF; however, this will only be feasible if the toxic 
effects of this IL can be separated from the antineoplastic effects. 
At this time there are no known human diseases characterized 
by deficiency of TNF production. 

SUMMARY 

As the reader of this review can readily appreciate, the IL have 
an almost bewildering array of functions that involve not only 
the lymphoid and hematopoietic systems, but also many non- 
marrow-derived cellular systems. The future of IL research lies 
in the further delineation of IL effects on cell-cell interactions 
and on the dissection of IL effects on intracellular processes. In 
addition, with the advent of recombinant IL the way is now clear 
to the widespread evaluation of IL or IL agonists and antagonists 
in a myriad of clinical studies. 
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Announcements 
Abstract Deadline 

The American Pediatric Society and the Society for Pediatric Research announce the abstract deadline for the 
1989 annual meeting (May 1-5, 1989, Washington Sheraton Hotel, Washington, D.C.) has been set as January 
3, 1989. 

For further information contact: 
SPR-Ms. Debbie Wogenrich; 2650 Yale Blvd., S.E., Suite 104; Albuquerque, NM 87 106; (505)764-9099. 
APS-Dr. Audrey K. Brown, Department of Pediatrics, SUNY, Health Science Center at Brooklyn, 450 

Clarkson Avenue, Box 49, Brooklyn, NY 1 1203; (7 18)270-1692. 

International Symposium on Pediatric Rheumatology 
Paris, July 21-22, 1989 

The main topics of this symposium will be: New insights in the physiopathogeny of inflammatory and 
autoimmune disorders (cytokines, genetics. . .); Synovitis: Characteristics and functions of cells infiltrating the 
inflammatory joint; General disorders with joint manifestations in childhood; Therapeutics. General and local 
treatments, surgery . . . 

Abstracts forms will be available in November 1988. This meeting is organized for the week preceding the 
International Congress of Pediatrics held in Paris (July 23-28). 

For information contact: Docteur Anne-Marie Prieur, H6pital Necker-Enfants-Malades, 149, rue de Sgvres, 
75743-Paris Cedex 15, France. 


	The Interleukins
	IL- 1
	IL-2
	IL-3 AND OTHER COLONY STIMULATING FACTORS (CSF)
	IL-4 (BCGF-I, BSF- I)
	IL-5
	IL-6 (BCDF, BSF-2, IFN-B2, HEPATOCYTE-STIMULATING FACTOR)
	TNF: TNF-a (CACHECTIN) AND TNF-B (LYMPHOTOXIN, LT)
	SUMMARY
	REFERENCES


