PULSE OXIMETRY-ITS RELIABILITY IN PREDICTING ARTERIAL OXYGENATION <u>Tzong J. Wei</u>, <u>Amelia</u> <u>Bautista, So H. Ko, Shyan C. Sun</u>(Spon. Hugh Evans) UMDNJ New Jersey Medical Sch., Dept. Ped, Children's Hosp. of NJ

212 Div. Neonatology, Newark, New Jersey

Pulse oximeter (Nellcor 100) was used to continuously monitor (via skin surface) 0_Z saturation $(\rm TcSO_Z)$ in 26 neonates (GA 25-40 wks, BW 700-3500 gm) with cardiac or respiratory distress. First, we studied BW 700-3500 gm) with cardiac or respiratory distress. First, we studied whether TcSO₂ reading would correlate with actual measurement of arterial 0₂ saturation (SaO₂). Simultaneous deteriminations of SaO₂ by OSM₃ hemoximeter (Radiometer) revealed a linear correlation of TcSO₂ and SaO₂ with r=0.969 (p<10⁶). Secondly, we obtained a correl-ation equation of TcSO₂ and PaO₂ through simultaneous blood samplings (N=394): log SaO₂/100-SaO₂=-2.951+2.262 log PaO₂, (r=0.871, p<0.0001). This equation was almost identical with fetal Hb O₂ dissociation curve. We derived from these data the range of TcSO₂ (80% to 95%) to maintain PaO₂ in the range of 40 to 80 torr. Finally using these criteria we studied the sensitivity and specificity of pulse orimetry by analyzing studied the sensitivity and specificity of pulse oximetry by analyzing 394 paired TcSO₂ and PaO₂ samples.

TcS02%	No.	Pa0 ₂ >80 torr	Pa0280-40 torr	Pa0 ₂ <40 torr
>95	44	ZZ (50%)	ZZ (50%)	0
<80	72	0	13 (18%)	59 (82%)
80-95	278	6 (2.1%)	254 (91.4%)	18 (6.5%)

Confining TcS02 in the range of 80 to 95% in order to restrict Pa02 within the limit between 40 to 80 tor yok in order to restrict Page and specificity of 77%. Keeping 0_2 saturation in this range would over-estimate P0₂ in 6.5% (18/278 Pa0₂ <40 torr) and underestimate Pa0₂ in 2.1% (6/278 Pa0₂ >80 torr) of determinations. Understanding its optimal range will enhance effectiveness in clinical practice.

TRANSCUTANEOUS 02 SATURATION VS 02 TENSION MONITORING. Tzong J. Wei, Huey C. Tien, Anita Baldomero, Amelia Bautista, Shyan C. Sun (Spon, Franklin Behrle), UMDNJ-New Jersey Medical School, Dept. Ped. 213 Children's Hospital of NJ, Div. Neonatology, Newark, NJ

A new mode of continuous 02 surveillance (pulse oximetry) is rapidly gaining popularity over traditional transcutaneous P02 monitoring in this country. Both techniques continuously and transcutaneously monitor oxygenation status - one monitors 02 saturation while the other 0_2 tension: we compared the two techniques (TcS 0_2 by Nellcor pulse oximeter and $TcP0_2$ by the Litton oxymonitor) in terms of (1) preparation time, (2) response to changes in physiological conditions and, (3) continuity of monitoring in 26 patients. Results: (1) $TcSO_2$ monitor took an average time of 25.8±8.1 sec but $TcPO_2$ monitor required 10.3±2.3 minutes of preparation and calibration time. (2) Initial response 10.3±2.3 minutes of preparation and calibration time. (2) Initial respons time to physical disturbances (heel prick or ET suction) was slower in TcP0₂ compared with TcS0₂ (1.07±0.82 min vs 0.69±.50 min, p<0.01). Skin hypoperfusion encountered in shock made both techniques inopera-tive. (3) Only TcP0₂ monitoring required interruption (site change every 2 hours) to avoid skin burn. No interruption was needed in TcS0₂ monitoring. Total interruptions averaged 123 min per 24 hours per patient. Monitoring areas for TcS0₂ are restricted to hands, feet, fingers and toes. Movement of extremities disrupted TcS0₂ reading. This is not a problem for TcP0₂ monitoring. NICU nursing & medical This is not a problem for TcP02 monitoring. NICU nursing & medical staff uniformly preferred the pulse oximetry because of its advantages demonstrated in this study, specifically ease of application, absence of skin burns, quicker response times, and fewer interruptions of monitoring.

PROSTAGLANDIN METABOLISM AND PULMONARY VASCULAR RES-PONSE TO CHANGES IN PCO2 IN INFANTS. David L. Wessel, Paul R. Hickey, Dolly D. Hansen and Myron B. Peterson (Spon. by James E. Lock), Harvard Medical School, The Children's Hospital, Departments of Anesthesia and Cardiology and Tufts-New England Medical Center, of Padiatrics Roston Ma

Department of Pediatrics, Boston, MA. We examined the effects of graded changes in arterial pH and PCO2 on pulmonary and systemic hemodynamics and on thromboxane and prostacyclin metabolism in 15 infants following repair of their congenital heart disease. Right and left atrial, pulmonary their congenital heart disease. Right and left atrial, pulmonary and radial artery catheters were placed intraoperatively with a pulmonary artery (PA) thermistor for measurement of thermodilu-tion cardiac index (CI). When hemodynamically stable on 40% in-spired oxygen, baseline measurements, including mean airway pres-sures, were obtained. Ventilation was adjusted to obtain measure-ments at 5 levels of PCO2; PA and left atrial plasma samples were obtained for thromboxane and prostacyclin assays. Hyperventilation lowered pulmonary vascular resistance (PVRI) in 13/15 patients. Increases in pulmonary artery pressure (PAP) and PVRI occurred at elevated PCO2's in all patients (PAP>system-ic in 2 patients). These changes occurred independently of throm-boxane levels. Despite increases in mean airway pressure. moder-

boxane levels. Despite increases in mean airway pressure, moder-ate hyperventilation may decrease PVRI in the postoperative car-diac infant. Moderate hypercarbia raises PVRI and may be detrimental to ventricular performance.

PCO2 (mm Hg) 22+3	44+4*	54+5*	*p<.01 for
pH 7.65 7 .06	7.40+.04*	7.297.03*	comparison to
PAP (mm Hg) 207.05	24+7*	36+15*	preceding base-
PVRI(mmHg/Ľ/m) 3.2+1.5	4.4+2.2*	7.8+5.4*	line measurement

CLARE
OPTIMAL POSITIVE END-EXPIRATORY PRESSURE (PEEP) IN INFANTS AND CHILDREN WITH ACUTE RESPIRATORY FAILURE. Madolin K. Witte, Sharon M. Galli, Robert C. Chathurn and Jeffrey L. Blumer. Case Western Reserve University School of Medicine, Rainbow Babies and Childrens Hospital, Department of Pediatrics, Cleveland, Ohio.
THEP has become the mainstay in the treatment of hypoxemic acute respiratory failure (ARF). While PEEP improves oxygenation by decreasing intrapulmonary shunting, it may also impair cardiac output and hence decrease oxygen delivery (O₂D) despite increased arterial oxygen content (CaO₂). Since optimizing O₂D is the goal of therapy in ARF, we sought to determine whether the level of PEEP which results in maximal O₂D can be estimated using noninvasive measurements of lung compliance (C). We studied 14 normovolemic children, aged 2 wks to Il yrs, with ARF due to pneumonia or ARDS. Indicator dilution cardiac index (CI), arterial O₂ partial pressure (PaO₂), CaO₂, C, and O₂D were determined at 0, 3, 6, 9, 12 and 15 cm H₂O PEEP. Tidal volume and FiO₂ were held constant. The level of PEEP (mtSD) at which O₂D was maximal O₂D in 6 pts (43%) but higher (7 pts) or lower (1 pt) than PEEP of maximal O₂D in the remainder; no consistent relationship between O₂D and C was observed. PEEP of maximal O₂D in a present of PEEP were associated with a significant decrease in CI, from 5.47±2 L/min/m² at PEEP of maximal O₂D. PEEP of maximal O₂D in all pts; higher levels of PEEP were associated with a significant decrease in CI, from 5.47±2 L/min/m² at PEEP of maximal O₂D in 7 pts. At levels of PEEP were associated with a significant decrease in CI, from 5.47±2 L/min/m² at PEEP of maximal O₂D. PEEP of maximal O₂D in 4 PEEP 9 cm above that of maximal O₂D. PEEP of maximal O₂D to 145±75 tor at PEEP 9 cm above that of maximal O₂D. PEEP of maximal O₂D to 145±75 tor at PEEP 9 cm above that of maximal O₂D. We conclude that PEEP of maximal C does not reliably

CLINICAL EXPERIENCE WITH HIGH FREQUENCY JET VENTILATION (HFIV) IN PEDIATRIC PATIENTS. Madolin K. Witte, Ann M. Rudloff, Robert C. Chatburn. (Spon. IL. Blumer) Case Western Reserve University School of Medicine, Rainbow Babies and Childrens Hospital, Department of Pediatrics, Cleveland, Ohio. HFIV has been developed as an alternate mode of mechanical ventilation which employs every small tidal volumes at rapid rates. Its theoretical advantages over conventional ventilation (CV) include less barotrauma and less cardiovascular depression due to lower airway pressures. While HFIV has been used successfully for treating respiratory disorders in adults and neonates, experience with this mode of ventilation in older children is limited. We have reviewed our experience with 22 pts, aged 2 wks to 20 yrs (m±SD 5.1±6.7 yrs) who received HFIV for treatment of respiratory failure (RF) not adequately controlled with CV. The primary diagnosis was pneumonia in 13 pts, ARDS in 7 pts, and cardiogenic shock in 2 pts. Indications for switching from CV to HFIV was initiated with driving pressures of 643 psi (m±SD 18.6±9.8 psi) and rates of 95-233 breaths/min (m±SD 145±34). PIP decreased from 61±17 cm H₂O during CV to 46±15 cm H₂O during HFIV (40±13 vs 46±10 mmHE, p < 0.05); oxygenation, as measured by arterial alveolar pO₂, did not change. In 4 pts, HFIV was discontinued within the visual pressure of form 49±15 cm H₂O (both p<0.001). Mean PEEP increased sliphtly, from 11.6±5 cm H₂O (both p<0.001). Mean PEEP increased sliphtly, from 11.6±5 cm H₂O (both p<0.001). Mean PEEP increased from 49±15 cm H₂O (both p<0.001). Mean PEEP increased from 49±15 cm H₂O (both p<0.001). Mean PEEP increased sliphtly, from 11.6±5 cm H₂O (both p<0.001). Mean PEEP increased sliphtly, from 11.6±5 cm H₂O (both p<0.001). Mean PEEP increased sliphtly, from 11.6±5 cm H₂O (both p<0.001). Mean PEEP increased sliphtly, from 11.6±5 cm H₂O (both p<0.001). Mean PEEP increased sliphtly, from 11.6±5 cm H₂O (both p<0.001). Mean PEEP increas

DEVELOPMENTAL BIOLOGY

THE SYMMETRIC TONIC NECK REFLEX (STNR) AS A NORMAL FINDING IN PREMATURE INFANTS PRIOR TO TERM. Marilee C. Allen (Spon. by M. Douglas Jones, Jr). The Johns

217 Local Content of the set of t with cerebral palsy (CP), it is an uncommon finding in term neo-nates and infants. Its frequency has been studied in a population of 110 premature infants who were examined at and/or prior to term and who had normal motor milestones on followup at a mean age of 27 months (12-61). The STNR was graded as to intensity and completeness, in the manner of Capute et al (DMCN 26:375, 1984). Mean BW was 1141 gms (460-2190); mean GA was 28.6 wks (23-35). Forty-six had multiple exams prior to term.

At term (or NICU discharge), 42% had a definite (Grade 2) STNR and 9% had a complete (Grade 3) STNR. Only 1% had Grade 1 STNR (tone changes only). Of the 53 (48%) who were scored as no STNR, 6 (11%) had evidence of STNR in either the UE or LE (partial STNR). Of the 46 who had multiple exams, 28% had an STNR on one exam but not on an earlier or later exam. When the data on all 238 exams were analyzed by postcorportional acc (DCA) the STNR 238 exams were analyzed by postconceptional age (PCA), the STNR was not elicited prior to 28 wks PCA and was present in 4-6% at 29-32 wks PCA. The frequency and strength of the STNR progressively increased with PCA. By term, 32% had Grade 2 and 14% had Grade 3 STNR.

The STNR is a normal finding in premature infants prior to term. It emerges at 30 wks PCA, and is present in half of premature infants at term.