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ably occurred with height and weight growth, requires an increase 
in the body's protein content. The body's protein content in turn 
will increase if the net protein synthesis (S-B) is positive. Since 
protein synthesis is an energy expensive process (8), while protein 
breakdown is not, the enhancement of net protein synthesis by 
a reduction of protein breakdown relative to protein synthesis is 
clearly an energy efficient adaptation permitting increased 
growth at a minimal energy expenditure. 
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ABSTRAm. We investigated the effect of thyroxine (T4), 
glucocorticoids, and T4 + glucocorticoids on the matura- 
tion of fetal rabbit brain and heart insulin receptors. Five 
doses of T4 over 10 days (50 &kg body weight per dose) 
were administered to the mother; significant amounts 
crossed the placenta (fetal serum free T4 = 0.75 2 0.08 
versus a control of 0.21 f 0.02 ng/dl, p < 0.02) and 
increased the specific binding of ['251]insulin to 30-day-old 
fetal heart membranes from a control of 3.6 2 0.74% per 
100 pg protein to 5.8 2 0.19% ( p  < 0.05). Curvilinear 
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Scatchard plots revealed an increase in receptor number x 
lo7 pg protein-' from 137 2 4 to 244 f 39 ( p  < 0.05) with 
no change in receptor affinity. No appreciable alteration 
by T4 in the ['251]insulin-specific binding and receptor 
number of 30-day fetal brains was noted. Fetal heart 
glycogen content was decreased and there was a small 
increase in plasma glucose concentration in the T4-treated 
group (each p < 0.02). Betamethasone at 0.17 mglkg did 
not affect the specific binding of ['2sI]insulin to 27-day fetal 
heart or brain plasma membranes, although a decrease in 
heart glycogen content and an increase in plasma glucose 
concentration were observed (each p c 0.02). Also T4 + 
betamethasone did not alter the ['2511iisulin binding to 27- 
day fetal heart or brain plasma membranes, but resulted 
in an additive effect (a marked depletion) on cardiac gly- 
cogen (p < 0.001). Brain glycogen was undetectable in all 
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fetuses, control or treated (regardless of the type of hor- 
monal treatment). Thus T4 and glucocorticoids produce 
different effects on developing fetal brain and heart insulin 
receptors, along with a depletion of the myocardial glyco- 
gen stores. (Pediatr Res 19: 192-198,1985) 

Abbreviations 

T4, thyroxine 
T3, triiodothyronine 

Glucose is an essential fuel for the metabolism of vital organs 
such as the brain and the heart (5, 36). Insulin promotes glucose 
uptake in various adult (9, 6,28) and fetal tissues (30). Since the 
biologic effects of insulin are mediated by binding to specific 
tissue receptors, a change in the physical characteristics of these 
receptors as well as changes in postreceptor events may influence 
fetal anabolic processes (24). Hormones that antagonize the 
effects of insulin modulate insulin receptor characteristics in 
both the adult (2, 12, 16,25) and fetus (1 1,34). Insulin influences 
the growth and metabolism of fetal organs (18, 30). T4 and 
glucocorticoids may modify this effect of insulin, since both these 
hormones have been demonstrated to alter the insulin receptors 
(10, 11, 34). 

In the human fetus, glucocorticoids are administered to stim- 
ulate surfactant synthesis (19) and the use of thyroid hormones 
is contemplated in situations where the effect of glucocorticoids 
is limited (14, 21). It is therefore important to define the effects 
of these hormones on other organs in the fetus. In this study, we 
investigated the influence of T4 and glucocorticoids on the 
maturation of the insulin receptor along with certain metabolic 
events in two vital organs, the fetal brain and heart. 

MATERIALS AND METHODS 

Animals. Pregnant New Zealand White rabbits of known 
gestation (term -3 1 days) were assigned to one of the five groups: 
1) T4 treatment (30 days gestation-n = 7; 27 days-n = 3); 2) 
control I (n = 6); 3) steroid treatment (n = 6); 4) control I1 (n = 
6); and 5) T4 and steroid treatment (n = 4). 

The T4 treatment group of animals (n = 7) received intra- 
muscular injections of T4 at 50 pglkg body weight every other 
day for a total of five injections from day 2 1 to 29 of gestation. 
This dose is approximately three times the dose reported to 
maintain a maternal euthyroid state in does rendered hypothy- 
roid with propylthiouracil(l1). 

Another small group of pregnant rabbits (n = 3) received a 
total of five doses of T4 (50 pg/kg every other day) between days 
18 and 26 of gestation. This group was included to compare the 
effects of T4 on 27- and 30-day-old fetuses. Animals in this small 
subgroup were sacrificed at 27 day of gestation. Control I animals 
received 0.1 ml of normal saline on alternate days between days 
2 1 and 29 of gestation. 

The steroid-treated animals received betamethasone (0.085 
mg/kg) on days 25 and 26 of gestation. This dose has been shown 
to suppress endogenous maternal and fetal corticosteroid pro- 
duction and modulate fetal lung and liver insulin receptors 
without altering fetal plasma insulin concentrations (1 1, 34). 
Control I1 animals received two 0.1 ml intramuscular injections 
of normal saline on days 25 and 26 of gestation. 

The T4 plus steroid treatment group of pregnant does (n = 4) 
received 50 pglkg of T4 every other day (a total of five doses) 
from day 18 to 26 of gestation. In addition on days 25 and 26 of 
gestation these animals received 0.085 mglkgldose of betame- 
thasone. 

The T4 treated and control I animals were sacrificed on day 
30 of gestation. The steroid treated, control I1 and T4 + steroid 
treated animals were sacrificed on day 27. 

Immediately prior to sacrifice, maternal arterial blood was 
collected. Animals were sacrificed by intravenous pentobarbi- 
tone; fetal (free flowing) blood was collected after decapitation 
for measurements of plasma glucose, free T4, total T3, and 
insulin concentrations (1 1). Fetal blood collected in this manner 
yields results comparable to values reported previously by us (1 1, 
34) and other investigators (23). 

Plasma membranes. Brain plasma membranes were prepared 
by the method of Havrankova and Roth (I 5) and cardiac plasma 
membranes by the method of Rockson et al. (27). Briefly fetal 
brains from a litter were removed from the cranium and pooled 
prior to homogenization in a Dounce glass homogenizer con- 
taining 1 mM bicarbonate buffer (pH 8.0). The homogenate was 
centrifuged at 600 x g for 1G min at 4" C. The pellet was 
discarded and the supernatant centrifuged at 20,000 x g for 30 
min. The final pellet was resuspended in 1 volume of 50 mM 
Tris buffer for every gram of original brain weight. 

Hearts from a litter (two litters when there was insufficient 
tissue) were pooled, trimmed, minced, and homogenized in 10 
vol of 0.25 M Tris, 1 mM MgC12, 5 mM EGTA using a Dounce 
glass homogenizer. After filtering through two layers of cheese- 
cloth, the homogenate was centrifuged at 3000 x g for 10 min. 
The pellet was resuspended in 0.75 ml of buffer per gram of 
original heart weight. 

Protein concentration of both the brain and heart homogenates 
and membranes was estimated by the method of Lowry (20). 
Organ DNA content was determined by Zamenof s modification 
(38) of Burton's technique (4). 5'-Nucleotidase activity in brain 
and heart homogenates, brain plasma membranes, and heart 
plasma membranes was measured as described before (1). The 
5'-nucleotidase activity in all membranes studied was un- 
changed, regardless of T4 or steroid treatment. In comparison 
with the respective tissue homogenates, a 2-fold enrichment of 
the enzyme activity in the brain plasma membranes and a 1.6- 
fold enrichment in the heart dasma membrane was observed. 
Brain, heart, and liver glycogei was quantified by hydrolysis and 
estimation of glucose (26). 

Insulin binding assay. The ['251]insulin binding assay was 
performed as described previously (I I), with the exception of the 
final assay pH (8.0 for the brain and 7.4 for the heart) (Fig. 1). 
In addition -70,000 cpm of labeled insulin (specific activity 
-100 to 150 mCi/mg) for the brain and -35,000 cpm for the 
heart were used as the ligand. Membrane protein concentrations 
of 50 to 100 pg (heart) and 200 pg (brain) per tube were used. 
Scatchard plots of insulin binding data were used to determine 
total binding capacities (RO) and mean association constants 
(Ke) for receptors (29). The curvilinear Scatchard plots were 
resolved into two components, a high affinity low capacity 
component (Rl) and low affinity high capacity component (R2). 
The association constants (K1 and K2) for these two compo- 
nents, respectively, also were calculated (35). Binding capacities 
in mollliter were converted to number of receptors per micro- 
gram protein. 

Other assays. Plasma glucose was measured by a glucose 
oxidase method (1 1). Plasma insulin (33) and serum-free T4 
concentrations (33) were determined by specific radioimmu- 
noassays as described previously. Serum total T3 concentrations 
were measured using a T3 immunophase RIA kit (Coming 
Medical, Medfield, MA). The sensitivity of the assay is 0.1 ng/ 
ml. Interassay and intraassay coefficient of variation was less 
than 4%. The antibody cross-reacts 100% with L-triiodothyro- 
nine, 72% with D-triiodothyronine, 27% with triiodothyroacetic 
acid, 0.14% with D-thyroxine, and 0.12% with L-thyronine. 

Statistics. All data are presented as a mean k SEM. Statistically 
significant differences between the treated and the respective 
control groups was determined by the two-tailed Student's t test. 
Analysis of variance was employed when more than two groups 
were compared simultaneously. Correlation between the mater- 
nal and fetal plasma-free T4 concentrations in the T4-treated 
group of animals was determined by linear regression analysis. 
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RESULTS 

Table 1 lists the fetal body weights and mean brain and heart 
weights. No differences in fetal body, brain, or heart weights were 
observed in the T4-treated and control I groups. The steroid- 
treated fetuses weighed (2 1.54 & 1.34 g) less than the control I1 
animals (28.85 + 2.21 g, p < 0.02). The T4 + steroid-treated 
animals were intermediate in weight (25.39 f 2.46) between the 
steroid-treated and control I1 groups; the mean weights were 
statistically similar in the three groups. As expected, the fetal 
body and organ weights were greater at 30 days than at 27 days 
of gestation. In addition, both the brain and heart DNA contents 
were similar in the T4-treated group and the T4 + steroid-treated 
group when compared to their rcspective controls. Heart DNA 
content decreased from 1.82 + 0.06 to 1.43 + 0.12 mg/g ( p  < 
0.02), in response to steroid treatment; there was no change in 
brain DNA content in response to steroid treatment. The protein 
content as described in other organs (37) increased from 51.58 
+ 1.98 to 56.63 f 0.68 mg/g ( p  < 0.05) in the T4-treated fetal 

Fig. 1 .  Specific binding of [1251]insulin to fetal brain and heart at 
various pH. The final pH used in the assays were peak values: 8.0 for the 
brain and 7.4 for the heart plasma membranes. 

brain and from 89.17 + 4.08 to 105.9 f 3.5 mg/g ( p  < 0.02) in 
the T4-treated fetal hearts. A similar increase was observed in 
both organs in response to T4 + steroid treatment. Steroid 
treatment alone, however, did not alter brain or heart protein 
content. 

Plasma glucose and plasma/serum hormone concentrations 
are depicted in Table 2. T4 treatment increased fetal plasma 
glucose concentrations (47 f 4.9 to 69 + 4.7 mg/dl, p < 0.02) 
with no change in maternal concentrations. A marked increase 
in plasma glucose concentrations from 57 f 4.8 to 124 f 12.4 
mg/dl ( p  < 0.02) and 101 + 14.5 mgldl ( p  < 0.02) in the steroid 
treated and T4 + steroid treated fetuses, respectively, was ob- 
served with no alteration in maternal values. Fetal plasma insulin 
concentrations were not altered by T4, steroid, or T4 + steroid 
treatment. 

Serum-free T4 concentrations increased from a control value 
of 0.21 + 0.02 to 0.75 + 0.08 ng/dl (p  < 0.02) in the 30day 
gestation animals and from 0.06 + 0.02 to 0.31 f 0.07 ( p  < 
0.02) in the 27-day gestation T4-treated fetuses (not shown in 
Table 2). The maternal serum-free T4 values were 5.41 f 0.55 
at 30 days (control I = 0.87 f 0.33 ng/dl, p < 0.001) and 2.3 1 
f 0.27 at 27 days (control I1 = 0.53 + 0.06) in the T4-treated 
animals. When fetal serum-free T4 values were plotted against 
maternal values in the T4-treated group (30 days), a linear 
correlation was noted (y = 0.1248~ + 0.0739, r = 0.86). The 
maternal to fetal plasma-free T4 concentration ratio in the T4- 
treated group was 8: 1. Serum total T3 increased from a control 
value of 0.76 f 0.03 to 1.17 + 0.02 ng/ml in the T4-treated and 
to 1.08 + 0.25 ng/ml in the T4 + steroid-treated groups. Maternal 
serum total T3 was greater than 10 ng/ml in both groups (control 
= 2.31 f 0.27). These data indicate significant transplacental 
transfer of free T4 to the fetus during the administration of a 
pharmacologic dose of T4 to the mother. Administration of 
steroid alone resulted in an increase in serum free T4 levels in 
the fetus from 0.06 + 0.02 to 0.33 f 0.03 (p  < 0.001). 

Figure 2 demonstrates the [1251]insulin competition curves in 
both the fetal T4-treated and control I brain and heart mem- 
branes. The mean + SEM are represented in these curves. In the 
inset Scatchard plots (mean values) are represented. The Scat- 
chard plot data obtained are summarized in Table 3. Using brain 
plasma membranes, no difference in percent specific [1251]insulin 
binding (Fig. 2, Table 3), RO, R1, and R2 is observed between 
the T4-treated and control I fetuses. Conversely in the T4-treated 
heart plasma membranes, an increase from 3.6 f 0.74 to 5.8 f 
0.19% ( p  < 0.05) in ['251]insulin binding is noted. In addition 
an increase in the total receptor number (RO) from 137 f 3.9 to 

Table 1. Fetal body wt, organ wt, protein, and DNA content 
Protein content DNA content 

Fetal body Fetal brain Fetal heart (mg/g) (mg/g) Groups 
(n) wt (g) wt (g) wt (g) Brain Heart Brain Heart 

30-day 
T4-treated group X 44.05 1.08 0.23 56.63* 105.9t 1.24 2.28 
(n = 6) SEM 2.89 0.05 0.02 0.68 3.5 0.04 0.24 
Control I group 51.78 1.12 0.19 51.58 89.17 1.23 2.10 
(n = 7) 2.68 0.04 0.02 1.98 4.08 0.06 0.26 

27-day 
Steroid-treated group 

(n = 6) 
Control I1 group 
(n = 6) 
T4 + steroid-treated 
group 
(n = 4) 2.46 0.03 0.04 4.85 5.20 0.02 0.49 

* p < 0.05, when compared to controls. 
t p c 0.02, when compared to controls. 
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Table 2. Fetal plasma glucose and insulin, serum-free T4, and total T3 concentrations 
Groups Plasma glucose Plasma insulin Serum-free T4 Serum total T3 

( 4  (mgldl) (rU/ml) (ngldl) (nglml) 
T4-treated Mean 69* 20.1 0.75* 

group-30 days SEM 4.7 3.0 0.08 
(n = 6) (1 15 + 6.8)t (5.41 * 0.55)t 
(n = 3)-27 days$ 67 53.4 0.76* 1.17* 

9.5 12.6 0.03 0.02 
(135 + 6.5)t (2.31 -t 0.27)t 

Control I 
(=-lO)t 

47 26.2 0.2 1 
group-30 days 4.9 4.0 0.02 
(n = 7) (1 11 + 2.7)t (0.87 + 0.03)t 

Steroid-treated 124* 17.5 0.33* 
group-27 days 12.4 7.5 0.03 
(n = 6) (166 + 23.9)t 

Control 11-27 days 57.3 37.5 0.06 0.76 
(n = 6) 4.8 6.5 0.02 0.03 

(126 + 4.4)t (0.53 + 0.06)t (2.3 1 + 0.27) 
T4 + steroid-27 days 101* 22.9 0.36* 1.08* 

treated group 14.5 5.2 0.0 1 0.25 
(n = 4) (142 + 6.8)t (3.51 k 0.39)t (>lo)t 

* p  < 0.02, when compared to controls. 
t Maternal values are represented in parentheses. 
$The 27 days T4-treated subgroup was compared with control 11. 

I 
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Fig. 2. Competition curves of [12SI]insulin are represented with the respective Scatchard plots in the inset: 30-day gestation T4-treated fetal brain 

(solid triangles) and heart (open triangles) plasma membranes versus control fetal brain (solid circles) and heart (open circles) plasma membranes. 

244 * 39.2 x lo7 pg protein-' (p < 0.02) and the low affinity, 
high capacity (R2) receptor sites is observed. No change in the 
high affinity, low capacity (R 1) receptor number is demonstrated. 
In both the brain and heart the affinity constants remained 
unchanged. Similar [1251]insulin binding results were observed in 
the T4-treated 27-day-old subgroup of fetuses ( n  = 3). No signif- 
icant difference was observed between the two gestational ages. 

Steroid treatment (Table 4) did not alter the [1251]insulin 
binding to fetal brain (10.3 + 0.41% versus a control of 9.2 + 
0.52%) and heart (3.4 + 0.24% versus a control of 3.5 & 0.33%). 

Similarly T4 + steroid treatment did not alter the ['251]insulin 
binding to the fetal brain (9.3 k 0.61%) and fetal heart (4.3 + 
0.13%) although in the latter binding was intermediate between 
the control and T4-treated values. 

Figure 3 demonstrates the total glycogen content in pM glu- 
cosy1 units/mg protein of heart in addition to the specific ['251] 
insulin binding to myocardial membranes. Contrary to the 
change in ['251]insulin binding and total receptor number, a 
decrease in fetal cardiac glycogen from 0.65 + 0.04 to 0.46 * 
0.01 pM glucosyl units/mg protein ( p  < 0.02) is observed in 
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Table 3. Insulin receptor characteristics in 30-day fetal brain and heart plasma membranes 

Groups 

Receptor no. x lo7 pg 
% Specific binding of Affinity constant x lo7 M protein-' 
[1251]insulin per 1001 
- 200 gg protein Ro R 1 R2 Ke K1 K2 

T4-treated R 12.5 153 8.2 145 9.91 123 2.60 
brains SEM 0.5 10.0 1.0 9.9 0.6 1 12.1 0.4 1 

(n = 6) 
Control I 11.7 186 15.2 171 7.87 86 1.53 

brains 0.6 14.8 2.4 15.0 0.86 9.0 0.41 
(n = 7) 
T4-treated 5.8* 244* 10.8 2331. 5.80 189 0.60 

hearts 0.2 39.2 5.7 36.7 1.29 85.0 0.10 
(n = 4) 
Control I 3.6 137 11 126 5.75 85 0.60 

hearts 0.7 3.9 4.0 2.7 0.8 1 16.3 0.10 
(n = 5) 

* p < 0.05, when compared to controls. 
p < 0.02, when compared to controls. 

Table 4. % Specific binding of ['25Z]insulin to 27-dayfetal brain 
and heart ~ lasma membranes 

Brain 
Groups (per 200 rg) 

Steroid treated 10.3 (6)* 
0.4 1 

Control I1 9.2 (6) 
0.52 

T4 + steroid treated 9.3 (4) 
0.6 1 

Heart 
(per 100 rg) 

3.4 (4) 
0.24 
3.5 (5) 
0.33 
4.3 (4) 
0.13 

*The numbers in parentheses denote the number of pooled brains/ 
hearts. 

response to T4 treatment. Steroid treatment also decreased the 
fetal myocardial glycogen content from 0.80 & 0.31 to 0.68 & 
0.02 pM glucosyl unitslmg protein ( p  < 0.02). T4 + steroid 
treatment similarly decreased the glycogen content in the heart 
to 0.07 + 0.005 (p  < 0.001). Myocardial glycogen content, 
expressed as pM glucosyl units/pg DNA, decreased from 0.020 
& 0.0001 in the 30-day control fetus to 0.01 5 & 0.001 ( p  < 0.01) 
in the T4-treated fetus. Similarly a decrease from 0.17 & 0.0 1 in 
the 27-day control fetus to 0.12 & 0.005 (p  < 0.02) and 0.0016 
+ 0.0002 (p  < 0.001) in the steroid-treated and T4 + steroid- 
treated fetuses, respectively, was observed. Total brain glycogen 
content in all five groups was less than the sensitivity of the assay 
and thus undetectable. The sensitivity of the glycogen assay is 
0.025 pM glucosyl units/100 pl or 0.1 g of brain tissue. Glycogen 
content in both organs was measured as an end product of 
insulin-regulated glucose uptake by myocardial and brain cells. 
In addition, fetal liver glycogen content was quantified and noted 
to be no different in the T4-treated and control I groups (2 15 & 
11.8 versus 210 f 8.8 pM glucosyl units/g wet weight). 

DISCUSSION 

Previously we demonstrated that administration of T4 at 25 
pglkg every other day for a total of three doses (75 pglkg) to 
hypothyroid pregnant does rendered them euthyroid, without 
affecting the low fetal-free T4 levels ( I  1). However, in the present 
study, we observed that administration of a higher dose of T4 to 
euthyroid pregnant does (total of 250 pglkg) results in high 
maternal and fetal-free T4 levels. The high serum T4 levels exert 
a biologic effect in the fetus. In addition we demonstrated an 
increase in cardiac insulin receptors with a decrease in glycogen 
content in the T4-treated fetuses. Our results are consistent with 

Fig. 3. Percent ['251]insulin binding to heart plasma membranes and 
myocardial glycogen content in pmol glucosyl unitslmg protein in con- 
trol I and T4-treated 30-day gestation fetuses; and in control 11, steroid- 
treated, and T4 + steroid-treated 27-day gestation fetuses. p * < 0.05, ** 
< 0.02, when compared to their respective gestational age-matched 
control group. 

previous observations that T4 increased the insulin receptor 
number of adult adipocytes (16) and hypothyroidism was asso- 
ciated with a decrease in fetal lung and liver insulin receptors 
(I 1, 34). 

Following maternal administration of a synthetic thyroxine 
preparation, 3,5, dimethyl 3' isopropyl thyronine, which more 
readily crosses the placenta, a depletion in fetal myocardial 
glycogen has been observed (23). In the present study, no effect 
of the T4 treatment on fetal liver glycogen content was observed. 
In a preliminary experiment (n = 6), at twice the dose of T4 
administered in this study (i.e. 500 pglkg), we observed a deple- 
tion of fetal liver glycogen (7). These observations suggest that in 
the fetus, myocardial glycogen is more sensitive than liver gly- 
cogen to the effects of T4. 

In the adult heart, insulin specifically promotes glycogen syn- 
thesis by increasing the glycogen synthase enzyme activity with 
little or no effect on phosphorylase activity (22). However, the 
phosphorylase enzyme system is hypersensitive to insulin antag- 
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onists, e.g. a and /3 adrenergic agonists and glucagon (1 7). Plasma 
insulin concentrations remaining constant and an increase in 
insulin receptor number with unchanging postreceptor events 
should increase the biologic effect of insulin and augment glucose 
uptake. This has been demonstrated in the adult (24). However, 
the fetus is relatively resistant to insulin; peripheral glucose 
uptake increases only when pharmacologic doses of insulin are 
administered (30), and glucose challenge produces a relatively 
obtunded insulin response (32). In addition, a delayed matura- 
tion of insulin-induced glucose uptake versus amino acid uptake 
has been demonstrated in fetal hepatocytes (3 1). 

Besides an increase in the myocardial insulin receptor number, 
the effect of T4 on various enzymes regulating glycogen synthesis 
is not clear. An activation of myocardial phosphorylase and an 
acceleration of glycogen depletion coincides with the postnatal 
period of physiologic T4 surge in the neonate (13). T4 
(3,5,dimethyl3' isopropyl thyronine) also evokes a depletion of 
myocardial glycogen in a hyperinsulinemic fetus of an alloxan- 
diabetic mother (23). This suggests that T4 alters the enzyme 
activity that controls glycogen metabolism. The influence of T4 
on postreceptor events may be responsible for the depletion of 
myocardial glycogen. T4, by independently modulating the in- 
sulin receptor and postreceptor action(~), thus dissociates the 
physical characteristics of the receptor and the biologic function. 
In association with the decrease in cardiac glycogen stores, a 
slight increase in fetal plasma glucose concentration was noted 
in the present study. No similar change in maternal glucose 
values was observed possibly due to the dilutional effect in the 
large maternal pool. Again an increase in fetal plasma glucose 
values did not stimulate a rise in fetal insulin concentrations, 
due to an obtunded fetal pancreatic islet cell response to a glucose 
challenge (32). 

During the same developmental period, no modulation by T4 
of fetal brain insulin binding or receptor number was observed. 
Most biochemical events of physiologic significance in the brain, 
such as the synthesis of myelin lipids, occur postnatally (8). In 
the presence of a change in cardiac insulin receptor number, an 
absence of a change in brain insulin receptor characteristics 
signifies a difference in organ maturity or a different response by 
separate organs to the same stimulus. 

Glucocorticoid treatment did not change fetal cardiac ['251] 
insulin binding despite elevated serum-free T4 concentrations. 
Although the free T4 levels after steroid treatment were similar 
to the levels achieved with T4 treatment alone, no increase in 
the insulin binding akin to that observed in response to T4 
treatment alone was demonstrated. On the contrary, the steroid- 
induced decrease in ['251]insulin binding and receptor number 
observed in the fetal liver (34) was absent in the myocardium. 
The influence of high T4 concentrations was masked by the 
effect of the steroids in the fetus. In addition, a reduction in the 
heart glycogen content along with an increase in fetal glucose 
concentrations was noted in response to steroid treatment alone. 
Although during development changes in the fetal liver insulin 
receptor characteristics secondary to steroid treatment have been 
demonstrated (34), the lack of change in brain [1251]insulin 
binding may again be due to organ maturational differences. 

T4 + steroid treatment also resulted in an absence of a change 
in either the fetal myocardial or the brain ['251]insulin binding. 
However, a marked depletion of myocardial glycogen with an 
elevation of plasma glucose levels was observed as an additive 
effect of T4 and steroids. 

Our studies demonstrate that the fetal brain insulin feceptor 
is not modulated by the systemic hormonal changes that modu- 
late the cardiac receptor. This suggests a relative unresponsive- 
ness on the part of fetal neural tissue. On the other hand, in the 
fetal myocardium, combined T4 and steroid treatment neutralize 
the effect of either hormone alone on insulin binding (an increase 
in number by T4 and an absence of a decrease by steroids). 

Although the physiologic significance remains unclear, we 
have demonstrated an additive interaction between T4 and be- 

tamethasone with regard to myocardial glycogen depletion. The 
sensitive period for a T4 effect on human fetal insulin receptors 
has not been defined; besides 10 days of T4 therapy in the rabbit 
fetus cannot be related to the clinical situation. However, our 
present studies stress the need for more information about other 
effects, since combined thyroid hormone and glucocorticoid 
therapy has recently been proposed in the amelioration of res- 
piratory distress syndrome in the impending delivery of a pre- 
mature infant (2 1). 
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Urinary Excretion of an Isomer of Bilirubin 
during Phototherapy 

ISABELLA KNOX, JOHN F. ENNEVER, AND WILLIAM T. SPECK 
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ABSTRACT. Lumirubin, a water-soluble photoproduct of 
bilirubin formed in vivo during phototherapy, is excreted 
in the urine. In premature infants with little or no bilirubin 
conjugating activity, lumirubin is the principal yellow pig- 
ment found in the urine during phototherapy. The clearance 
rate of lumirubin in nine premature infants varied from 
0.05 to 0.65 ml/min and increased with postconceptional 
age in parallel with increased creatinine clearance rate. 
The amount of lumirubin excreted per 24 h was estimated 
to be from 0.2 to 9.4 mg with a mean of 3.2 mg. The 
urinary excretion of lumirubin is a significant pathway for 
pigment elimination during phototherapy. (Pediatr Res 19: 
198-201,1985) 

Visible light phototherapy has been used to treat neonatal 
hyperbilirubinemia for more than two decades (1, 2). Although 
precise data are not available, it has been estimated that between 
2 and 5% of all newborn infants are treated with phototherapy 
(3). Despite this widespread use over a number of years, the 
mechanism by which phototherapy lowers serum bilirubin in 
vivo is not known. The purpose of this study was to determine 
whether urinary excretion is an important pathway for the elim- 
ination of bilirubin photoproducts. 

Bilirubin, a metabolic product of heme degradation (4), is a 
highly lipophilic molecule (5); prior to excretion, bilirubin is 
made more water soluble by conjugation to glucuronic acid (6). 
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Because newborn infants are deficient in the enzyme@) respon- 
sible for this conjugation reaction they frequently develop hy- 
perbilirubinemia which is most often treated with phototherapy. 
During phototherapy, bilirubin undergoes two principal photo- 
chemical reactions, which yield products that are more polar 
than the native molecule (7-10). The relative importance of 
these two reactions to the therapeutic response seen with photo- 
therapy depends on both the rates of formation and the rates of 
excretion of the photoproducts. 

The two principal photoproducts are 42,l SE-bilirubin, a con- 
figurational isomer of the native 4Z, 15Z-bilirubin (9), and lu- 
mirubin, a structural isomer which contains a seven-member 
ring (10) (Fig. I). The relative rates of the two reactions are 
known from in vitro studies (9-1 1) and appear to be similar in 
vivo (12). The faster reaction is the configurational isomerization 
which is freely reversible. The formation of lumirubin occurs 
more slowly (1 1) but is essentially irreversible. Typically during 
phototherapy, 2 to 6% of the total bilirubin is present as lumi- 
rubin whereas 15 to 20% is present as the configurational isomer 
(12). A third type of reaction, the photooxidation of bilirubin to 
mono and dipyrroles (1 3) occurs at a much lower rate than either 
isomerization reaction (1 1) and is not thought to be a quantita- 
tively important pathway for bilirubin elimination. 

The decline in serum bilirubin during phototherapy requires 
not only formation of these bilirubin isomers but also their 
elimination. The principal route of photoproduct elimination is 
thought to be through the bile. Onishi et al. (8) have reported 
finding a bilirubin photoproduct, which they called "unknown 
pigment," in the bile and urine of infants treated with photo- 
therapy. We have used a high pressure liquid chromatographic 
method to quantitate the urinary excretion of bilirubin isomers 
in nine preterm infants. We have identified the photoproduct in 
the urine as the configurational isomer of bilirubin, lumirubin. 
We have determined the rate of urinary excretion of lumirubin 
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