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ABSTRACT. To study the role of somatomedin-( /insulin-
like growth factor I (Sm-C/IGE 1) in fetal growth, intra-
uterine prowth retardation was induced by uterine artery
ligation on day 17 of gestation in pregnant rats. Fetuses of
the nonligated horns served as appropriately grown con-
trols. On day 21 of gestation, fetal serum, liver, and lung
were obtained and analyzed for Sm-C/IGIE T by radio-
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immunoassay and serum glucose by a glucose oxid
method. Fetal weight, serum concentrations of glucose,
msulin and Sm-C/1GIE 1, and liver Sm-C/IGI T concentra-
tions were reduced in fetuses from uterine artery ligated
horns, as compared to those from nonligated control horns.
Fetal weight was correlated with serum glucose (r = 0.703;
p < 0.000), liver Sm-C/IGI T (r = 0.682; p < 0.001), and
serum Sm-C/IGE T (r = 0.452; p < 0.001). Stepwise linear
regression demonstrated that these three factors in com-
bination correlated highly with fetal weight (r = 0.836).
No correlation was found for serum insulin or lung Sm-(7/
IGI T and fetal weight. Serum insulin concentrations cor-
related with serum, but not liver, Sm-C/IGEF 1 concentra-
tions, making a direct effect of insulin on Sm-C/IGE 1
synthesis appear unlikely. However, serum glucose con-
centrations correlated with liver (r = 0.404; p < 0.001) and
with serum Sm-C/IGIE T (r = 0.308; p < 0.002) concentra-
tions, implicating fetal glucose delivery in the regulation of
Sm-C/IGE T synthesis. Taken together, these data suggest
that Sm-C/IGI® I synthesis in the fetus is influenced by
nutrition and that Sm-C/IGE 1 plays a mediating role in
the control of growth. (Pediatr Res 20: 126130, 1986)
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The somatomedins, Sm-C/IGE Tand 1G1 1/MSA, are peptide
mitogens which share structural homology with insulin (1, 2).
They are thought to be critical to postnatal growth (1, 3), and
more recently have been implicated in fetal growth (4, S). The
factors that regulate somatomedins in the fetus are not fully
defined, but do not appear to be the same as those which
modulate somatomeding postnatally. Nutrition has a major reg-
ulatory influence on blood Sm-C/IGE T concentrations in adult
man (6-9) and in nconatal and postweanling rats (10, 11). In the
fetus, however, the interrelationships between nutritional status,
growth, and Sm-C/IGE [ remain to be clarified.

In this study we employed the uterine artery ligation method
ol Wigglesworth (12) to induce (ctal growth failure. Because
nutritional deficiency secondary to impaired transport of nu-
trients s a major component of the growth failure which occurs
in this model (13), study of these growth retarded fetuses offers
the opportunity to assess the physiological relationship of Sm-('/
IGE 1 both (o intrauterine growth and (o nutritional deficiency.
Tissue (liver and [ung) and serum Sm-C/IGI T concentrations,
as well as glucose and msulin concentrations were assessed in
this study. We found that a reduction in glucose and Sm-C/1GE
[ concentrations in both liver and serum accounts i large part
for the growth retardation of fetuses subjected 1o uterie artery
ligation.

MATERIALS AND METHODS

Animals and  procedure. Pregnant Spraguc-Dawley rats of
known gestation weighing between 250 and 300 g were purchased
from the Charles River Laboratorics (Wilmington, MA) and
allowed free access o a stock dict. Rats were mated between
1600 and 0700 h, and day O of pregnancy was considered to
begin at 0700 h. Intrauterine growth retardation was induced by
the procedure ol Wigglesworth (12). Briefly, on day 17 of gesta-
tion a laparotomy was performed under sterile conditions with
ketamine anesthesia (20 mg intraperitoncally). The uterus was
exposed and a 3-0 silk ligature was placed around the uterine
artery supplying the uterine horn with the larger number of
fetuses. The vasculature of the opposite uterine horn was not
touched and the fetuses in the unperturbed horn served as
controls. The uterus was returned (o the abdominal cavity, the
incision was closed, and the pregnancy was allowed to continue
until the day of sacrifice. Rats recovered quickly after surgery,
usually within 30-60 min, and continucd (o gain weight at the
rate of about 10 p/day.

On day 21 of gestation under light ketamine anesthesia (10
mg intraperitoncally) a small incision was made in the uterus
(Icaving the uteroplacental circulation intact) such that a fetal
arm could be exposed without delivering the fetus. A deep
inciston was made in the axillary region and blood was collected
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by capillary action into a 100-ul glass tube. Serum was separated
into three aliquots and stored at —70° C until the time of analysis
(within 8 wk). After exsanguination, each fetus was weighed.
Liver and lung were dissected, blotted, immediately immersed
in liquid nitrogen, and stored at —70° C until analysis. A number
indicating position within the uterine horn was assigned to each
fetus (including resorbed fetuses), such that position 1 designated
the fetus nearest the ovary.

Assays. Serum glucose concentration was assayed by the glu-
cose oxidase method (14). Insulin was analyzed using a RIA kit
purchased from Amersham (Arlington Heights, IL). If the vol-
ume of serum was inadequate for individual insulin analysis
(after allotting serum for other assays), equal volumes of serum
from littermates of the same uterine horn were pooled.

Sm-C/IGF I was estimated in serum by RIA using a published
modification (15) of the original reported procedure (16). Use of
this assay for rat serum has previously been validated (17, 18).
Prior to assay, all sera were diluted 1:1 with glycine-glycine HCl
buffer (ionic strength = 0.1) in order to achieve a final pH of 3.6
and incubated at 37° C for 24 h. This acid incubation procedure
maximizes the amount of measurable, immunoreactive Sm-C/
IGF I by antigenic sites of Sm-C/IGF I free from binding proteins
(19). Neutralization of acid-incubated sera was accomplished
with 1 M NaOH. Tissue (liver and lung) Sm-C/IGF I concentra-
tions were cstimated by the same assay after extraction using a
validated modification (20) of the original reported procedure
(18). In several cases, lung tissues were pooled with littermates
of the same horn prior to analysis. Results were calculated using
a human serum standard (15) and expressed as U/ml for serum
and U/g wet weight for tissues. Adult rat serum is 7 to 15-fold
more potent than adult human serum in this assay (18).

Statistics. Statistical analysis was initially performed by analy-
sis of variance to determine the influence of uterine artery
ligation and uterine position on the measured variables. There-
after the unpaired ¢ test was performed to test differences between
individual fetal variables in ligated and control horns at the same
uterine position.

Since pooling of samples was required for determination of
serum insulin and lung Sm-C/IGF I concentrations, differences
between horn means (rather than individual fetal concentrations)
were assessed. Finally, correlation coefficients and stepwise linear
regressions were performed among variables using Statistical
Analysis Systems (Cary, NC) programs. Statistical significance is
assigned to p values < 0.05.

RESULTS

A total of 28 pregnant rats underwent uterine artery ligation.
Thirteen rats were excluded from the study because uterine artery

ligation resulted in no viable fetuses in the ligated horn. As
expected with this procedure, the number of fetuses in each
uterine artery ligated horn was reduced (2.73 = 0.31, mean +
SEM; n = 15) compared to the control horns (4.13 = 0.34; n =
15; p < 0.05). A total of 101 viable fetuses resulted, 90 of which
were distributed in uterine positions 1-4. Fetal weight was re-
duced in the ligated horn, whether analyzed as individual fetal
weights (3.02 + 0.10 g, n = 43) or as litter mean (3.03 + 0.14 g,
n = 15) compared to fetuses in the control horn (4.32 = 0.09 for
individual fetuses, n = 58; p < 0.0001; 4.41 + 0.17 for litter
means, # = 15, p < 0.0001, respectively).

As initially reported by Wigglesworth (12), the fetuses farthest
from the ligation exhibited the least degree of growth retardation,
and when analyzed by analysis of variance, position had a
significant (p < 0.03) influence on fetal weight. Analysis of
variance also showed that fetal weight, serum and liver Sm-C/
IGF I, and serum glucose concentrations were reduced in the
fetuses of the uterine artery ligated horn (p < 0.0001). Although
this analysis did not indicate that uterine position had a signifi-
cant influence on any variable other than weight, we chose to
further analyze the data by comparing fetuses at each uterine
position of ligated and nonligated horns. The strong relationship
of fetal size and uterine position makes this approach intuitively
appealing, and this more conservative test of significance is less
likely to yield a type I error (false-positive). At each position,
fetal weight, serum glucose concentration, liver and serum Sm-
C/IGF I concentrations were significantly reduced in the IUGR
fetuses, compared to their position-matched appropriately grown
control counterparts (Table 1).

Because insufficient quantities of sera necessitated pooling of
serum from fetuses in the same horn to perform insulin deter-
minations, comparison of insulin concentrations was performed
by ¢ test on the means of each horn. Insulin concentrations were
significantly lower in the ITUGR fetuses (64 £ 12 pU/ml) than in
control fetuses (131 = 18 pU/ml, p < 0.01). Lung Sm-C/IGF [
concentrations did not differ between fetuses from control and
ligated horns, 0.28 = 0.03 and 0.24 + 0.03 U/gm, respectively.

Fetal weight correlated positively with serum glucose concen-
trations (r = 0.703; n = 97, p < 0.001), liver Sm-C/IGF [
concentration (r = 0.682; n = 101; p < 0.001; Fig. 1), and serum
Sm-C/IGF I (r = 0.452; n = 101; p < 0.001) when all fetuses
were considered together. Stepwise linear regression demon-
strated that these three factors in combination correlated very
highly with fetal weight (r = 0.836). Significant correlations were
not found for mean horn insulin concentrations (r = 0.378; n =
22) or for mean horn lung Sm-C/IGF I concentrations (r = 0.256;
n = 30) and fetal weight.

Other correlations of possible biologic relevance include a
significant relationship between serum glucose and liver Sm-C/

Table 1. Fetal wt, serum glucose, liver, and serum Sm-C/IGF I concentrations (mean = SEM) at each ulerine position in control

and TUGR fetuses™
Uterine position
1 (n) 2(n) 3 (n) 4 (n)

Wtt (g)

Control 441 +0.19 (13) 4.44 +0.18 (15) 4,37+ 0.18 (14) 3.46 £0.45 (10)

IUGR 3.15+£0.17 (15) 2.95+0.24 (10) 2.84 +£0.17 (8) 2.62 +0.10 (5)
Serum glucose (mg/dl)

Control 66 = 3 (13) 64 + 7(14) 71 £9(13) 67 + 8 (10)

JUGR 41 + 3(15) 30£5(9) 34+ 5(8) 37 £ 8(5)
Liver Sm-C/IGF 1 (U/g)

Control 0.29 = 0.03 (13) 0.30 = 0.03 (15) 0.32 £ 0.03 (14) 0.22 +£0.02 (10)

IUGR 0.20 £ 0.02 (15) 0.18 £0.02 (10) 0.15=0.02(8) 0.12 £ 0.03 (5)
Serum Sm-C/IGF I (U/ml)

Control §.53 +0.05 (13) 1.53 = 0.08 (15) 1.49 + 0.11 (14) 1.34 + 0.07 (10)

IUGR 1.08 +0.10 (15) 0.95 £ 0.10 (10) 0.89 £ 0.16 (8) 0.79 + 0.26 (5)

* All comparisons between IUGR and control are different at p <0.05.

+ After exsanguination.
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Fig. 1. Liver Sm-C/IGF I concentration in IUGR (O) and control
(@) fetal rats compared to fetal weight (r = 0.682; n = 101; p < 0.001).
Mean (+ SEM) liver Sm-C/IGF I concentrations are 0.17 = 0.01 U/g (n
= 43) for [IUGR fetuses and 0.27 + 0.02 (n = 58) for control fetuses (p
< 0.001). Serum Sm-C/IGF I in the same fetuses are 1.01 = 0.06 U/ml
and 1.45 + 0.04, respectively (p < 0.001).

IGF I concentrations (r = 0.308; n = 101; p < 0.002). In addition,
serum Sm-C/IGF I correlated with liver Sm-C/IGF [ (r = 0.361;
n=101; p <0.001). We also attempted to correlate litter mean
insulin concentrations with litter mean serum and with liver Sm-
C/IGF I concentrations. Although there is a significant relation-
ship between insulin and serum Sm-C/IGF I (r = 0.499; n = 22;
p < 0.02), there is none between insulin and liver Sm-C/IGF 1
(r=0.400; n = 22).

DISCUSSION

Our findings that both liver and serum Sm-C/IGF I concen-
trations are reduced in IJUGR fetuses and that both measures
correlate with fetal weight suggest a mediating role for Sm-C/
IGF I in the control of fetal growth. These results are consistent
with those of DePrins ¢f al. (21) who found decreased serum
concentrations of somatomedin bioactivity in fetal rats made
growth retarded by uterine artery ligation. They also reported a
significant correlation between the bioactive somatomedin con-
centrations and fetal body size. Unlike the original report of
Wigglesworth (12) and this study, DePrins ez al. (21) did not find
that fetal size was influenced by the proximity of the conceptus
to the site of uterine artery ligation. Subtle differences in tech-
niques may explain this discrepancy.

The RIA used in this study employs an antibody directed
against human Sm-C/IGF 1 and has been validated for the
estimation of this peptide in rats (17, 18). Rat homologues of
human somatomedins (Sm-C/IGF 1 and IGF 1I) have been
purified. A peptide purified from adult rat serum bears marked
homology to Sm-C/IGF 1 (22) and has been reported to be 30-
40% as potent as Sm-C/IGF I in competing for binding to this
antibody (23); MSA, the rat homologue of IGF II (24), cross-
reacts minimally with our antibody (1.2% for MSA III-2 and

0.025% for MSA II-1) (25). When this RIA is used to measure
specimens from rats, it is likely to underestimate rat Sm-C/IGF
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I by 2.5 to 3.3-fold and to detect MSA only when it is present in
very high concentrations. In the fetal rat, however, serum Sm-
C/IGF I concentrations are low compared to those of MSA (23,
26), and, although unlikely to be a significant factor, it remains
possible that the immunoactivity reported in this study in part
reflects cross-activity with MSA. Precise determination of the
quantities of Sm-C/IGF I and MSA in fetal rat sera awaits
simultaneous studies of the same sera with antibodies directed
against both peptides and/or use of antibodies with no cross-
reactivity.

Although not directly addressed in the study, it is reasonable
to suspect that fetal nutritional deficiency occurring from uterine
artery ligation (13) leads to the decrease in Sm-C/IGF I concen-
trations and, in turn, results in a decrease in fetal growth. Serum
Sm-C/IGF I in the postnatal rat and in man has been shown to
be highly dependent on nutritional status (1, 6-10). In the
postweanling rat, we have shown that both energy and protein
intake determined serum Sm-C/IGF I and growth (11). In man,
serum Sm-C/IGF | is reduced dramatically by fasting and returns
to normal with refeeding (6). The rate of return of serum Sm-C/
IGF I concentrations from low basal fasting levels to normal is
dependent on the quality of the diet which is refed (7-9).

Inadequate nutrient transfer to the fetus may account, in large
part, for the growth failure resulting from uterine artery ligation.
In the Wigglesworth (12) model, the reduction in uteroplacental
blood flow is associated with a decrease in placental transfer of
maternally administered analogues of glucose and amino acids
(13). In spontaneous growth retardation occurring in fetal guinea
pigs, Saintonge and Rosso (27) also demonstrated an association
between reduced placental blood flow and a reduction in the
transfer of both amino acid and glucose analogues. Studies
utilizing in situ perfusion of the guinea pig placenta substantiate
the conclusion that the transfer of these analogues to the fetus is
dependent on placental blood flow (28, 29). Placental hypoxia,
which probably occurs in uteroplacental insufficiency, per se
may result in decreased glucose and amino acid transport (30,
31). Fetal oxygen uptake is also uterine blood flow dependent
under conditions of severe uterine blood flow restriction (32).
Thus, fetal substrate deprivation is a major component of the
pathophysiology induced by uterine artery ligation.

The strongest correlation in this study is that of glucose con-
centrations and fetal size. This is not surprising given that glucose
has long been implicated as the major fetal metabolic fuel, both
for maintenance of fetal oxidation and formation of new tissue
(33). States of pathologic fetal growth, either overgrowth or
undergrowth, have a direct positive relationship with fetal glucose
uptake (33-35). Fetal glucose uptake accounts for a large fraction
of the total oxygen consumption and serves as a substrate source
for fetal glycogen and lipid synthesis (36, 37). Maternal hypergly-
cemia results in augmentation of both of these biosynthetic
functions, even in cases of flow restricted intrauterine growth
retardation (38, 39). Our finding of a correlation between glucose
and Sm-C/IGF I concentrations in liver and serum suggests a
role for nutrient availability (specifically of glucose) in the control
of fetal Sm-C/IGF I production and/or release.

Fetal hypoinsulinemia has been suggested as an ectiology of
fetal growth retardation (40). Analysis of our data has failed to
establish a relationship between fetal weight and insulin concen-
trations. In addition, investigations by others have not led to
conclusive evidence that insulin is the primary controller of fetal
anabolism (4,41). It may be that insulin in the fetus serves “to
maintain a favorable homeostatic environment” (4), or alter-
nately insulin may stimulate fetal somatomedin production.
Both fetal rabbits and pigs respond to hyperinsulinemia with
elevation of somatomedin bioactivity (42-44). However, our
observations of an association between insulin and serum Sm-
C/IGF I, but not with liver Sm-C/IGF I, do not support a strong
direct role for insulin in the control of Sm-C/IGF I synthesis.
We speculate that insulin does not directly influence Sm-C/IGF
[, but that substrate (possibly glucose) concentrations influence
both insulin and somatomedin homeostasis.
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The somatomedins are synthesized in many fetal tissues (45)
and are thought to act in an autocrine and/or paracrine fashion,
i.e. they exert their biologic activity on their cells of origin or on
cells near their sites of synthesis (18). Because the liver is consid-
ered to be a major site of somatomedin synthesis (1, 2), it is not
surprising that liver Sm-C/IGF I concentrations correlate better
with fetal weight than do serum Sm-C/IGF I concentrations.
The significant correlations of liver Sm-C/IGF I with serum Sm-
C/IGF I concentrations support the hypothesis that the fetal liver
is a major source of somatomedin activity in the circulation.
Because of its location as the first organ to be exposed to changes
in nutrient flux (whether they be from the placenta prenatally or
from the gut postnatally), the liver is likely to be profoundly
influenced by nutritional status. Our finding that there is a
reduction in liver, but not in lung, of Sm-C/IGF I concentrations
associated with uterine artery ligation is consistent with this
hypothesis. This is also consistent with our previous findings that
there is a greater reduction of liver Sm-C/IGF I than of lung or
kidney Sm-C/IGF I in calorically deprived adult rats (46). That
lung Sm-C/IGF I concentrations are not reduced in IUGR
fetuses and do not correlate with fetal weight suggest that in this
organ Sm-C/IGF I is regulated differently (by a different mech-
anism or by the same mechanism but to a much lesser degree)
than liver Sm-C/IGF 1.

Evidence for an important role for Sm-C/IGF I in fetal devel-
opment comes from multiple sources (4, 5). Sm-C/IGF 1 is a
potent mitogen for a variety of cultured fetal cells (4, 5) including
those derived from rodents (47, 48). Fetal tissues (49, 50), in-
cluding those derived from the rat (51), possess type I insulin-
like growth factor receptors, i.e. plasma membrane receptors
which have a higher affinity for Sm-C/IGF I than for IGF 11/
MSA (52). Despite its relatively low circulating concentrations,
plasma Sm-C/IGF I concentrations in cord blood correlate well
with birth size (4, 5). Sm-C/IGF I is capable of potent anabolic
actions other than its mitogenic effect. It can stimulate amino
acid uptake in cultured fibroblasts, including those derived from
the fetus and neonate (53). Sm-C/IGF I is more potent than
insulin in the stimulation of glycogen synthesis in cultured fetal
rat hepatocytes (54), suggesting a specific role for Sm-C/IGF I in
the rat fetus. In this regard, MSA appears to have less than 5%
of the potency of Sm-C/IGF I (55). Although it has been sug-
gested that MSA (rat IGF II) is the relevant somatomedin for the
rat fetus (56), it is likely that Sm-C/IGF I also has an important
role.
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