Gastrointestinal Blood Flow and O₂ Uptake in **Piglets: Recovery from Hypoxemia**

PHILIP T. NOWICKI, RANDY R. MILLER, NANCY B. HANSEN, AND JOHN R. HAYES

Department of Pediatrics, Section of Neonatology, The Ohio State University and Children's Hospital, Columbus, Ohio 43205

ABSTRACT. Gastrointestinal (GI) blood flow, O2 transport, and O₂ uptake were measured during recovery from severe hypoxemia in newborn piglets. Hypoxemia was induced by lowering the inspired O₂ concentration to 0.05 for 15 min. This resulted in an 82% decrease in GI O₂ uptake. Recovery measurements were obtained 5 and 65 min after restoration of normoxia. During early recovery (5 min), GI O₂ uptake increased above prehypoxemia baseline, presumably to "repay" the O₂ deficit incurred during hypoxemia. This was mediated by an increase in the arteriovenous O₂ content difference, as GI blood flow did not increase above prehypoxemia baseline. During late recovery (65 min), GI blood flow, O₂ delivery, and arteriovenous O₂ content difference decreased below prehypoxemia baseline. This resulted in a 52% decrease in GI O_2 uptake below prehypoxemia baseline. Therefore, early recovery was characterized by an appropriate increase in GI O_2 uptake; however, late recovery was characterized by a significant reduction in GI O2 transport and uptake. Circulatory homeostasis was not reestablished during the late recovery period. (Pediatr Res 19: 1197-1200, 1985)

Abbreviations

GI, gastrointestinal $(a-v) \triangle O_2$, arteriovenous O_2 content difference

A decrease in O₂ availability below the level necessary to sustain aerobic metabolism results in accumulation of an O₂ deficit. Following restoration of the O₂ supply, tissue O₂ uptake increases above the normoxic resting level, effecting a "repayment" of the O_2 deficit (1, 2). This sequence has been identified in mature intestine subjected to ischemic O₂ deprivation (3).

Severe hypoxemia in the newborn produces a decrease in GI blood flow and (4-7) O₂ uptake (5, 6). It would be anticipated, therefore, that restoration of normoxia would be accompanied by an increase in blood flow and O_2 uptake above prehypoxemia levels. However, the newborn mesenteric circulation is limited in its capacity to increase blood flow, via local vasodilation, in response to increased O₂ demands (8, 9). A preliminary report demonstrated that the newborn piglet GI tract does not exhibit a hyperemia or increased O2 uptake during recovery from hypoxemia (6). Hence, the posthypoxemia circulatory adjustment in the newborn may not parallel those in the mature GI tract. The purpose of this investigation was to characterize the newborn mesenteric circulation during recovery from severe hypoxemia.

Received March 11, 1985; accepted July 9, 1985. Address for reprints Philip T. Nowicki, M.D., Columbus Children's Hospital, 700 Children's Drive, Columbus, OH 43205.

Supported by Grant 75-007 from the Children's Hospital Research Foundation.

Animal preparation. Newborn piglets (2 days of age) were

MATERIALS AND METHODS

fasted for 6 h before study. This species was selected because of its nonruminant GI physiology and developmental similarity to the human neonate (10). Using NO_2 and lidocaine anesthesia, a tracheostomy was performed, and catheters were placed into the left ventricle, upper and lower abdominal aorta, and portal vein (via the umbilical vein). The portal vein catheter was used to sample the O_2 content of venous blood draining from the GI tract. The O₂ content of portal vein blood sampled in this fashion correlates well with that obtained simultaneously from the cornmon mesenteric vein, and the correlation holds true over a wide range of O₂ contents (9). Following catheterization, NO₂ was discontinued, and muscle paralysis achieved with pancuronium bromide (0.1 mg/kg). The piglet was ventilated with a Bourns LS104 ventilator during data collection.

Experimental protocol. Heart rate, blood pressure, and arterial blood gas tensions were stable for 2 h before the onset of data collection. The study consisted of four measurement periods. During each period, cardiac output, GI blood flow, and arterial and portal vein O₂ content determination were made. A baseline measurement was made under normoxic conditions. Hypoxemia was induced by lowering the inspired O_2 concentration to 0.05 with N₂, and continued for 15 min. No other adjustments were made with the ventilator. The hypoxemia measurement was obtained and then the inspired O2 concentration returned to 21%. Early and late recovery measurements were made 5 and 65 min following restoration of normoxia. Hematocrit was determined before and after the study. All blood removed for sampling was replaced with age- and hematocrit-matched piglet blood.

Methodology. Blood flow and cardiac output were measured with microspheres (15 \pm 2 μ m diameter) using the method of Heymann *et al.* (11). The microspheres were labeled with one of four nuclides: ${}^{57}Co$, ${}^{113}Sn$, ${}^{103}Ru$, or ${}^{46}Sc$ (New England Nuclear, Boston, MA). The order of isotopes administered in each study was randomly varied. Approximately 9×10^5 microspheres were injected into the left ventricle over 20 s, while, simultaneously, an arterial reference sample was withdrawn at a constant rate (1.03 ml/min for 2 min) through the abdominal aorta catheter. Tissue was fixed in 10% formalin for 24 h and then placed in plastic counting vials. Tissue and blood radioactivity was measured using a Packard γ spectrometer (Packard Instruments, Downers Grove, IL) and blood flow data generated with an IBM PC. The program was corrected for isotope spillover and decay. Regional blood flows were calculated with the equation:

Blood flow =
$$\left(\frac{\text{cpm tissue}}{\text{cpm reference blood}}\right)$$

 \times rate reference withdrawal (11)

1198

Cardiac output was calculated with the equation:

Cardiac output =
$$\left(\frac{\text{cpm injected}}{\text{cpm reference blood}}\right)$$

 \times rate of reference withdrawal (11)

To facilitate cardiac output determination the radioactivity (cpm) of each microsphere injection was determined prior to injection. The criteria necessary to ensure accuracy of blood flow measurements to within $\pm 5\%$ were met during the study (11). Sampling of lung tissue from each piglet indicated no left to right shunting of blood across the ductus arteriosus.

 O_2 contents were measured with a Lex- O_2 -Con O_2 analyzer (Lexington Instruments, Waltham, MA) and arterial blood gas tensions measured with standard electrodes (Instrumentation Laboratories, Waltham, MA). Heart rate, mean arterial blood pressure, and pulse pressure were continuously measured with Statham p23d transducers and recorded on a Gould 2600S recorder (Gould Electronics, Cleveland, OH).

Data analysis. GI blood flows were calculated per tissue weight, and are expressed as $ml \cdot min^{-1} \cdot 100 g^{-1}$. In addition, the percentage of total GI blood flow distributed to each region of the GI tract was calculated using nonweighted blood flow data.

GI O_2 delivery and uptake were determined from measured data using the Fick equation:

GI O₂ delivery

= GI blood flow $(Q_{GI}) \times arterial O_2 \text{ content } (CaO_2)$

GI O₂ uptake = $Q_{GI} \times (CaO_2 - portal vein O_2 content)$

These data were calculated per tissue weight, and are expressed as ml $O_2 \cdot \min^{-1} \cdot 100 \text{ g}^{-1}$. The percentage of total GI O_2 delivery distributed to each region was also determined, using nonweighted blood flow data. (a-v) $\triangle O_2$ was calculated as the difference between arterial and portal vein O_2 contents, and is expressed as ml $O_2 \cdot 100 \text{ ml}^{-1}$.

The statistical significance of hypoxemia and recovery measurements were determined by analysis of variance, using the prehypoxemia measurement (hereafter, baseline) as control measurement. A p < 0.05 was accepted as significant.

RESULTS

The piglets weighed 1.14 ± 0.12 kg. The entire GI tract weight was 42.3 ± 16.9 g, distributed regionally as follows: stomach 5.3 ± 1.0 g; proximal small bowel 20.4 ± 8.9 g; distal small bowel 11.4 ± 5.7 g; and colon 5.2 ± 2.2 g. Arterial blood gas and O_2 content data are shown in Table 1. During hypoxemia a 78% reduction in arterial O_2 content was achieved, while values obtained during recovery were similar to baseline.

During the baseline measurement, the distribution of GI blood flow to each region was as follows: stomach $11 \pm 4\%$; proximal small bowel $62 \pm 6\%$; distal small bowel $16 \pm 4\%$; colon $10 \pm 5\%$. Despite changes in GI blood flow during the study, the regional distributions did not change.

Hypoxemia resulted in a decrease in GI blood flow and cardiac output (Fig. 1). The reduction in blood flow occurred in all

regions of the GI tract (Fig. 2). During early recovery (5 min after restoration of normoxia), cardiac output and total and regional GI blood flows returned to baseline. During late recovery, GI blood flow decreased 32% below baseline, despite maintenance of cardiac output. On a regional basis, only blood flow to the proximal small bowel had decreased during late recovery.

GI O_2 delivery decreased during hypoxemia, returned to baseline in early recovery, and decreased again during late recovery (Fig. 3). When examined on a regional basis, O_2 delivery to all regions of the GI tract decreased during hypoxemia, but only O_2 delivery to the proximal small bowel was reduced during late recovery. This observation was valid whether O_2 delivery was expressed per tissue weight or as a percentage of total GI O_2 delivery distributed to each region. The (a-v) $\triangle O_2$ decreased during hypoxemia, increased more than 2-fold in early recovery, and decreased again in late recovery (Fig. 3). GI O_2 uptake paralleled the changes noted in (a-v) $\triangle O_2$ (Fig. 3).

DISCUSSION

Early recovery was characterized by return of cardiac output and GI blood flow to prehypoxemia baseline values. Unlike the response observed in the mature intestine (3), a significant posthypoxemia increase in mesenteric blood flow did not occur. The newborn mesenteric circulation exhibits limited capacity to regulate GI blood flow in response to increased tissue O_2 de-

Fig. 1. Cardiac output and gastrointestinal blood flow. Mean \pm SEM (n = 8). * p < 0.05 versus baseline.

Table 1. Arterial blood gas and O_2 content in study subjects

	Baseline	Нурохіа	Recovery	
			5 min	65 min
pH	$7.47 \pm 0.03^*$	7.36 ± 0.06	$7.21 \pm 0.05^{++1}$	7.39 ± 0.04
$pCO_2 (mm Hg)$	32 ± 4	30 ± 3	30 ± 4	30 ± 4
$pO_2 (mm Hg)$	85 ± 4	$18 \pm 3^{+}$	92 ± 6	85 ± 4
CaO_2 (ml $O_2 \cdot 100 \text{ ml}^{-1}$)	11.8 ± 0.8	$2.6 \pm 0.3 \dagger$	11.0 ± 0.7	10.5 ± 0.7

* Mean \pm SEM (n = 8).

 $\dagger p < 0.05$ compared to baseline.

Fig. 2. Regional GI blood flow. Mean \pm SEM (n = 8). * p < 0.05 versus baseline.

mands (8, 9). During the postprandial period, another circumstance in which GI O_2 demands are increased, the newborn manifests only a modest increase in GI blood flow (9). The resting GI blood flow of the newborn is substantially higher than that reported in mature GI tracts (8, 9). Edelstone and Holzman (8) speculated that the newborn mesenteric circulation is at near maximal vasodilation in the resting state, with little capacity for increased blood flow if tissue O_2 demands increase (8). The present data support this speculation.

Despite the lack of a mesenteric hyperemia, GI O_2 uptake did increase above prehypoxemia baseline during early recovery. This was mediated by an increase in the $(a-v) \triangle O_2$ across the GI tract. Regulation of $(a-v) \triangle O_2$ is accomplished by opening or closing precapillary sphincters, altering the number of perfused capillaries. This adjusts the total surface area available for O_2 diffusion and metabolite exchange (12, 13). Control of $(a-v) \triangle O_2$ is an integral mechanism in the maintenance of GI O_2 uptake

Fig. 3. GI O₂ delivery, a-v O₂ difference, and O₂ uptake. Mean \pm SEM (n = 8). *p < 0.05 versus baseline.

(12, 14). This is particularly important in the newborn because of the limited capacity to regulate GI blood flow and O₂ delivery. Our observation is consistent with studies in which the newborn GI tract response to changes in O₂ availability or O₂ demand is mediated primarily by adjustment of (a-v) \triangle O₂ (7, 8, 15, 16).

Late recovery was characterized by reduction in GI blood flow and O₂ delivery below prehypoxemia baseline levels. When examined on a regional basis, the reduction in GI blood flow and O₂ delivery was localized to the proximal small bowel. Cardiac output remained unchanged and mean arterial blood pressure was also stable. Therefore, the reduction in GI blood flow was secondary to an increased mesenteric vascular resistance. The mechanism responsible for this observation cannot be determined from the present data, although some speculation is feasible. Damage to the GI tract and/or mesenteric vasculature may have occurred during, or after, severe hypoxemia, leading to a reduction in blood flow. There is evidence vascular damage can occur during reoxygenation (15, 16). Alternatively, it is possible the late mesenteric vasoconstriction represented a physiological response; *i.e.* redistribution of cardiac output may have occurred during the late recovery period, in a fashion similar to that which has been described during hypoxemia (17, 18). Additional data are necessary to clarify the basis for the present observation.

In a preliminary report, Szabo *et al.* (6) observed no significant reduction in piglet GI blood flow 70 min after resolution of a hypoxemia stress. This contrasts with the $32 \pm 3\%$ decrease in GI blood flow reported here during late recovery. There may be two explanations for this discrepancy. Szabo *et al.* (6) reduced pO₂ to 29 ± 1 mm Hg, compared to 18 ± 2 mm Hg induced in

the present study. These values fall on the steep portion of the piglet Hb dissociation curve, resulting in expected saturations of 58 and 30%, respectively (19). The degree of hypoxemia induced in the present study was more profound, which may have been a factor in the pronounced circulatory changes. Also, the baseline GI O₂ uptake observed by Szabo *et al.* (6) was 3.6 ± 0.4 ml O₂. $\min^{-1} \cdot 100 \text{ g}^{-1}$, which is substantially higher than the prehypoxemia baseline GI O₂ uptake observed in the present investigation. This may have been secondary to the duration of fasting prior to study, as GI O₂ uptake increases significantly during digestion (16). It is unlikely that the difference reflects anesthetic effect, as similar anesthesia was used in both studies. The response of the mesenteric circulation to changes in O2 availability or tissue O2 demand is affected by the resting state of the circulation (14). Hence, the observations of Szabo et al. (6) might reflect the higher baseline GI O₂ uptake. If this is correct, it implies that the existence of an increased GI O2 uptake may afford some protection against the circulatory adjustments observed in the late recovery period after hypoxemia.

Previous studies have demonstrated that a reduction in GI O₂ delivery results in an increase in (a-v) $\triangle O_2$ (12, 13). However, in the present study (a-v) $\triangle O_2$ decreased when GI O₂ delivery decreased, during hypoxemia, and late recovery measurements. The (a-v) \triangle O₂ quantifies O₂ diffusion from capillary to cell. While the GI tract is capable of regulating (a-v) $\triangle O_2$ by altering the number of perfused capillaries (12, 13), the diffusive process itself remains passive. The driving force for O₂ diffusion is the pO_2 gradient between capillary and cell (12, 13), therefore, if the capillary pO_2 is severely decreased, such as would occur during profound hypoxemia, the diffusive process would be diminished, and $(a-v) \triangle O_2$ would decrease (9). This is the likely explanation for the reduction in (a-v) \triangle O₂ which was observed during hypoxemia, and the reason why (a-v) $\triangle O_2$ failed to increase during the reduced O_2 delivery noted at that time. During late recovery, however, systemic pO₂ and arterial O₂ content were restored to normal and GI O₂ delivery, while diminished compared to baseline, was most probably not decreased to a degree sufficient to limit capillary pO2 and thus O2 diffusion. An alternative explanation is necessary to reconcile the reduction in (av) \triangle O₂ which courred during late recovery. We speculate that this could have occurred because of damage to capillaries during and after hypoxemia. Granger et al. (15) observed a loss of intestinal capillary integrity following O₂ deprivation and reoxygenation. During O₂ deprivation, metabolism of ATP results in a large pool of hypoxanthine and, during reoxygenation, abundant O_2 is made available. These substrates are metabolized by xanthine oxidase to produce superoxide anion and hydroxyl radicals, which alter capillary integrity (16). Regulation of (a-v) $\triangle O_2$ is dependent on control of capillary perfusion and maintenance of capillary integrity (12, 13). Therefore, damage to capillaries might disrupt normal regulation of capillary perfusion.

GI O_2 uptake decreased during late recovery, due to the decreases in O_2 delivery and $(a-v) \Delta O_2$. The methodology used in this study did not allow quantification of regional $(a-v) \Delta O_2$ or GI O_2 uptake, as the venous effluent from the GI tract was measured only at the portal vein. It is not reasonable, therefore, to conclude that O_2 uptake was lower in one particular region. However, O_2 delivery was decreased only in the proximal small bowel, and it is feasible to speculate that this region might have been more severely affected in terms of diminished O_2 uptake.

The present data were obtained while the piglets were artificially ventilated. Comparison of baseline values for GI blood flow, O_2 transport, and O_2 uptake presented herein with that reported in fasting, spontaneously breathing piglets (20) reveals no differences in these variables. However, the cardiovascular responses to hypoxemia can be affected by artificial ventilation (21), and it is important to qualify the data presented herein with the experimental model utilized.

In summary, the adjustments of the newborn mesenteric circulation during recovery from severe hypoxemia change over time. In early recovery, GI O₂ uptake increased over prehypoxemia baseline, mediated by an increase in (a-v) \triangle O₂. Late recovery was characterized by a reduction in GI blood flow and O₂ transport, and thus GI O₂ uptake. Restoration of mesenteric circulatory homeostasis did not occur within the time frame evaluated in this study.

Acknowledgments. The authors thank Penny DiVito, R.N. and Chuck Miller for excellent technical assistance, and Debbie Schaffner for secretarial support.

REFERENCES

- Adams RP, Cain SM 1983 Total and hindlimb oxygen deficit and "repayment" in hypoxic anesthetized dogs. J Appl Physiol 55:913-922
- Cain SM 1967 O₂ deficit incurred during hypoxia and its relation to lactate and excess lactate. Am J Physiol 213:57–63
- Mortillaro NA, Granger HJ 1977 Reactive hyperemia and oxygen extraction in the feline small intestine. Circ Res 41:859–865
- Alward CT, Hook JB, Halmrath TA, Mattson JC, Bailie MD 1978 Effects of asphyxia on cardiac output and organ blood flow in the newborn piglet. Pediatr Res 12:824-827
- Edelstone DI, Lattanza DR, Paulone ME, Holzman IR 1983 Neonatal intestinal oxygen consumption during arterial hypoxemia. Am J Physiol 244:G278-G282
- Szabo JS, Stonestreet BS, Oh W 1984 Gastric motility and GI blood flow: effect of hypoxemia in the newborn piglet. Pediatr Res 18:214A
- Touloukian RJ, Posch JN, Spencer R 1972 The pathogenesis of ischemic gastroenterocolitis of the neonate: selective mucosal ischemia in asphyxiated neonatal piglets. J Pediatr Surg 7:194–205
- Edelstone DI, Holzman IR 1981 Gastrointestinal O₂ uptake and regional blood flow during digestion in conscious newborn lambs. Am J Physiol 241:G289– G293
- Nowicki PT, Stonestreet BS, Hansen NB, Yao AC, Oh W 1983 Gastrointestinal blood flow and oxygen consumption in awake piglets: effect of feeding. Am J Physiol 245:G697–G702
- 10. Douglas WR 1972 Of pigs and men and research. Space Life Sci 3:226-234
- Heymann MA, Payne BD, Hoffman JI, Rudolph AM 1977 Blood flow measurements with radionuclide-labelled particles. Prog Cardiovasc Dis 20:55-79
- Granger DN, Kvietys PR, Perry MA 1982 Role of exchange vessels in the regulation of intestinal oxygenation. Am J Physiol 242:G570–G574
- Shepherd AP 1982 Role of capillary recruitment in the regulation of intestinal oxygenation. Am J Physiol 242:G435-G441
 Kvietys P, Granger DN 1982 Relation between intestinal blood flow and
- Kvietys P, Granger DN 1982 Relation between intestinal blood flow and oxygen uptake. Am J Physiol 242:G202–G205
- Granger DN, Sennett M, McElearney P, Taylor AF 1980 Effect of local arterial hypotension on cat intestinal permeability. Gastroenterology 79:474–480
 Berlin DA, Granger DN, 1982 Local and an article of local arterial permeability.
- Parks DA, Granger DN 1983 Ischemia-induced vascular changes: role of xanthine oxidase and hydroxyl radicals. Am J Physiol 245:G285–G289
- Behrman RD, Lees MH, Peterson EN, deLannoy CW, Seeds AE 1970 Distribution of the circulation in the normal and asphyxiated fetal primate. Am J Obstet Gynecol 108:956–969
- Sidi D, Kuipers JR, Teitel D, Heymann MA, Rudolph AM 1983 Developmental changes in oxygenation and circulatory responses to hypoxemia in lambs. Am J Physiol 245:H674-H682
- Delivoria-Papadopoulous M, Martens R, Forster RE, Oski FA 1974 Postnatal changes in oxygen-hemoglobin affinity and erythrocyte 2, 3-diphosphoglycerate in piglets. Pediatr Res 8:64-66
- Nowicki PT, Oh W, Yao AC, Hansen NB, Stonestreet BS 1984 Effect of polycythemia on gastrointestinal blood flow and oxygenation in piglets. Am J Physiol 247:G220-G225
- Kontos HA, Mauck HP, Richardson DW, Patterson JL 1965 Mechanism of circulatory responses to systemic hypoxia in the anesthetized dog. Am J Physiol 209:397-403