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ABSTRACT. The response of circulating catecholamines 
to asphyxia in unanesthetized, spontaneously breathing 
neonatal piglets was measured before and after treatment 
with indomethacin. Prior to treatment with indomethacin, 
baseline levels [geometric mean, pg/ml (95% confidence 
limits)] of D, E, and N were 162 (99-266), 174 (52-579), 
and 380 (286-506), respectively. Inhalation of 10% 02/9% 
CO? for 20 min caused significant increases in arterial 
levels of all three catecholamines to 389 (230-659, 1514 
(993-2306), and 3802 (2731-5293), respectively. Treat- 
ment with indomethacin (5 mg/kg, intravenous) did not 
significantly alter either baseline levels of the catechol- 
amines or the levels after 20 min of the asphyxiating gas. 
In time control piglets, baseline levels and the response to 
asphyxia were similar before and after placebo. These 
results suggest that the circulating catecholamine response 
to asphyxia of the neonatal piglet is independent of the 
prostaglandin system. (Pediatr Res 21: 534-537,1987) 

Abbreviations 

PGE2, prostaglandin E2 
IND, indomethacin 
E, epinephrine 
PGI?, prostaglandin I? 
D, dopamine 
N, norepinephrine 

Prostanoids (1) and catecholamines (2) are potential modula- 
tors of neonatal circulatory and metabolic function under normal 
conditions and in response to stress. There is evidence suggesting 
an interdependence of the control of prostanoid and catechol- 
amine release in various organs. For example, in several organ 
systems in the adult the release of N from adrenergic nerve 
endings in response to nerve stimulation is augmented by IND 
(3). This augmentation is believed to be due to inhibition of a 
putative prostaglandin-mediated negative feedback loop which 
modulates sympathetic neurotransmission in vascular smooth 
muscle. Furthermore, adrenal release of catecholamines also may 
be augmented by IND (4). 

Increased circulating levels of catecholamines are important 
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in the newborn's adaptation to a variety of stimuli such as 
asphyxia, including the events of normal labor and delivery (5). 
Circulating prostaglandin levels are increased in the newborn 
compared to the older child and adult (6), and activation of the 
prostaglandin system in several organs is an important part of 
the neonatal response to asphyxia (7-9). Thus, interaction of the 
catecholamine and prostanoid systems in the neonatal period 
would be significant both because it could be important in the 
circulatory and metabolic adjustments to asphyxia and because 
agonists and antagonists of both of these systems are in common 
use clinically (1 0- 12). 

In the present study we test the hypothesis that inhibition of 
prostanoid synthesis with IND augments the response of circu- 
lating catecholamines to asphyxia in neonatal piglets. 

METHODS 

Animal preparation. Fifteen piglets [3-5 days old at time of 
study; weight 1.14 f 0.32 (SD) kg] were used in this study. Nine 
of these piglets (six IND, three placebo) were instrumented under 
general anesthesia 3 days prior to the experiment as described 
previously (8). The remaining six piglets (three IND, three pla- 
cebo) were instrumented acutely under local femoral anesthesia 
on the day of the experiment and allowed to recover for 2 h 
prior to being studied. Results from piglets instrumented by these 
two methods give similar conclusions. Arterial and venous cath- 
eters were placed in all animals for monitoring blood pressure, 
sampling arterial blood, and administering drug. All studies were 
canied out with the piglets unanesthetized, spontaneously 
breathing, and quiet. Inspired gases were controlled by placing 
the piglet's head in a bag through which passed either room air 
or the asphyxiating gas mixture (10% 0 2 ,  9% C 0 2 ,  balance 
nitrogen). Rectal temperature was monitored continuously and 
maintained at 100 f l o  F using a heating pad and/or heat lamps 
throughout the study. The last feeding prior to an experiment 
was no more than 30 min before the beginning of the study, and 
the piglets had free access to formula during the two-h break 
described below. 

Experimental protocol. With the piglets breathing room air, 
baseline arterial pressure was measured, and samples for cate- 
cholamine determination (1.0 ml) and arterial blood gases and 
pH (0.3 ml) were drawn (sample 1). The inspired gas mixture 
was then changed to the asphyxiating gas for 20 min, at which 
time repeat arterial pressure determination and blood sampling 
were performed (sample 2). The animals then received intrave- 
nously either 5 mg/kg IND in 5 ml of normal saline (treatment 
animals, n = 9) or 5 ml of saline with no drug (placebo-time 
control animals, n = 6). Two hours, with the piglets breathing 
room air and having free access to formula, was then allowed for 
catecholamines to return to baseline and for prostanoid synthesis 
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inhibition to occur in those animals who received IND. We 
previously have shown (8) that this regimen of IND administra- 
tion results in essentially complete cyclooxygenase inhibition. 
After this 2-h rest period, arterial pressure determination and 
blood sampling were performed with the piglets breathing room 
air (sample 3). Then, the piglets breathed the asphyxiating gas 
for 20 min, at the conclusion of which a final pressure determi- 
nation and blood sampling were done (sample 4). 

Arterial blood pressure was monitored using a pressure trans- 
ducer and recorded continuously on a physiologic recorder. 
Arterial PO2, PC02, and pH were determined using a standard 
clinical blood gas machine. 

Catecholamine assay procedure. Plasma concentrations of N, 
E, and D were determined employing a radioenzymatic assay 
(13). Briefly, the catecholamines were converted to tritiated 
derivatives by using the enzyme carboxy-o-methyl-transferase to 
catalyze the transfer of a tritiated methyl group from S-adenosyl- 
L-methionine to the meta-hydroxyl group on the ring of the 
original compounds. The resulting products were purified by 
extraction and thin-layer chromatography and quantified using 
a scintillation counter. Reagents were obtained in the commer- 
cially available Cat-a-Kit (Upjohn Diagnostics, Kalamazoo, MI). 

Data analysis. Prior to statistical analysis, values for catechol- 
amines were converted to the log of the plasma concentration 
expressed in pg/ml as described previously (14). Results of the 
catecholamine concentrations are reported as geometric means 
(95% confidence limits). This logarithmic transformation and 
the use of the geometric means were employed because the log 
of the catecholamine concentration is more nearly normally 
distributed than are the absolute concentrations. The log cate- 
cholamine concentrations, pH, blood gases, and blood pressures 
in both the treatment and time control groups were compared 
using a two-way analysis of variance for a randomized block 
factorial 2 x 2 (drug versus no drug x asphyxia versus normal) 
design (1 5). Significant difference was defined as p < 0.05. 

RESULTS 

The results of the catecholamine determinations in the treat- 
ment group are shown in Figure 1. Prior to treatment with IND, 
baseline geometric mean (95% confidence limits) values in pg/ 
ml were 162 (99-226) for D, 174 (52-579) for E, and 380 (286- 
506) for N. After 20 min of breathing 10% 02/9% C02, these 
values had increased to 389 (230-659) for D, 1514 (993-2306) 
for E, and 3802 (273 1-5293) for N. After IND treatment, base- 
line values were 155 (84-287) for D, 129 (39-423) for E, and 
33 1 (1 8 1-604) for N. The repeat challenge with 10% 02/9% C 0 2  
after IND again resulted in a rise in levels to 646 (338-1233) for 
D, 1995 (846-4703) for E, and 6607 (2679-16293) for N. The 
analysis of variance revealed a significant effect of the asphyxiat- 
ing gas on all three catecholamines (F1124 = 28.2, 55.7, and 93.2 
for D, E, and N, respectively; p < 0.001 for all three). However, 
there was no significant effect of IND (F,124 = 1. I, 0.0, 0.6, 
respectively) and no significant interaction of the effects of the 
asphyxiating gas and IND (F1/24 = 1.7,0.8, and 1.5, respectively) 
on any of the three catecholamines. Thus, inhalation of 10% 02/ 
9% C 0 2  caused a significant increase in all three catecholamines; 
however, IND had no effect on either baseline levels or the 
response to the asphyxiating gas for any of the three catechol- 
amines. 

In the time control group (Fig. 21, 10% 0219% CO2 caused a 
significant increase in a11 three catecholamines both before and 
after placebo. As expected, placebo had no effect on either 
baseline values or the response to the asphyxiating gas. 

Results of pH, blood gases, and blood pressure determinations 
are shown in Table 1. The asphyxiating gas caused a similar 
degree of hypoxia, hypercapnia, and acidosis before and after the 
drug in both the IND and placebo-time control groups. In the 
placebo-time control group, both baseline and asphyxia1 PO2 
values were slightly lower during the second period than during 
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Fig. I. Arterial levels of catecholamines in neonatal piglets (n = 9) 
breathing room air (normal) or 10% 0219% C02 (asphyxia) before and 
2 h after 5 mg/kg indomethacin. Error bars indicate 1 SD. Asterisk 
indicates asphyxia values significantly different from normal values. NS 
indicates no significant difference of values before and after indometha- 
cin. 
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Fig. 2. Arterial levels of catecholamines in neonatal piglets (n = 6 )  
breathing room air (normal) or 10% 0219% CO2 (asphyxia) before and 
2 h after placebo. Error bars indicate 1 SD. Asterisk indicates asphyxia 
values significantly different from normal values, NS indicates no signif- 
icant difference of values before and after placebo. 

the first; however, there was no significant difference in the 
asphyxiating gas-induced decrement in PO2 between these two 
periods, as is indicated by the absence of interaction in the 
analysis of variance. 

In the IND group, both before and after the drug, asphyxia 
caused a significant increase in mean arterial pressure; this blood 
pressure increase was not altered by IND. Although there was a 
trend to increase blood pressure with asphyxia in the placebo- 
time control group, this was not significant. 

DISCUSSION 

In the present study, we found marked elevations in the levels 
of circulating catecholamines in neonatal piglets after breathing 
10% 02/9% C 0 2  for 20 min. However, IND did not alter either 
the baseline levels of the catecholamines or the response to the 
asphyxiating gas. 

Results of arterial N and E levels measured after moderate 
stress in the perinatal period in other species are similar to those 
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Table 1. Arterial blood gases, pH, and blood pressure (values are mean + SD) 
Before drug After drug Results of analysis of variance 

Sample 1 Sample 2 Sample 3 Sample 4 Norm vs Before vs 
normal asphyxia normal asphyxia asphyxia after Interaction 

Indomethacin group 
( n  = 9) F values (degrees freedom 1/24) 

PH 7.49k0.11 7.1820.16 7.47k0.06 7.11 20.19 1 19.2* 2.1 0.8 
PC02 31 k 7  63 k 6 33 k 8 63 k 6 464.2* 0.0 0.3 
Po2 78 + 14 44 k 6 81+ 11 43 + 8 188.9* 0.3 0.4 
Blood pressure 73 2 12 80 + 14 71k 11 83 k 10 18.0* 0.1 1.1 

Placebo time-control 
group (n = 6) F values (degrees freedom 1 / 1 5) 

PH 7.51 + 0.05 7.21 + 0.05 7.47 k 0.10 7.18 + 0.04 148.0* 1.4 0.1 

Po2 81 + 9  47 + 4 71 + 10 44 k 5 180.6* 6.6t 1.9 
Blood pressure 82 k 17 85 & 13 78 k 11 82k 11 2.1 1.2 0.0 

reported in the present study in piglets. For example, in term, 
human newborns, umbilical cord arterial N and E levels after 
the stress of normal labor and delivery are -4000 and 650 pg/ 
ml, respectively (5). In premature humans, cord arterial levels 
are 2.5700 and 600 pg/ml for N and E, respectively (16). In the 
near-term fetal lamb, moderate hypoxemia (7-14 mm Hg) results 
in arterial levels of -3000 and 850 pg/ml for N and E, respec- 
tively (1 7). Thus, N is the predominant catecholamine measured 
in the arterial circulation in response to moderate stress in the 
perinatal period. D levels of 500-750 pg/ml, which are similar 
to those measured in the present study, have been reported in 
two recent studies of stressed human newborns (18, 19). Results 
of exogenous D infusions in neonatal lambs suggest that these 
levels are probably not hemodynamically significant (20). 

The source of catecholamines in the neonatal circulation is 
uncertain. Comline and Silver (2 1, 22) have described the pre- 
natal developmental changes in the control of hypoxia-induced 
adrenal release of N and E. Initially, the adrenal gland is not 
innervated and responds directly to severe hypoxia in the fetus 
with a predominant output of N. As development proceeds, 
innervation of the gland occurs, and moderate hypoxia results 
in nerve stimulation-mediated release of catecholamines, with 
an increasing proportion being E. In the lamb, innervation of 
the adrenal begins at --I20 days gestation (of -140 days term 
gestation), while in the calf nerve stimulation-mediated release 
of catecholamines from the adrenal does not begin to develop 
until after birth. Despite the differences in timing in various 
species, a significant proportion of the catecholamines released 
from the adrenal gland in the neonate is N. Thus, it is conceivable 
that the adrenal medulla is the primary source of the circulating 
catecholamines measured in the present study. However, spill- 
over from postganglionic sympathetic neurons innervating vas- 
cular smooth muscle is another possible source of circulating N. 

Experiments in several in vitro systems suggest that prostaglan- 
dins are involved in a negative feedback loop which modulates 
N release from adrenergic neurons (3). According to this model, 
when N binds to the postsynaptic a-adrenergic receptor and 
causes smooth muscle constriction, prostaglandins are released, 
which diffuse back to the adrenergic nerve ending and attenuate 
the further release of N. Initial work in several perfused organs 
such as cat spleen, rabbit heart, kidney, and ear, and isolated 
vessels from cat and man suggested that the responsible prosta- 
glandin was PGE2 (3, 23). More recent work in the perfused rat 
heart and isolated vessels suggests that PGI, also may be involved 
(24, 25). In the various tissues in which this system has been 
described, IND and other cyclooxygenase inhibitors cause an 
augmented release of N in response to nerve stimulation, presum- 
ably by preventing or reducing the prostaglandin-mediated atten- 

uation of N release. Furthermore, adrenal release of catechol- 
amines during hemorrhage is augmented by IND although the 
mechanism of this finding is unclear (4). 

As noted above, the predominance of N in the neonatal 
response to stress suggests that spillover from postganglionic 
sympathetic neurons innervating vascular smooth muscle may 
be a significant source of circulating N in the newborn. This 
possibility, along with the observation of indomethacin-induced 
augmentation of adrenal catecholamine release, suggests that 
inhibition of the prostaglandin-mediated feedback loop would 
result in significant elevation of circulating N measured in re- 
sponse to asphyxia in the neonate. 

However, in the present study, IND did not increase either 
baseline levels of catecholamines or those measured after 20 min 
of breathing 10% 02/9% C02. Other investigators, employing 
adult models, have also failed to demonstrate increased circulat- 
ing catecholamine levels in response to IND (26, 27). 

There are several possibilities that could explain the failure of 
IND to increase catecholamine levels in the present study. First, 
augmentation of nerve stimulation-induced release of N by IND 
has not been found universally; there are clearly tissue and species 
differences (28-30). Thus, in the neonatal piglet it is possible 
that prostaglandins play no role in the control of catecholamine 
release. A second possibility in the neonatal piglet is that pros- 
taglandin-mediated feedback is involved in the local regulation 
of adrenergic neurotransmission in some vascular beds but that 
this mechanism is not universal and/or does not modulate 
adrenal release of catecholamines. Third, it is conceivable that 
IND did augment catecholamine release in the present study but 
that the neuronal and endothelial reuptake mechanisms pre- 
vented an increase in the circulating levels. The results of this 
study suggest that prostaglandins, whether or not they are in- 
volved in the local regulation of sympathetic neurotransmission, 
do not modulate the circulating levels of catecholamines seen in 
response to asphyxia in the neonatal piglet. 

The failure of asphyxia to increase significantly the arterial 
pressure in the time-control piglets is unlikely to have affected 
these results since IND had no significant effect in the treatment 
group. This occurred because one of the time-control piglets 
developed significant hypotension in response to both asphyxia1 
challenges. Similarly, the small but statistically significant de- 
crease in arterial PO2 during the second period in the time- 
control animals is unlikely to have altered the observations. 

SUMMARY 

In the present study, neonatal piglets exposed to 10% 02/9% 
C02  for 20 min developed marked elevation of circulating levels 
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of D, E, and N. Administration of the prostanoid synthesis 
inhibitor IND did not alter either baseline levels of catechol- 
amines or the change in levels observed with asphyxia. These 
results argue against a role for prostaglandins in the modulation 
of the circulating catecholamine response of the neonate to a 
global stress such as asphyxia. 
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