Effects of Indomethacin in Utero on the Pulmonary Vasculature of the Newborn Guinea Pig

IDAPHNE I: DEMEIIO, JOHN D. MURPHY.' MARK J. ARONOVITZ.' PA(II, DIVIES, ANI) IXVNE M. REII)

Abstract

ABSTRACI. The clinical syndrome of persistent pulmonary hypertension of the newborn results from failure of the normal perinatal vascular adaptation, and functionally is characterized by persistent right to left shunting of blood through the foramen ovale and ductus arteriosus. Exposure of the fetus to drugs that inhibit prostaglandin synthesis and cause closure of the ductus arteriosus has been suggested as one cause of persistent pulmonary hypertension of the newborn. We attempted to produce a functional and structural model of persistent pulmonary hypertension of the newborn by administration of indomethacin, a cyclooxygenase inhibitor, to pregnant guinca pigs. Five pregnant guinea pigs received $3.5 \mathrm{mg} / \mathrm{kg}$ indomethacin intravenously twice each day for the 12 to 19 days before delivery and seven controls received saline. Hemodynamic studies were performed in eight "treated" newborns and in 12 controls. After sacrifice, the ductus was ligated and, for morphometric studies, the pulmonary arteries were distended with barium/gelatin. The treated animals did not show the intraacinar structural or hemodynamic changes of persistent pulmonary hypertension of the newborn. It seems that the indomethacin did cross the placenta because lung structure was modified. The radial alveolar count and alveolar/artery ratio were increased and the preacinar arteries dilated, with more increase in muscle mass. This could be explained by increased pulmonary blood flow because of ductal constriction but direct effect of indomethacin cannot be ex- cluded. (Pediatr Res 22: 693-697, 1987)

Abbreviations

PPIIN, persistent pulmonary hypertension of the newborn Rx, treated
C, control
RAC, radial alveolar count
IV, intravenous
Ppa, pulmonary artery pressure
Psa, systemic artery pressure
ED, external diameter

At birth as the lungs expand with air and mediators that include bradykinin are released, pulmonary vascular resistance

[^0]falls because of vasodilatation and increased compliance of small resistance arteries (1-4). The increased compliance is indicated by an increase in the diameter and a drop in wall theickness of arteries at a given distending pressure.

Idiopathic PPHIN results when this perimatal adaptation fails and right to left shunting oceurs through the foramen owale and/ or ductus arteriosus. Sometimes it is fatal $(5-7)$. and in these cases in addition to any functional falure the arterial bed is usually structurally abnormal with a well-developed medial muscle coat present in intratinar arteries that at birth are normally not muscular. The pre- and intracinar arteries are abonormally small and anteries of all sie have a dense collagen sheath (8. 4). indicating that resistance arteries fat to increase compliance.

Indomethacin and other cyelooxygenase inhibitors have been shown to cause constriction of the ductus arteriosus of experimental animals and a rise in pulmonary artery pressure in mefo (10.11). This led these authors and others (12) 10 sugeest that premature closure or constriction of the ductus arteriosus might be a cause of PPHN in humans. although the had not identified in animals the human structural changes described above. In some cases of PPHEN the mother had ingested evelooxygenase inhibitors (13-17). Other authors (18, 19) have not found this association. Most reports describe the functional effects of indomethacin exposure and not the structural changes in the pulmonary arteries. In vitro, the guinea pig ductus seems not to be affected by indomethacin (20), but this effeet has not been studied in biro. We have administered indomethacin to guinea pigs late in pregnancy and have exaluated the newborns for possible structural and hemodynamic features of PPIFN.

METHODS

We used 12 pregnant guinca pigs. About 3 wh before delivery a pregnant guinea pigs was allocated to an Rx or C group. Seven mothers received 2 ml of saline. IV wice a day, until delivery. The 12 guinea pigs born to these mothers who had received iv saline for periods ranging from 6-23 days constituted the Control group.

This study is based on four pregnant guinea pigs treated with IV indomethacin. $3.5 \mathrm{mg} / \mathrm{kg}$ twice a day, until delivery and a fifth animal that received indomethacin both orally and IV (2 $\mathrm{mg} / \mathrm{kg}$ IV. h.i.d. for 9 days and $3 \mathrm{mg} / \mathrm{kg}$ b.i.d. orally for 7 days). The dosage was based on a series of preliminary studies in a separate group of pregnant guinca pigs. Starting dose was 6.5 $\mathrm{mg} / \mathrm{kg}$ once or twice a day. This was reduced by 0.5 mg increments until all offspring were liveborn, at $3.5 \mathrm{mg} / \mathrm{kg}$. The highest dose proved fatal to the mother and the intermediate doses were fatal to the fetuses. In aborted fetuses from at least three litters. the ductus was closed.

The treated group yielded eight newborns that had been exposed in utero to indomethacin for 12 to 19 days. All the newborns were delivered spontaneously. Within 5 h of birth the
newborn guinea pigs were weighed and studied hemodynamically. They were maintained under a radiant warmer throughout the study.
The newborn guinea pigs were anesthetized with sodium pentobarbital, $10 \mathrm{mg} / \mathrm{kg}$ intraperitoneally and lidocaine 0.5% locally. Silastic catheters (external diameter 0.56 mm) were placed in the left carotid artery and the main pulmonary artery using techniques similar to those described previously (21). Pressures were recorded from the pulmonary artery, right ventricle, right atrium, and systemic arteries. Blood samples were drawn from the systemic arteries, pulmonary artery, and right atrium for blood gas determinations, oxygen saturation, and hemoglobin concentration.
Following the hemodynamic studies, the animals were sacrificed with an overdose of sodium pentobarbital ($300 \mathrm{mg} / \mathrm{kg}$) at ages ranging from >1 to 5 h . When respiration ceased the chest was opened and the heart and lungs removed en bloc, the ductus was ligated and the pulmonary arteries were injected with a barium gelatin suspension at a pressure of 73.5 mm Hg . The lung was fixed fully distended by intratracheal instillation of 10% buffered formalin at 25 cm water pressure (22). Pulmonary arteriograms were obtained. The diameter of the axial pulmonary artery at the first branch and at 50 and 75% of the distance to the periphery was measured on pulmonary arteriograms. After fixation, lung volumes were measured by water displacement and four blocks were taken, one each from the left cranial and caudal lobes and two from the right lower lobe. Four $\mu \mathrm{m}$ sections were cut and stained with hematoxylin and eosin and Miller's elastic-van Gieson stain. Morphometric analysis of the pulmonary vasculature using light microscopy was performed according to the methods developed by Hislop and Reid (23-25). Briefly, in each of four sections the barium-filled arteries under $300 \mu \mathrm{~m}$ in diameter were examined (about 70/animal), structure was recorded, medial thickness measured, and percentage medial thickness was calculated using the formula $2 \times$ medial thickness $\times 100 /$ external diameter. The airway was identified and the accompanying arteries grouped by airway level as preacinar (terminal bronchiolus, respiratory bronchiolus), alveolar duct, or alveolar wall. Radial alveolar counts were performed according to the method of Emery and Mithal (26). The structure of the pulmonary veins was also examined.
Each heart was dissected and weights of the right ventricular free wall, and left ventricle + septum, were recorded.
The data in the two groups were compared using the Wilcoxon Rank sum test (27) and Student's t distribution, including a Bonferroni correction for multiple comparisons (28). For the latter, SD was used as the index of dispersion, the tests were unpaired and a 5% significance level was used.

RESULTS

Body weights of the Rx animals were similar to the C group ($R x: 88.5 \pm 8.7$ and $C: 87.8 \pm 14.1$, respectively), as were cardiac ventricular weights. The mean hematocrit for the treated animals was somewhat higher than that of the controls but not significantly so ($\mathrm{Rx}: 46 \pm 5.19 \%$, C: $42.6 \pm 2.69 \%$). Arterial pH was similar in animals of both groups ($\mathrm{Rx}: 7.4 \pm 0.02, \mathrm{C}: 7.38 \pm$ 0.06), as were the arterial pO_{2}, values ($\mathrm{Rx}: 71.25 \pm 12.9 \mathrm{~mm} \mathrm{Hg}$, C: $74.2 \pm 22.2 \mathrm{~mm} \mathrm{Hg})$.
Ppa and Psa were similar in the Rx and C groups (Ppa Rx:
$26.12 \pm 4.73 \mathrm{~mm} \mathrm{Hg}, \mathrm{C}: 26.83 \pm 4.0 \mathrm{~mm} \mathrm{Hg}$, Psa Rx: $48.7 \pm$ $10.3 \mathrm{~mm} \mathrm{Hg}, \mathrm{C}: 46.5 \pm 6.34 \mathrm{~mm} \mathrm{Hg}$) (Table 1).

Morphometric findings. Lung volumes were similar in the Rx and C groups (Rx: $4.0 \pm 0.6 \mathrm{ml}, \mathrm{C}: 3.88 \pm 0.031 \mathrm{ml}$) (Fig. 1).

The ductus was open in all animals and was ligated before the preliminary arterial injection was made. Measurement of axial artery luminal diameter on the arteriograms showed greater values in the Rx group that in the C in five of the six levels. In the left artery at the most proximal level, the difference was very close to significant using the Bonferroni correction (Table 2).
The percentage of muscular arteries at each airway level was similar in both groups indicating that intrauterine exposure to indomethacin had not caused abnormal muscularization. In both groups the intraacinar vessels were similar in external diameter and percentage medial thickness (Table 3).

Although the percent medial thickness of preacinar arteries in both the treated and control animals was similar, the ED of the preacinar arteries in the Rx group was larger indicating some increase in smooth muscle mass in preacinar arteries (Table 3). At this level the medial area was larger in the Rx than in the C group ($\mathrm{Rx}: 9305.2 \pm 6746.2, \mathrm{C}: 5215.1 \pm 5357.9, p<0.001$).

In seven of the eight animals in the Rx group alveolar multiplication had exceeded that of the C animals. The mean RAC for the Rx group was 19 , significantly above the control value of $15.68(p<0.05)$. The alveoli were smaller and alveolar number per unit area was higher, as was obvious from inspecting fields of similar size (Fig. 2).
The alveolar to arterial ratio was higher in the Rx group than the C guinea pigs ($\mathrm{Rx}: 124 \pm 58.1, \mathrm{C}: 76 \pm 17.1, p<0.05$). Since the arterial density per unit area of lung did not differ in the two groups the increased ratio reflects the increased alveolar density. The veins and perivascular collagen were similar in the Rx and C groups.
In summary, the Rx animals had an increase in diameter of the left pulmonary artery and preacinar arteries of both lungs with increased muscle mass in preacinar arteries and an increase in alveolar multiplication to give abnormally high radial alveolar counts. They did not show muscularization of intraacinar arteries or increase in perivascular collagenous sheaths.

DISCUSSION

The administration of indomethacin to pregnant animals causes ductal constriction and an elevation of fetal pulmonary artery pressure (11, 29-33). Indomethacin may also lead to intrauterine ductal constriction in humans (13, 14, 34). Since postnatal Ppa after intrauterine exposure to indomethacin has not previously been reported, the effect of intrauterine indomethacin on the perinatal pulmonary vascular adaptation is not known.
Pulmonary arterial wall thickness has been reported as increased after exposure to indomethacin in utero in sheep (11), rats (12), and human infants (14). Since these vessels had not been distended before fixation and since the external diameter of the pulmonary vessels was decreased (11), this effect could be due to vasoconstriction alone. From the data given (11), the calculated mean cross-sectional area of the muscular media in controls is $665.92 \mu \mathrm{~m}^{2}$ and in experimental animals, $732 \mu \mathrm{~m}^{2}$, a difference that is not statistically significant ($p>0.05$). In another study in fetal rats, vessels of similar external diameter

Table 1. Hemodynamic data

	Mean hematocrit (\%)	Mean arterial pH	$\begin{gathered} \text { Mean } \\ \text { arterial pO } \\ (\mathrm{mm} \mathrm{Hg}) \\ \hline \end{gathered}$	$\begin{aligned} & \text { Mean Ppa } \\ & (\mathrm{mm} \mathrm{Hg}) \end{aligned}$	$\begin{aligned} & \text { Mean Psa } \\ & (\mathrm{mm} \mathrm{Hg}) \end{aligned}$
Indomethacin Rx	46.0 ± 5.1	7.40 ± 0.02	71.2 ± 12.9	26.1 ± 4.7	48.7 ± 10.3
C	42.6 ± 2.6	7.38 ± 0.06	74.2 ± 22.2	26.8 ± 4.0	46.5 ± 6.3

B
Fig. 1. Pulmonary arteriograms of (.1) indomethacin-treated guinea pig showing lumen diameter of left pulmonary artery $799 \mu \mathrm{~m}$ and (13) control, lumen diameter $733 \mu \mathrm{~m}(\times 4)$.

Table 2. 1.xial arterl-luminal diameter ($\mu \mathrm{m}$)

	Left			Right		
	At ist branch	50%	$75^{\prime \prime}$	At 1 st branch	$50^{\circ} \mathrm{C}$	75'\%
Indomethacin Rx	$924 \pm 1.30 .5$	649 ± 99.1	408 ± 109.4	774 ± 123.0	6.33 ± 71.2	391 ± 97.1
(${ }^{\circ}$	714 ± 160.7	54.5114 .7	369 ± 150.0	696 ± 127.6	557 ± 100.0	$4(0) \pm 16.3 .1$

were compared in experimental animals and controls. Although the calculated percent wall thickness was increased in the experimental group, since the vessels were not landmarked by the accompanying airway, it is not certain that vessels of the same level were being compared. Thus it is again possible that the observed difference is due to vasoconstriction rather than a true

Table 3. Microscopic artery measurements

increase in vascular smooth muscle or extension of muscle into normally nonmuscular arteries. We report for the first time an increase in medial muscle mass of normally muscular arteries after indomethacin administration, but it is associated with diffuse enlargement of the lumen in large arteries and not contracture of the arterial bed.

Contrary to our expectations, our study did not produce postnatal pulmonary hypertension or the structural changes, particularly the excessive muscle of intraacinar arteries, that are typical of human $\operatorname{PPHN}(8,9,35)$. It is unlikely that indomethacin failed to cross the placenta. Our preliminary experiments with higher doses ($8 \mathrm{mg} / \mathrm{kg} /$ day) resulted in an aborted fetus with closed ductus. The modification to pulmonary structure by indomethacin treatment indicates that indomethacin crossed the placenta and was effective. Several studies have shown that indomethacin crosses the placenta and produces ductal constriction thus increasing pulmonary blood flow (11, 30-33, 36).

Fig. 2. Photomicrograph of lung: (A) indomethacin-treated guinea pig showing increased alveolar density per unit area of lung compared with (B) control ($\times 250$, Miller's clastic-van Gieson stain).

Postnatally the Ppa in both Rx and（ animals was similar． indicating that regardless of intraterine flow postnatal adapta－ tion occurred to give normal Ppa．The increase in $\mathrm{R} \wedge\left({ }^{\prime}\right.$ in the Rx animals indicates greater than normal alveolar multiplication． a phenomenon not previously described after fetal indomethacin exposure．Whether this is a direet effect of indomethacin of evidence of an increased dose of growth hormones because of increased flow is not known．Rudolph（37）has suggested that there are differences in the biologic response to indomethacin by small pulmonary vessels due to the duration of ingestion．gesta－ tional age of the fetus，and time interval between the last dose of the drug and birth：each can affect the nature of the response of the pulmonary circulation．

There is dissociation between multiplication of alveoli and appearance of small alveolar wall vessels．A similar dissociation has been reported in other conditions：an increase in alveolar to arterial ratio was found in polyalveolar tobe where alveolar multiplication is excessive（23），with a raised alveolar to arterial ratio．It is tempting to speculate that the increased pulmonary flow in tutero consequent to ductal constriction had a similar effect．It could of course be a direct effect on alveolar growth control by indomethacin．A decreased number of pulmonary vessels／em² lung tissue has been described in a human newborn after chronic intrauterine exposure to a cyclooxygenase inhibitor （14）．Alveolar number was not estimated．

While the increased diameter of preacinar arteries in our Rx animals could be a rapid change the increase in muscte mass is likely to have taken place over several days to weeks．Since the animals were killed a lew hours after birth，it is likely that these changes occurred in thero．
In summary，chronic in utero exposure of guinea pigs to indomethacin produced neither the hemodynamic nor structural changes of PPIIN．It seems that indomethacin acted long enough in utero to modify the pulmonary arterial bed and cause increased alveolar multiplication．These findings suggest that the changes produced by increased blood flow are not the ones that cause PPHN：the structural changes in the latter of musculariod but small peripheral intraacinar arteries and dense collagen sheaths are so different from those seen after intrauterine indomethacin treatment that they do not even suggest early changes of PPIN．

RIFERIENGES

1．（amploll A（iM．Dawes（iS．Jishman AP，Hyman AI．Porks AM 1968 the release of a bradykinn－tike pulmonary vasotilator substance in Retal and newborn lambs．J Physiol 195：8．3－96
2．Heymann MA．Rudolph AM，Nies AS，Memon KI 1969 Bradshinin produc－ tion associated with oxygenation of the fetal lamb．（ire Res 25：521－5．34
3．（assin S．Dawes（iS．Mott J，Ross BB，Strane 1．B 1964 The vascular resistance of the fetal and newly ventalated lung of the lamb．J Phesiol 171：61－79
4．Kulik IJ．Iock IE 1984 Pulmonary vasodiator therapy in persistent pulmo－ nary hypertension of the newhorn．In：Philips JB（ed）（linics in Perinatology Vol $11 / 3$ Symposium on Neonatal Pulmonary Hypertension．W＇B Saunders． Philadelphia．pp 693．．70）
 the fetal circulation）．（irculation 40：87（ahstr）
 Persistent pulmonary vascular obstruction in newhorn infants．I Pediatr 78：610－615
 AM 1976 Persistent pulmonary hypertension of the newbern intant．I Pedati $89: 626-6.30$

9．Murphy JI）．Rabinovition M．（ioldstein ．II）．Reid I 198I Ihe structural hasis of persistent pulmonary hapertension of the newhorn infant．I Pediate 98：リのこ．．9の7
 arteriosus and circulaton of fetal lambe in utero．（ ire Ren $38: 48422$
 and myocardial abomemalities scoondary to pharmacologic constriction of the fetal ductus arternosus．（rewation 60：300－．304
 methacin on fetal rat lungs：a possible cause of persistent detal citculation （PR（）．Pediatr Res $15: 14^{-}-1$ S
13．Manchester D．Margolis HS．Sheldon RF 1976 Possible association betweern maternal indomethacin theraps and primary pulmonars hypertenom of the

 pulmonary vascular bed in infants exponed in utero to prostaglandin synthe－ tase inhibitors． 1 Pediate y $2: 4^{-8} 48 ?$
15．（saba If：Sulyoh E ：Ertl 1978 Relationship of maternal treatment wht indomethatin 0 persistence of letal cirulation shodrome．J Pedatr 92：48．4
 ductus shunts in newborn infants with persistent pulmonary hypertenson． 3 Pediatr 96：721－726
 of maternal treatment with indomethacin．J Pedtatr 9t：la！
18．Wigvist X ．I undstrom V^{\prime} ．（ireon K 1975 Promature labor and indomethacin Prostaglandin 10 ：5 5－ 26
19．Kumor K．M．White R1）．Blake DS 19－4 hadomethacin as a treatment for

20．（oceani I：Olley PM，Bishai I．Bodach I．Heaton I．Nashat M．White 1＂197＂ Prostaglandens and the control of muste bone in the ductus arterames．W Fap Med Biol 78：135－142
 on the pulmonars vasculature of the newbern guinea pig．Pediate Res 20：292－295
22．Davies（i．Reid 1．1970（irowth of the alseoli and pummony ameries in childhood．Thorax $2: 6(6)-6, \mathrm{~S}_{1}$
23．Hislop A．Reid 1 1970 New pathological tindings in emphy soma ot chikdood 1．Polyalveolar lobe with emphysema．Thorax $25: 68^{2}$－ 690
24．Hislop A．Reid I My？Amertal changes in（rotalaria spectabilis induced pubmonary hyportension in mats．Br I E E P Pathol 55：15：16．3
5．Hislop A．Reid 197 （ Xew findinge in pulmonars arteres of rats with hypona induced pulmonary hybetension．Br I I En Pathol 57：54．554
26．Emery J．．Mithal A 1960 The number of atseoli in the lerminal respatory unit of man during late intauterine life and chikdood．Wreh ois（hikd $35: 544-547$
2？．Wilcoxon F 1945 Individual comparisom by ranhing methods．Bometr Bull 1：S0
28．Wallenstein S．Zucher（．Feiss 11 1980 Some statistical methods useful in circulation rescarch．（ire Rest ${ }^{\text {ºn }}$－- ）

30．I evin I）I．Mills I J．Pather M．（ameot I．（ampoll W 1979（onstrition of the fetal ductun arteriosus after admenistation of indomethate w the pregnant cwe． 1 Pediatt 9 － 0 （ $6^{-}-650$
11．Kirkpatrick SE：Print／MP．Fricdman WI：1977 Prostaglandins（P品）and the

2．Sharpe（il．Thame B．I arsson K．S ly + Studes on chosure of the dutus arteriosus： $\mathcal{X l}$ ．Ductal closure in utero bs a prostaglandin sunthe ase inhbi－

\therefore Sharpe（il．．Iarson KS．Thatme B 14－5 Studes on chature of the ductu arteriosus X $\mathrm{X} \|$ ．In uteroction of indomethacin and sodium saticylame in mats and rabbits．Prostaglandins 9：－s．－590
 suspected ductal closure in utero．I Pediatr $-5.8--{ }^{-1}$
 （ linies in Perinatologs．bol 11 S Smposium on Neomatal Pulmonary H－ pertension．WB Saunders．Philadelphat pp ミ2？…to
36．Parks BR，Jordan RI．Rawson JE：I oughas BH 1977 Indomethacin：Studies of absorption and placental transter．Am J Obstot（istow 129：40t fo．
 the newhorn．Ireh Intern Ded $1+1: 358$－ 363

[^0]: Received \wedge pril 27. 1987: accepted July 30. 1987
 Corespondence and reprints 1 wnene Reid. M.I).. The (hildren's Hospital. Department of Pathology, 300 I Iongwood Avenue. Boston. MA 02115.

 Supported by SCOR (irant HI. 32364-()4 from Heart. I ung and Blood I ivision of the National Institutes of I Health.
 ${ }^{1}$ Present address Division of (ardiology. (hildren's Mospital of Philadephia. 34th Street and (ivic Center Boulevard, Philadelphia, PA.
 ? Present address I Department of (ardiology. New Fngland Medical Center. Boston, M A.

