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Summarv of Ca2+ or the intracellular translocation of Ca2+ (1 1 ). In blood 

Total intracellular Ca2+ and 45Ca2+ uptake has been studied in 
blood platelets from subjects with Down's syndrome and matched 
controls. In Down's subjects, CaZ+ levels (85.5 f 5.9 nrn~l/lO-~ 
platelets) were significantly lower than controls, 174 f 10.0 
nm0l/l0-~ ( p  < 0.0005). A similar reduction was seen in calcium 
uptake (Down's platelets, 0.79 f 0.06 nm0l/l0-~ platelets; con- 
trols, 1.17 f 0.07 11mol/l0-~ platelets,~ < 0.005). The low levels 
of intracellular Ca2+ may be related to decreased granular storage 
of serotonin, and the decreased Ca2+ uptake with impaired trans- 
port by intracellular Ca2+-accumulating organelles such as the 
dense tubular system. 

Abbreviation 

PRP, platelet-rich plasma 

Calcium ions play an essential role in initiating or terminating 
cellular functions by mechanisms that either involve the influx 

platelets, Ca2+ content can be described as a three-compartment 
mace. a surface comDonent. and two intracellular comDonents. . . 
one rapidly exchangeable with external Ca2+ and the ;her vir; 
tually nonexchangeable. The nonexchangeable space represents 
Ca2+ sequestered in su~cellular storage &anules, and alteration 
of Ca" binding and/or.fluxes in the other compartments has an 
important role in the process of platelet aggregation and exocy- 
tosis ( I ) .  In subjects with Down's syndrome, blood platelets have 
decreased Na+/Kt-ATPase activity and increased intracellular 
Na+ (9). In erythrocytes, it has been reported that Na+/K+- 
ATPase is inhibited by increases in intracellular Ca2+ (2, 3), 
which mav lead to raised intracellular Na+ (13): thus. it seemed 
pertinent to determine the Ca2+ content of blood platelets from 
subjects with Down's syndrome as a possible factor contributing 
to decreased Na+/K+-ATPase activity. 

MATERIALS AND METHODS 
Received July 75. 1983: accepted March 12. 1984. 
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Chemicals. All other chemicals were from commercial sources 
and were the purest available. 

Culcizlm determinution. Blood samples were collected by a 
siliconized Vacutainer with EDTA anticoagulant. The erythro- 
cytes were sedimented at 100 x g for 20 min, and PRP was 
transferred to a plastic tube and recentrifuged at 150 X g for 10 
min to remove contaminating white cells. Platelets were sepa- 
rated from plasma at 100 x g for 20 min, and after decanting 
the plasma, the platelet pellet was gently resuspended in buffer 
(150 mM NaC1, 1.0 mM EDTA, 0.35% albumin, pH 6.9, with 
NaOH), and the platelets were harvested by centrifugation at 700 
x g for 10 min. All centrifugations took place at room temper- 
ature. The final platelet pellet was resuspended in lanthanum 
buffer (150 mM NaCI, 20 mM Tris-maleate, 0.35% albumin, 
0.2% LaC13, pH 6.4), transferred to an acid-washed glass beaker, 
and ashed at 450°C for 18 h. The ashed residue was dissolved in 
deionized water containing HCI, and Ca" concentration was 
determined by atomic absorption spectrophotometry. For each 
platelet sample, calcium standards and lanthanum blanks were 
run in parallel. 

Culcizrtn trunsport. Platelets separated from PRP by centrifu- 
gation were resuspended in imidazole-buffered saline (150 mM 
NaCI, 20 mM imidazole, 10 mM glucose, 2.5 mM MgC12, 0.05 
mM ATP, 2.5 mM CaCI,, 0.5% albumin) to a final platelet 
concentration of 2 x 10-"latelets/ml. After 5-min preincuba- 
tion at 36"C, 5 pCi 45Ca'+ were added and the incubation 
continued for a further 90 min with gentle agitation. 45Ca2+ 
uptake was stopped by adding 4 ml ice-cold imidazole buffer 
followed by centrifugation. The platelet pellet was washed twice 
with ice-cold buffer and dissolved in 1 ml of 1% Triton X-100. 
0.5-ml aliquots were taken for scintillation counting. Platelets in 
PRP or buffers were measured on a Coulter counter. Down's 
subjects were young adults of both sexes living at home. Controls 
were laboratory staff matched for sex and age. Informed consent 
was obtained from individuals, parents, or guardians. 

RESULTS 

The data from individual subjects for total platelet Ca2+ (na- 
nomoles Ca"/ lo-' platelets) are given in Table 1.  The calcium 
content of normal platelets was found to be 174.2 a 10.0 nmol/ 
lo-' platelets. which is significantly higher than the value of 85.8 
+ 5.9 nmol/lO-' platelets found in Down's syndrome platelets 
(p < 0.0005). Calcium uptake and/or exchange was also reduced 
in Down's syndrome. After 90-min incubation, the amount of 
45Ca'+ associated with the platelet, but resistant to washing with 
ice-cold buffer, was 1.17 k 0.07 nmol/lO-' platelets for controls 
and 0.79 + 0.06 nmol/lO-' for Down's (1 = 2.94; p < 0.005) 
(Table 2). 

DISCUSSION 

The Ca" content of the human blood platelet exists in a 
number of intracellular "pools" with different rates of turnover 

Table 1.  Cu" content c~fplutelc~ts (n tn~l / lO-~ plutelets)* 

Controls Down's syndrome 

Individual findings 
162.5, 202.5 85.5, 65.0 
182.5, 117.5 92.5, 102.5 
147.5, 277.5 95.0, 47.5 
165.0, 167.5 135.0, 100.0 
142.5, 192.5 102.5. 102.5 
172.5, 172.5 75.0, 87.5 
135.5, 220.0 87.5, 57.5 
155.0 52.5 

Average 
174.2 + 10.01 85.83 + 5.99 

p = 0.0005 

* Paired findings in matched subjects. 

Table 2. 45Cu'+ zlptukc by blood p/utel.ts.following 90-min 
inczlhution fnmoIll0-' ~lutek~ts)* 

Controls Down's svndrome 

Individual findings 
0.90, 1.04 0.80, 0.65 
1.07, 1.07 0.86, 0.68 
1.50. 1.01 0.99 
1.13. 1.65 

Average 
1.17 + 0.07 0.79 + 0.06 

I = 2.94 = 0.001 < 0.005 

* Paired findings in matched subjects. 

(I), and although our values for Ca" concentration in normal 
platelets are similar to published values (l6), the reduction found 
in Down's syndrome platelets could be due to metabolic dis- 
turbances in any, or all, of the Ca" pools. 

Calcium is loosely bound to the platelet surface where it is 
freely exchangeable with extracellular Ca" and removable by 
chelating agents (I 7). As there is little difference between 45Ca" 
binding between normal or Down's platelets following short 
incubation times (data not given), it is unlikely that alterations 
in the surface binding of Ca" can explain the decreased levels 
in Down's syndrome. Approximately 80-90% ofthe total platelet 
Ca" is associated with the dense bodies (14), complexed with 
adenine nucleotides and serotonin (4, 18), and only slowly ex- 
changes with extragranular Ca2+. As subjects with Down's syn- 
drome exhibit decreased transport and storage of serotonin (7, 
8). a decrease in the number of serotonin storage granules could 
account for the low intracellular Ca", While this report was in 
preparation, More cJ1 ul. (10) reported that Down's platelets have 
a reduced number and volume of electron-dense bodies and that 
whole cell and dense body calcium levels are lower than normal, 
complementing our observations. 

In addition to decreased Ca2+ content, our results also dem- 
onstrate decreased accumulation of 45Ca'+ in Down's platelets, 
but whether this represents decreased Ca" transport operating 
at the level of the plasma membrane, or sequestering of Ca" by 
the dense tubular system (12), is at present under investigation. 
It is of interest that the Ca" system in the human platelet 
membrane appears analogous to that in synaptic membranes (5, 
6) where the common requirements for Ca" are seen in receptor- 
binding transmitter release membrane pump for Ca", and sup- 
ports the use of the platelet for a peripheral model for the 
synaptosome (15). Further studies on Ca" metabolism may 
provide additional understanding of Down's syndrome at a 
molecular level. 
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Summary 

The objective of the present report is to demonstrate the use 
of receiver-operator characteristics (ROC) analysis in the selec- 
tion of diagnostic tests for iron deficiency in a specific population. 
Conventional ROC curves were prepared with true positive frac- 
tion (TPF) and false positive fraction (FPF) determined by the 
application of different cut-off points for four indicators of iron 
status. ROC plots were then transformed into normal deviate 
scales. The advantages of Gaussian transformation of TPF and 
FPF when underlying decision functions are normally distributed 
are: (i) the ROC curve is a straight line; and (ii) the separation 
between the two distributions and shape of these distributions 
can be simply quantitated as intercepts and slopes. In the present 
study, pretreatment hemoglobin concentration was the most ro- 
bust diagnostic indicator of iron deficiency as operationally de- 
fined by a response of hemoglobin to iron treatment. Free eryth- 
rocyte protoporphyrin was a more sensitive and specific predictor 
than either serum ferritin or transferin saturation when a strin- 
gent operational definition of iron deficiency was used. These 
findings illustrate the utility of ROC analysis in discriminating 
between diagnostic indicators having different degrees of accu- 
racy. 

Abbreviations 

FN, false negative 
FP, false positive 
Hb, hemoglobin 
N, normal individuals 
D, diseased cases 
ROC, receiver-operator characteristics 
TPF, true positive fraction 
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FPF, false positive fraction 
FEP, free erythrocyte protoporphyrin 
SF, serum ferritin 
TS, transferrin saturation 

A wide range of laboratory tests is currently used to assess 
systemic iron status in man. However, normal biological varia- 
bility, measurement error, and confounding factors such as in- 
tercurrent infection may adversely affect the diagnostic efficiency 
of these tests. Some of these problems are minimized when iron 
status is operationally defined by the degree of hematologic 
response to iron administration. In assessing an individual's iron 
status, a significant rise in circulating hemoglobin mass in re- 
sponse to iron treatment provides reliable evidence of antecedent 
iron deficiency. Hemoglobin response can also be used to mon- 
itor the diagnostic efficiency of other tests of systemic iron status. 

The evaluation of a test's diagnostic efficiency requires assess- 
ment of its discriminative capacity in circumstances where the 
frequency and nature of its diagnostic errors can be unequivo- 
cally determined. A test's accuracy (ratio of correct decisions to 
total number of subjects tested) is of limited usefulness as a 
general index of diagnostic performance because it is strongly 
affected by disease prevalence (8). 

If a test is to be used to discriminate iron-replete from iron- 
depleted subjects, some definitive diagnostic criterion is needed 
to allow evaluation of that test. In k'igure 1, the performance of 
a hypothetical diagnostic test is examined. Diseased subjects, 
whose test result places them at the right of the cut-off point, a, 
will be FNs; normal individuals whose result is to the left of a 
will be FPs. The number of FPs can be reduced or eliminated by 
moving the cut-off a toward 6, to the lower end ofthe distribution 
for N. However. as a result of eliminating FPs, the FN fraction 
will be increased. Likewise. the number of FNs can be eliminated 
by moving the cut-off u to c, the upper end of the distribution 
for D. The cut-off point can be positioned so as to maximize a 
test's diagnostic performance in a given clinical or epidemiologic 
context (8) 
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