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ABSTRACT. The surfactant system and the antioxidant 
enzyme system of the fetal lung have chronologically sim­
ilar developmental patterns and both can be accelerated by 
the administration of exogenous glucocorticoids. To test 
whether the antioxidant enzyme system, like the surfactant 
system, is regulated, at least in part, by endogenous glu­
cocorticoids, we injected pregnant rats for 3 days prior to 
delivery with metyrapone, an adrenal 11-/3 hydroxylase 
inhibitor which crosses the placenta and blocks endogenous 
glucocorticoid synthesis, or saline. Metyrapone offspring 
had significantly decreased lung tissue disaturated phos­
phatidylcholine and disaturated phosphatidylcholine/total 
phospholipids (p < 0.05) compared to controls at days 21 
and 22 of gestation. Activities of the antioxidant enzymes 
superoxide dismutase, catalase, and glutathione peroxidase 
were similarly significantly reduced (p < 0.01) in the lungs 
of metyrapone offspring at both gestational days studied. 
One day premature metyrapone pups demonstrated poorer 
survival than control pups from 25 min after delivery (44% 
survival versus 83%, p < 0.05) to 90 min (6% survival 
versus 78%, p < 0.01). These findings of delayed matura­
tion of the surfactant and antioxidant enzyme systems 
following adrenal glucocorticoid blockade suggest that both 
systems are regulated, at least in part, by an endogenous 
glucocorticoid mechanism. (Pediatr Res 20: 672-675, 
1986) 

Abbreviations 

DSPC, disaturated phosphatidylcholine 
TPL, total phospholipids 
AOE, antioxidant enzymes 
SOD, superoxide dismutase 
CAT, catalase 
GP, glutathione peroxidase 

The developmental patterns of the surfactant system and the 
antioxidant enzyme system of the fetal lung are chronologically 
similar, with both systems demonstrating marked increases dur­
ing the final I 0-15 % of gestation in the several species studied 
(1-3). Both systems are important in the neonatal adaptation to 
independent respiration in the relatively oxygen-rich ex utero 
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environment. While the surfactant system provides reduction in 
alveolar surface tension and prevents alveolar collapse at end 
expiration, the antioxidant enzyme system of the lung prevents 
cell injury from reactive species of oxygen which are produced 
under normoxic and hyperoxic conditions (4-6). Multiple lines 
of evidence indicate that surfactant development is regulated, in 
part, by endogenous glucocorticoids: elevation of plasma gluco­
corticoid levels prior to the increase in surfactant (7), the presence 
of and increase in glucocorticoid receptors in fetal lung prior to 
elevation in surfactant (8-10), and delays in surfactant matura­
tion following interference with glucocorticoid production either 
biochemically (i.e. with metyrapone) or surgically (i.e. by fetal 
decapitation or hypophysectomy) ( 11-15). 

It has recently been demonstrated that the maturation of the 
pulmonary AOE, namely superoxide dismutase, catalase, and 
glutathione peroxidase, as well as surfactant (as measured by 
lung tissue, DSPC) can be accelerated in the rat with the prenatal 
administration of exogenous glucocorticoid (16). We undertook 
the present study to determine whether the antioxidant enzymes, 
like surfactant, might be regulated, in part, by an endogenous 
glucocorticoid mechanism. We have produced adrenal blockade 
in fetal rats with metyrapone, an adrenal 11-/3 steroid hydroxylase 
inhibitor, examined the maturation of the surfactant and antiox­
idant enzyme systems, and report herein a parallel supression of 
lung tissue DSPC and AOE in the late gestation fetal rat. 

MATERIALS AND METHODS 

Animals and Treatments. Adult Sprague-Dawley albino female 
rats (-250 g) were bred by placing male and female together 
overnight, checking for sperm-positive vaginal smears the follow­
ing morning, and considering the midpoint of the cohabitation 
period as the onset of pregnancy. The female rats with timed 
pregnancy were maintained on standard laboratory food and 
water ad libitum and were kept on a cycle of 12 h light/12 h 
darkness. 

At 72, 48, and 24 h prior to premature delivery at 21 days or 
term delivery at 22 days gestation, pregnant rats were injected 
intraperitoneally twice daily with metyrapone (2 methyl-1-2-di-
3 pyridyl-1-propanone) (Sigma Chemical Co., St. Louis, MO), 
an adrenal 11-/3 steroid hydroxylase inhibitor, 45 mg/kg/dose. A 
separate group received equivalent volumes of normal saline 
(diluent) injected at the above dosage schedule. Metyrapone rats, 
once injections were begun, were provided with normal saline 
and 5% dextrose in water (to prevent potential salt-wasting and 
hypoglycemia secondary to mineralocorticoid/glucocorticoid in­
hibition) in addition to regular drinking water and laboratory 
food. 

Seventy-two h after the onset of injections, rat fetuses of 21 
days gestational age were delivered by hysterotomy under pen­
tobarbital anaesthesia. Newborn rats (22 days) were obtained 
after normal parturition, usually within 6 h of the beginning of 
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delivery of the first pup. Body weights and lung weights were 
recorded. 

Serum total corticosterone levels were assayed in random 
metyrapone-injected and control rats and their litters by radio­
immunoassay kits (Radioassay Systems Labs, Carson, CA). 

Lung biochemistry. Fetal or newborn lungs were perfused 
immediately in situ via the pulmonary artery using cold saline. 
The left atrial appendage was cut to facilitate drainage of the 
perfusate. The perfused lungs were removed, stripped of non­
pulmonary tissue, and homogenized in 20-30x their weight of 
cold saline in a Brinkman polytron (high speed, 90 s). For 
preterm or small newborns, two to four lungs were pooled to 
obtain adequate tissue for the assays. 

Aliquots of the homogenate were subsequently analyzed for 
antioxidant enzyme activities using standard spectrophotometric 
assays for SOD (17), CAT (18), GP (19), and for DNA (20) and 
protein assay (21 ). Purified enzyme standards (SOD, CAT) and 
DNA standard were obtained from Sigma Chemical Co. and 
Boeringer Manheim Co., Indianapolis, IN (GP). Results of an­
tioxidant enzyme analyses were expressed as units of enzyme 
activity per mg DNA as well as per mg protein and per g lung 
weight. 

Lipid extraction of lung homogenate aliquots was performed 
according to the method of Bligh and Dyer (22). The lipid extract, 
once it was dried under nitrogen, was frozen prior to phospho­
lipid analysis. An aliquot of lipid extract was set aside for 
measurement of TPL. A second aliquot was assayed for DSPC 
using the procedure described by Mason et al. (23). After the 
DSPC was separated from the other phospholipids, the DSPC 
and TPL samples were assayed for inorganic phosphorus using 
the method of Morrison (24). A known quantity of 14C-dipal­
mitoyl-phosphatidylcholine (New England Nuclear, Boston, 
MA) was added prior to lipid extraction and aliquots counted at 
each step to estimate and correct for sequential losses. Lipids 
were expressed as mg/g wet lung weight, per mg protein and as 
a ratio of mg DSPC/mg TPL. 

Survival study. One day premature ( day 21 of the normal 22 
day gestation period) rat fetuses from metyrapone and control 
mothers were delivered by hysterotomy under ketamine:xylazine 
anaesthesia (Ketalar, 90 mg/kg, Parke-Davis, Morris Plains, NJ; 
Rom pun, 10 mg/kg, Cutter Labs, Shawnee, KS). The pups were 
rapidly transferred to a specially constructed "isolette," consisting 
of a warmed 35° C covered cage assembly sitting atop a gently 
shaking water bath. The survival times of the two groups of 
premature pups were monitored at 10- to 15-min intervals. 

Statistical analysis. Statistics were performed using Student's 
t test and two-way analysis of variance (when comparing several 
litters of the same gestational age exposed to the same experi­
mental conditions) (25). Corticosterone levels and survival data 
were compared using Fisher's nonparametric test (26). 

RESULTS 

General features of metyrapone-injected rats and their off­
spring. Approximately 50% of the metyrapone-injected pregnant 
rats appeared less active than saline-injected controls during the 
treatment period. However, fewer than 10% of metyrapone­
injected rats died prior to sacrifice at 21 or 22 days, and there 
were no sigificant differences in miscarriages or intrauterine 
deaths. 

Physical characteristics of metyrapone and control offspring 
are seen in Table 1. At 21 days of gestation, metyrapone offspring 
manifested significantly lower body weights and lung weights 
than control offspring; body and lung weights were not different 
between groups at day 22 (birth). Lung weight/body weight ratios 
were not different between groups at either gestational age stud­
ied. In addition, no differences in lung weight, body weight or 
lung/body weight were found in several litters examined at days 
19 and 20 of gestation (not shown in Table 1). There were no 

significant differences in the ratio of wet lung weight/dry lung 
weight between the two groups. 

Mean total serum corticosterone in metyrapone-injected dams 
was 134 ± 19 ng/ml compared to >400 ng/ml in control mother 
rats, mean ± SEM, p < 0.01 (Fisher's); similarly, mean total 
serum corticosterone in offspring of metyrapone-injected rats 
was 296 ± 50 ng/ml compared to >400 ng/ml in control off­
spring, (n = 10-14 per group), p = 0.06 (Fisher's). 

Lung biochemistry. The developmental pattern of lung tissue 
DSPC and TPL (expressed as mg/g lung) in metyrapone and 
control offspring at days 21 and 22 (birth) of gestation is seen in 
Figure 1. At both gestational days studied, offspring of metyra­
pone-injected rats had signficantly reduced lung DSPC content 
compared to controls (p < 0.05, two-way analysis of variance). 
TPL content was not significantly different between groups at 
either gestational age. The same relationships held true when 
DSPC and TPL were expressed per dry lung weight or per mg of 
protein rather than per g wet weight of the lung. DSPC/TPL 
ratios were decreased in metyrapone offspring compared to 
controls at 21 days (0.210 ± 0.031 versus 0.239 ± 0.039) and 22 
days (0.233 ± 0.030 versus 0.287 ± 0.058), (p < 0.05, two-way 
analysis of variance). 

Figure 2 shows the developmental progression in antioxidant 
enzymes from day 21 to 22 in metyrapone-treated and control 
rat offspring. Mean activity units for all three antioxidant en-

Table 1. Physical characteristics of metyrapone and control 
offspring (mean± SD) 

Gesta-
Lung/body tional Body wt Lung wt 

wt age 

Me- 4.29 ± 0.86 0.138 ± 0.022 3.28 ± 0.50 
tyra- * * 
pone 

21 
Control 5.88 ± 0.29 0.164 ± 0.017 3.11 ± 0.30 

Me- 5.8 I ± 1.26 0.123 ± 0.020 2.14 ± 0.20 
tyra-
pone 

22 
Control 6.15 ± 0.69 0.126 ± 0.021 2.09 ± 0.60 

* p < 0.05, n = 6 litters metyrapone/6 litters control-21 days; n = 5 
litters metyrapone/5 litters control-22 days. 
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Fig. I. Differences in lung DSPC and TPL content at 21 and 22 days 
of gestation in metyrapone and control offspring. Values represent mean 
± SEM. * p < 0.05 (two-way analysis of variance). n, 21 days-Metyra­
pone: six litters, 23 samples; control: six litters, 27 samples; 22 days­
metyrapone: five litters, 24 samples; control: five litters 17 samples. 
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Fig. 2. Lung antioxidant enzyme activity levels of metyrapone and control fetuses at days 21 and 22 of gestation. Values represent mean± SEM. 
* p < 0.01 (two-way analysis of variance). n, same as in legend to Figure I. 

zymes (SOD, CAT, and GP) were significantly decreased in 
metyrapone offspring at days 21 and 22 of gestation (p < 0.0 I, 
two-way analysis of variance). 

Survival study. Survival data of 1 day premature rats from 
metyrapone and control mothers are depicted in Figure 3. Pre­
maturely delivered metyrapone pups manifested significantly 
poorer survival rates, beginning at 25 min after delivery [7 / I 6 
(44%) metyrapone pups surviving compared to 15/18 (83%) of 
controls] and continuing to 90 min (1/16 (6%) versus 14/18 
(78%)), at which time the experiment was concluded. 

DISCUSSION 

Multiple studies have suggested that an endogenous glucocor­
ticoid mechanism plays an important role in surfactant devel­
opment. For example, a marked rise in fetal plasma cortisol 
occurs in sheep during the last days of fetal life, followed by a 
dramatic increase in fetal lung DSPC (7, 27). In the rat, corticos­
terone, rather than cortisol, is the main circulating adrenocorti­
costeroid (28), and peak values are reached on day 19 of gestation 
(29, 30). "Free" corticosterone levels also peak at days 19-20 
and remain high until term (31 ). Since lung DSPC rises markedly 
between gestational days 20 and 22 in the rat ( 16), thereby closely 
following the reported corticosterone peak on day 19, the devel­
opmental pattern of rat and sheep appears similar. Our dosage 
schedule for metyrapone in the present study, with injections 
twice daily on days 18-20 with sacrifice on day 21 or injections 
on days 19-21 with sacrifice on day 22, was designed to eradicate 
or blunt this reported serum glucocorticoid peak. 

In addition to the above temporal relationship between glu­
cocorticoid peak and surfactant elevation, other lines of evi­
dence-specifically receptor data (8-10, 32) and adrenocorticoid 
ablation or blocking studies ( 11-15)-provide additional support 
for endogenous glucocorticoid regulation of surfactant develop­
ment. 

Metyrapone works by inhibiting adrenal corticosteroid pro­
duction through its inhibition of the 11-{J steroid hydroxylase 
enzyme (33). Goldman (34) reported a complete block in basal 
adrenal production of corticosterone in metyrapone-treated rats 
and provided indirect evidence of placental transfer of metyra­
pone by demonstrating congenital adrenogenital syndrome in 
the offspring of treated pregnant rats. Vidyasagar and Chernick 
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Fig. 3. Surival data of I-day premature rat fetuses from metyrapone­
injected and control mothers. From 25 to 90 min after delivery, survival 
differences are significant at p < 0.05 or less (Fisher's test). 

(35), utilizing measurements of fetal plasma metyrapone concen­
trations, provided direct evidence that metyrapone crosses the 
placenta in the rabbit. Our findings of reduction in fetal total 
plasma corticosterone levels following maternal metyrapone ad­
ministration strongly suggests that metyrapone crosses the pla­
centa in the rat as well. While we measured total corticosterone 
and did not measure "free" corticosterone levels per se, our 
observed interference with surfactant development ( consistent 
with that of other investigators) would suggest that the active free 
hormone levels were affected by metyrapone treatment as well. 

The significant decreases in lung tissue DSPC and DSPC/TPL 
we demonstrated during the final 2 days of gestation, following 
maternal metyrapone treatment in the rat are in agreement with 
earlier studies with this agent showing altered surfactant levels 
or function in rabbits (15), baboons (12), and guinea pigs (14). 
Our study, in addition, has demonstrated for the first time a 
parallel delay following metyrapone in a nonsurfactant-related 
biochemical system in fetal lung, the antioxidant enzyme system. 
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The maturational pattern of the antioxidant enzyme system 
and the surfactant system in fetal lung is remarkably similar. 
Studies first reported in rats and rabbits (I, 3) and later extended 
to guinea pigs and hamsters demonstrate very marked elevations 
in superoxide dismutase, catalase, and glutathione peroxidase 
activities in addition to lung tissue DSPC during the final 10-
15% of gestation (2). Because both the surfactant system and 
AOE system are important in the "preparation for birth" phe­
nomenon, when the fetus makes the transition from the relatively 
hypoxic intrauterine environment to an oxygen-rich air breathing 
extrauterine environment, a possible commmonality in their 
regulatory mechanisms could be biologically advantageous. In 
fact, the surfactant and antioxidant enzyme systems are both 
responsive to exogenously administered glucocorticoids. We have 
recently reported that maternal treatment with dexamethasone 
in late gestation in the rat results in accelerated maturation of 
lung DSPC content and AOE activities in a parallel fashion ( 16). 
Our present study demonstrating delayed maturation of both 
systems following metyrapone provides evidence that an endog­
enous glucocorticoid mechanism may play a regulating role in 
pulmonary antioxidant enzyme as well as surfactant system 
development. 

It should be noted that metyrapone is also a very effective 
inhibitor of cytochrome P-450, although at higher concentrations 
than is required to significantly inhibit /'i-hydroxylase activity 
(36). While P-450 inhibition has primarily been studied in liver, 
in vitro, of possible interest to the developing lung and the AOE 
is the recent finding that metyrapone treatment can inhibit 
arachidonic acid metabolism by microsomal P-450, decreasing 
P-450's lipoxygenase-like function and eicosanoid production 
(37). At this point it is only speculative but since AOE activity is 
known to respond to 0 2 radical and H20 2 substrate concentration 
by blocking the production of these 02 metabolites which are 
generated by oxidative systems such as P-450 (and lipoxygenase), 
metyrapone treatment could be influencing AOE levels by a 
nonglucocorticoid mechanism. 

Both the surfactant system and antioxidant enzyme system 
may be crucial in enabling the newborn to adapt rapidly to 
independent respiration in a relatively oxygen-rich world. While 
surfactant acts to stabilize the alveoli as the newborn begins to 
breathe, SOD, CAT, and GP protect the lung from damage 
caused by oxygen-free radicals and other reactive oxygen metab­
olites produced in (lung) cells under oxidant conditions (4-6). 
Our metyrapone rat fetuses demonstrated dramatically poorer 
survival than control pups when delivered 1 day prematurely. 
Whether this decrease in survival is due to metyrapone's effect 
on surfactant, antioxidant enzymes, or both ( or perhaps due to 
unrelated phenomena) has not been determined in this study. 
These biochemical results do suggest, however, that human 
infants with delayed surfactant development which may be re­
lated at least in part to low glucocorticoid levels, may have 
delayed development of their antioxidant enzyme system as well, 
and may demonstrate intolerance to high oxygen in addition to 
hyaline membrane disease if delivered too prematurely. 
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