PROFACTIN RESPONSES TO THYROTROPIN RELEASING HORMONE IN DISORDERS OF SEXUAL DEVELOPMENT. 456

450 HORMONE IN DISORDERS OF SEXADL DEVELOPMENT. Thomas Moshang, Jr., Barry Marx, Peter Snyder, University of Pa. School of Medicine, The Children's Hospital of Philadelphia, Department of Pediatrics, Philadelphia. Spitz et al recently suggested that adult men with hypothalamic hypogonadism (HH) can be distinguished from children with constitutional delay of growth and development (CD) by the significantly lower prolactin (Prl) responses to thyrotropin releasing hormone (TRH) in the HH patients. These investigators attributed the diminished PrI responses to the absence of estradiol. The latter hypothesis was tested by evaluating PrI responses to TRH in Turner Syndrome patients. PrI responses to TRH in other disorders of sexual development were also evaluated and compared to the PrI responses in normal children and

	Basal Prl(ng/ml)	Peak Prl(ng/ml)	Statistical		
	mean ± SEM	Mean ± SEM	Significance		
Normals	12.6 ± 3.9	52 ± 8.09	NŞ		
CD	7.6 ± 2.04	44.6 ± 7.3	NS		
Turner Syn.	20.4 ± 6.7	99.8 ± 17.0	p≪0.025		
нн	14.9 ± 1.61	31.2 ± 8.5	p∠0.05		
Prec.Pubert	y 11.6 ± 2.69	90.2 ± 8.5	p < 0.001		

Our findings indicate that although patients with HH tested during adolescence have significantly lower Prl responses to TRH, the overlap of values between patients and normal children was considerable and, on an individual basis, not nearly as distinguishable as the data reported for adult men. The exaggerated PrI responses to TRH in Turner Syndrome and in precocious puberty suggest that the pituitary lactotrophs may be sensitized by GnRH rather than estradiol.

PULSATILE GROWTH HORMONE SECRETION IS INCREASED DURING FAILURE OF CATCH-UP GROWTH. H. David Mosier, **45**7

43/ <u>Regina A. Jansons</u>, and <u>Cynthia B. Good</u>, <u>University</u> of California, <u>Irvine</u>, <u>Department</u> of Pediatrics, Irvine, California. The role of growth hormone (GH) in catch-up growth is unknown. However, pulsatile secretion of GH is increased in rats under-going catch-up growth after fasting. We now report the pattern of GH secretion in a rat model characterized by failure of catchup growth. Male Long-Evans rats were injected with cortisone acetate s.c. $(n\!=\!7)$ 5 mg/d for 4 d or the same volume of saline for controls (N=7) from 40 d of age. During recovery, the rats resumed a normal rate of growth without catch-up growth accelera-tion. During 17 to 31 d of recovery plasma was sampled at 15 min. intervals from a 21 h lights-on period. The rats were chronically cannulated and isolated from environmental disturbance. There were 10 sampling periods with repeats in 2 control and 3 treated rats at intervals of 5 days or greater. The cortisone rats showed normal cycles of pulsatile GH release but they had an increased number of GH peaks above 100 $ng/ml~(p{<}0.005)$, above 200 ng/ml (p<0.005), above 500 ng/ml (p<0.01) and above 100 ng/ml $(p \cdot 0.5)$. The area under the GR concentration curve of the treated rats was greater than that of the controls, 94.5±13.7 (mean t SE) area units vs 54.5 ± 5.3 (p·0.01). Regression analysis showed lack of dependence of area under the curve on age in both groups. We conclude 1) that increased GH secretion persisted in spite of failure of catch-up growth and 2) that the control GH release is linked to a mechanism which senses the discrepancy between actual body size and a reference point in the organism (set-point) for normal size for age.

FAMILIAL PERSISTENT THYROID STIMULATING HORMONE ELEVATION. <u>Michael L. Netzloff</u>. Michigan State University College of Human Medicine, Department of 458

Pediatrics/Human Development, East Lansing, MI. Three affected members of a family with persistent TSH eleva-tion, ages 2 1/12, 3 3/12 and 5 9/12 years were assessed at 9:00 a.m. for other pituitary tropic hormones and for their response to thyrotropin releasing hormone (TRH). The two younger brothers had been off thyroid medication for over one year, and their older sister had never received thyroid. TRH was given IV at 7 mcg/kg, and TSH measured at times 0 and +30 and +60 minutes. Growth hormone, ACTH, LH and FSH were also measured at time 0 and prolactins measured following TRH. Patient Age CH ACTH FSH LH Prolactin TSH/TRH

atient Age Years	GH ng/m1	ACTH pg/ml	FSH LH mIu/ml		Prolactin ng/ml		TSH/TRH µIU/ml		
						Time	0	30	60
2 1/12	11	33	2.5	16	49		55	180	162
3 3/12	8.3	20	2.5	13	-		71	255	268
5 0/12	1 2	26	2 5	11	25		25	115	5.0

5 9/12 1.3 26 2.5 11 35 25 115 52 The baseline TSH's and responses to TRH suggest primary hypothy-roidism, but the T-4's are all normal; e.g. 8.4, 9.6 and 8.4 μ g/ dl (free T-4 = 1.2 ng/dl), and bone ages and height ages are nor-mal. In addition, all three children studied have elevated LH's, which do not appear functional, since none have signs of precocious puberty. The TSH elevation in this family may be function-al: A 23 year old affected member of the pedigree recently had a thyroid follicular adenoma removed. Because chronic TSH stimula-tion may result in thyroid carcinoma, all affected persons have been placed on exogenous thyroid medication. **459** ABSENCE OF NEUROPSYCHOLOGIC PROBLEMS IN HYPOTHYROID CHILDREN DIAGNOSED BY NEONATAL SCREENING-New England Congenital Hypothyroidism Collaborative We have reported that hypothyroid children diagnosed by neonatal screenreported that hypothyroid children diagnosed by heonatal screen ing have normal Stanford-Binet 10s at ages three to five years. Reports in the literature indicate that hypothyroid children even,with normal IQs, have neuropsychologic handicaps and do poorly in school. Because of this, several of our patients have been assigned to "slow learner" classes on entering schoolsole-ly on the basis of their known hypothyroidism despite their areal IQs. To courteract this his and obviate the darger of normal IQs. To counteract this bias and obviate the danger of low expectations by teachers, we are reporting preliminary results of WISC-R examinations and the Halstead-Reitan battery of Ults of WISC-R examinations and the Haistead-Reltan Dattery of neuropsychologic tests at 6 years of age and of standard achie-vement tests taken at the end of the first grade in school in our patients and control subjects. The mean WISCscores of 30 hypothyroid patients did not differ from that of the 40 euthy-roid sibling controls (109-15 vs. 108[±]14). There were also no significant differences between scores of the patients and control and control achieven controls on the neuropsychologic tests and school achievement tests. The percentage of scores that deviated by more than two standard deviations from the control mean of individual test items was less than the expected 2.3% for both patients and controls. The number os such deviant results correlated inver-sely with IQ in both patients and control subjects. Thus, we have been unable to document neuropsychologic deficits or school problems in hypothyroid children with normal IQs. We, therefore, urge that such children be treated similarly to the general population of students.

19:00 INTERIOR PREMAMENTIAL OF ALT AND ALL AND ALL

GROWTH HORMONE RELEASING FACTOR GENE STRUCTURE IN GROWTH HORMONE DEFICIENCY. John S. Parks, Laura C. Sevton Rdwin F. Slott, Jr., Richard L. Mallonee 461 GROWTH HORMONE DEFICIENCY. John S. Parks, Laura C. Sexton, Edwin F. Slott, Jr., Richard L. Mallonee and John A. Phillids, III. Emory University, Department of Pediatrics, Atlanta and Johns Hopkins University, Department of Pediatrics, Baltimore.

We have used a cDNA probe for human pancreas growth hormone releasing factor (GRF) to characterize GRF genes in DNA from normals and children with autosomal recesssive isolated growth hormone deficiency (IGHD) IB or multiple pituitary hormone deficiency (MPHD). <u>Pyu</u> II, which recognizes sites in the middle of both GRF cDNA sequences, generated 4 hybridizing fragments of similar intensity with lengths of 8.5, 4.5, 3.2 and 2.7 kb. The patterns produced by <u>Pyu</u> II in combination with 7 other enzymes were also inconsistent with a single GRF gene less than 6 kb in length and suggested 2 or more non-allelic GRF genes per haploid genome. In a search for genetic linkage markers, we digested DNA specimens representing 17 to 104 sets of normal chromosomes with 15 endonucleases which collectively screen for variation in a minimum of 280 base pairs. No variation in GRF fragment length or number was detected. Affected individuals in 5 pedigrees with IGHD IB and 3 pedigrees with MPHD did not show gross abnormalities of GRF gene fragments. We conclude that deletion of GRF genes is not a common genetic mechanism in these familial disorders. Identification of polymorphic variation in or near the GRF genes will be needed to determine whether these forms of GH deficiency are due to subtle alterations in GRF genes.