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Summary

The activity of Ca-ATPase (Ca”*,Mg**-ATPase, ATP phos-
phohydrolase, EC 3.6.1.3) was measured in erythrocyte mem-
brane preparations from 37 cystic fibrosis patients, 27 with
pancreatic insufficiency and 10 with pancreatic sufficiency, and
from 24 healthy controls. The mean maximal calcium-stimulated
specific activities, in the absence and presence of purified cal-
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modulin, of the pancreatic sufficient patients (34.3 * 4.2 and
75.9 % 6.9 nmol/min/mg) was indistinguishable from that of
controls (35.8 * 2.6 and 84.3 = 4.7 nmol/min/mg), while both
activities of patients with pancreatic insufficiency were signifi-
cantly decreased (28.9 * 1.3, p < 0.02; 65.2 % 3.0, p < 0.001)
compared to the control group. Similarly, the mean erythrocyte
membrane (Na + K)ATPase activity was decreased only for
those patients with a history of steatorrhea and who clinically
required pancreatic enzyme therapy and had low immunoreactive
trypsin levels (10.6 = 0.8 versus control, 13.4 * 1.1, and pan-
creatic sufficient patients, 13.3 £ 1.4 nmol/min/mg; p < 0.025).
No correlation was found between any of the ATPase activities
and the clinical scores of the patients, suggesting the lack of
significant contribution of general clinical status to the activities
of those cation transporters.
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Abbreviations

CF, cystic fibrosis
EGTA, ethylene glycol bis(3-aminoethyl ether)-N,N,N’,N’-tet-
raacetic acid

Cystic fibrosis, a genetic disease involving abnormal epithelial
electrolyte transport and exocrine gland dysfunction, is clinically
manifested as chronic obstructive lung disease and maldigestion.
In recent years, it has become increasing apparent that intracel-
lular calcium has important roles in the regulation of many
diverse cellular processes including stimulation-secretion cou-
pling. Since the molecular disorders of the CF exocrinopathy
may be closely related to calcium function, we investigated the
regulation of intracellular calcium levels in CF cells.

The levels of cytosolic free Ca®* and thereby its second mes-
senger effects appear to be regulated by protein binding and by
transport out of the cytosol by three membrane systems: the
plasma membrane Ca-ATPase, the mitochondria, and the en-
doplasmic reticulum. Total intracellular calcium has been found
to be elevated in leukocytes (3), fibroblasts (42), lymphocytes
(42), and parotid acinar cells (34) from CF patients. Shapiro and
coworkers (17, 42) have observed an increased sequestration of
calcium by mitochondria from CF fibroblasts. There has been
disagreement for the past decade regarding decreased Ca-ATPase
activity in CF cells (1, 7, 16, 18, 24, 27-30, 35, 47). Recently,
Katz and coworkers (1, 27-30) have found the greatest difference
in calcium-stimulated ATPase activity between CF and control
erythrocyte and fibroblast membranes, both in the presence and
absence of the activator protein calmodulin. Foder et al. (18),
using a different technique for erythrocyte membrane prepara-
tion, have observed less dramatic decreases for CF Ca-ATPase
activity.

The plasma membrane Ca-ATPase (ATP phosphohydrolase,
EC 3.6.1.3, Ca®*,Mg**-ATPase) can be conveniently studied in
isolation from mitochondria and endoplasmic reticulum in prep-
arations of open erythrocyte ghosts. In addition to activation of
the Ca-ATPase by Ca-calmodulin, recent studies on the purified
enzyme in reconstituted systems (see Ref. 5) have indicated
several possible sources of regulation, some of which may be of
biological importance. Different methods of preparing the mem-
branes for assay can result in different content of these regulators.
This probably accounts for different observations on CF mem-
branes from various laboratories. An additional factor is the great
variability of the activity of the enzyme from one erythrocyte
preparation to another even using the same method of prepara-
tion (21, 36, 47).

In this study, we repeated the experiments of Foder et al. (18)
using current methodologies, modified to minimize experimental
variabilities. In addition, we segregated the CF population into
two subpopulations on the basis of clinical and laboratory as-
sessment of pancreatic function. These subpopulations were
compared to healthy controls in regards to basal Ca-ATPase
activity, calmodulin-stimulated Ca-ATPase activity, and (Na +
K)-ATPase activity.

MATERIALS AND METHODS

Subjects. Blood samples were drawn from three populations
of subjects, healthy controls, age and sex matched to the CF
subjects; CF patients, classified as pancreatic insufficient on the
basis of history of steatorrhea, need for pancreatic enzyme sup-
plementation, and low levels of plasma immunoreactive trypsin
(see below); and CF patients classified as pancreatic sufficient on
the basis of no history of chronic steatorrhea, lack of the need
for pancreatic enzyme supplements, and plasma immunoreactive
trypsin levels comparable to the control group (see “Results™).
All CF patients had sweat chloride levels greater than 70 mEq/
liter as determined by the Gibson-Cooke method (20) plus at
least one of the major diagnostic criteria (chronic obstructive
lung disease, maldigestion, sibling with CF). Patients were scored
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clinically by a modification (10) of the Shwachman-Kulczycki
method (43). All studies were approved by the local Institutional
Review Board.

Preparation of erythrocyte ghosts. The procedure used was a
modification of the method of Farrance and Vincenzi (13) for
preparing erythrocyte ghosts depleted of calmodulin. Ten-ml
blood samples were collected in citrate-phosphate, anticoagulant
buffer, stored at 4°C, and the ghosts were prepared and analyzed
within 48 h. The blood was centrifuged and the cells washed 4
times with 155 mM NaCl, sequentially discarding the buffy coat;
the plasma was saved for the immunoreactive trypsin determi-
nation. Approximately 4 ml of packed, washed cells were lysed
with 10 volumes of ice-cold 20 mM imidazole buffer, pH 7.6,
containing 0.5 mM EGTA (22 mosm) and the membranes
sedimented by centrifugation for 20 min at 35,000 X g in a
Sorvall RC-2B centrifuge. The fluffy pellet (“whitish button” was
discarded) was washed 4 times with 20 mM imidazole buffer,
pH 7.6, or until the membranes were free of hemoglobin. The
final pellet was resuspended in 1 volume of the same imidazole
buffer to which was added 0.2 mg/ml saponin (11) and assayed
for ATPase activity within 4 h. Membrane protein was measured
by the Lowry method (33) using bovine serum albumin as the
standard.

Lysis of erythrocytes in low osmolar solutions promotes dis-
sociation of calmodulin from the Ca-ATPase which is also de-
pendent on a low free Ca?* concentration (13). Addition of 0.5
mM EGTA to the lysis buffer in general reduced the basal,
calcium-stimulated ATPase activity but not the calmodulin-
stimulated, maximal activity. In our experience, the use of sa-
ponin at 0.2 mg/ml in the final suspension buffer frequently, but
not always, increased both the basal and calmodulin-stimulated
ATPase activity. Downes et al. (11) have suggested the inclusion
of saponin to open any ghosts which may have spontaneously
resealed and have found that this level of the detergent does not
appear to directly alter the Ca-ATPase activity. The latter is also
the experience of Vincenzi (46) and our own control experi-
ments.

ATPase assay. The assay of membrane ATPase activities was
also by the method of Farrance and Vincenzi (13). One hundred
ul of membranes (~ 0.2 mg protein) were assayed at pH 7.1 in a
2 ml reaction mixture containing 80 mM NacCl, 30 mM KCI, 18
mM histidine, 18 mM imidazole, 4 mM MgCl,, 3 mM ATP, 0.5
mM EGTA, 0.1 mM ouabain, and a free Ca** concentration of
between 0.01 uM and 1 mM. Calcium-EGTA buffers at free
Ca?* concentrations from pCa 8.0 to 3.0 were made accordingly
to a computer program (Dr. B. Lindley, Department of Physi-
ology) which takes into account Ca®* binding to EGTA, ATP,
and imidazole at 37°C and pH 7.10. These buffers were checked
and corrected by measurements with an Orion Ca-selectrode
[calibrated by the methods of Bers (4)] under the same conditions
as in the ATPase assay.

The membranes were preincubated in the assay medium at
various pCa values for 20 min at 37°C in the absence of ATP.
Purified bovine testicular calmodulin (see below) was added to a
set of the tubes at the beginning of the preincubation to a
concentration of 1.3 ug/ml (saturating under these conditions)
in order to measure Ca-dependent, calmodulin stimulation of
the ATPase. The reaction was begun with the addition of ATP
to a final concentration of 3 mM and the tubes incubated for 60
min at 37°C in a constant temperature water bath. The reaction
was stopped with the addition of I ml of 10% sodium dodecyl
sulfate (determined to be phosphate-free). An aliquot from each
tube was assayed for orthophosphate by the method of Chen et
al. (6) in order to determine the amount of ATP hydrolysis.
Identical tubes with ATP but without membranes were used to
determine spontaneous ATP hydrolysis. Measurements of (Na
+ K)-ATPase activity were performed concomitantly in a reac-
tion mix identical to the above with free pCa of 8.0, but in the
absence of ouabain.

Purification of calmodulin. Since mammalian calmodulin is
essentially invariant and since human erythrocyte calmodulin
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has been shown (26) to be indistinguishable from bovine brain
calmodulin, we elected to purify this ubiquitous protein from
bovine testes, a tissue having a high content of calmodulin. The
procedure used was adapted to bovine testes with the help of Dr.
T. H. Crouch, University of Cincinnati School of Medicine, from
the procedure he and coworkers have described for bovine brain
(8). The final calmodulin preparation was >95% free of contam-
inants as judged by sodium dodecyl sulfate-polyacrylamide gel
electrophoresis (31) and ultraviolet spectral analysis with and
without calcium. The purified calmodulin produced a 6-8-fold
increase in the activity of cyclic nucleotide phosphodiesterase
(from bovine heart, prepared by us with the method of Ho ef al.
(23); this activation was inhibited by trifluoperazine with a K; of
about 5 uM (Dearborn and Poncz, unpublished).

Immunoreactive trypsin assay. Plasma samples retained from
the blood samples used for erythrocyte ghost preparations were
stored at —20°C until assayed. All samples were centrifuged to
remove debris prior to assay. Aliquots of 100 ul were assayed for
trypsin (trypsinogen) using a Becton-Dickenson radioimmu-
noassay kit according to the manufacturer’s directions. Control
studies using other blood samples split into serum fractions and
plasma fractions anticoagulated with phosphate-buffered citrate,
indicated that the anticoagulant did not significantly affect the
assay.

Statistical analysis. The significance of the difference of the
means was assessed by unpaired Student’s ¢ test. Correlation
coefficients were evaluated by linear regression, and the corre-
sponding significance levels were determined by standard meth-
ods involving the Z’ transformation of Y.

RESULTS

The characteristics of the study populations are given in Table
1. The mean clinical score of the CF patients with pancreatic
sufficiency is better than the group with pancreatic insufficiency
which is consistent with the observations reported by Gaskin et
al. (19). The initial segregation of the CF patients into these two
subpopulations was based on clinical criteria which were subse-
quently corroborated by the plasma immunoreactive trypsin
levels. The control group values for plasma immunoreactive
trypsin ranged from 10.4 to 48.5 ng/ml (23.2 £ 11.5 SD) and
showed a positive correlation with age (r = 0.661; p < 0.001).
Figure 1 depicts the plasma immunoreactive trypsin levels as a
function of age for all three groups. The immunoreactive trypsin
values for the CF patients classified as pancreatic sufficient
(range, 9.3-88.2 ng/ml; 36.0 £ 29.7) are all comparable to or
above the values for controls. When age was taken into account,
the values for the pancreatic insufficient patients (range, 4.9-
13.3 ng/ml; 6.3 £ 1.5 ng/ml) are all below the values of both the
control and the pancreatic sufficient groups except for one patient
(who did require pancreatic enzyme therapy). These results are
similar to those of Durie e al. (12) who found an excellent
correlation between serum immunoreactive trypsin levels and
both duodenal aspirate evaluation of pancreatic function and fat
absorption studies.

The ATPase activities of erythrocyte membranes were meas-
ured as a function of free Ca®* concentration for each subject.
Figure 2 illustrates a typical paired experiment comparing the
ATPase activities of a control subject to those of a pancreatic
insufficient CF patient. The pCa profile for Ca-ATPase was
determined for both basal activity and calmodulin-stimulated
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Fig. 1. Plasma immunoreactive trypsin levels as a function of sub-
ject’s age. Control, A; cystic fibrosis with pancreatic insufficiency, @;
cystic fibrosis with pancreatic sufficiency, O.
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Fig. 2. Example of a paired experiment comparing the erythrocyte
membrane Ca**-ATPase activities as a function of free Ca®* for a cystic
fibrosis patient and an age- and sex-matched healthy control. Open
symbols and solid lines denote control; closed symbols and broken lines
denote cystic fibrosis patient; basal, Ca-stimulated activity, O; calmodu-
lin-stimulated activity, [J; (Na + K)-ATPase activity, i.e. no ouabain, A.

Table 1. Characteristics of study populations

Age ..
Sex Clinical score
n M:F Mean * SD Range (yr) mean * SD Range
Control 24 11:13 25.1+9.5 10-43
CF-pancreatic sufficient 10 8:2 21.3+8.5 12-38 79.9 £ 15.0 40-90
CF-pancreatic insufficient 27 12:15 21.1 £ 5.1 15-39 63.6+154 32-88
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activity. Exogenous calmodulin purified from bovine testes was
added to the calmodulin-depleted membranes to a final concen-
tration of 1.3 ul/ml. This is well beyond saturating conditions in
that half-maximal activation was observed to be approximately
91 ng/ml (5.5 nM) calmodulin and the addition of more cal-
modulin did not increase the maximal Ca-ATPase activity. The
Mg-ATPase activity is considered to be the ATPase activity at
pCa of 8.0 (with ouabain present) which, in general, was a very
small fraction of the maximal ATPase activity. This activity can
be eliminated by prior incubation of the membranes at 37°C (9),
but in our experiments the Mg-ATPase activity was usually less
than 5 nmol/min/mg protein and was therefore considered
background ATPase activity and subtracted to determine the
calcium-dependent ATPase activities.

The basal Ca-ATPase activity was taken as the maximal en-
zyme activity observed with the pCa profile in the absence of
calmodulin minus the Mg-ATPase activity. The activity maxi-
mum generally occurred between pCa values of 5.0 to 4.5, with
decreased activity observed at lower values of pCa. This falling
off at high free Ca®* concentrations, more prominent in the
presence of calmodulin, has been observed by other investigators
and is not totally explained but may be in part due to binding
competition between Ca-ATP and the substrate Mg-ATP (9).
The calmodulin-stimulated Ca-ATPase activity was taken as the
maximal activity in the presence of the saturating concentration
of calmodulin minus the Mg-ATPase activity. The data obtained
from these experimental curves are not suitable for the estimation
of Michaelis constants because of the effects of the EGTA used
to control free Ca®* concentrations (9). The average pCa values
at half-maximal activity were approximately 5.8 and 5.2, in the
presence and absence of calmodulin, respectively, and no sig-
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nificant differences were noted between CF and control data.
The (Na + K)-ATPase activity was taken as the difference in
ATPase activities at pCa 8.0 in the presence and absence of
ouabain.

The results of the ATPase assays are presented for the three
study populations in Figure 3 and Table 2. The control Ca-
ATPase activities are comparable to those of other investigators
using the imidazole lysis buffer for erythrocyte membrane prep-
aration (13). These values are almost 1000 times higher than the
activities reported by Katz and Emery (30) but similar to those
reported by Foder ef al. (18). The intersubject variability is also
comparable to other reports (36). The Ca-ATPase activities for
an individual control subject studied 8 times over a 4-month
period using the same conditions of membrane preparation and
ATPase assays were: basal Ca-ATPase activity, 29.5 £+ 5.9 nmol/
min/mg protein, range = 25-40; and calmodulin-stimulated Ca-
ATPase activity, 74.8 £ 11.3 nmol/min/mg protein, range =
60-89. The exact source(s) of the variability is unclear, but would
appear to include intrasubject changes with time due to unknown
factors.

In comparing the CF pancreatic insufficient population with
controls, there is a statistically significant decrease in the mean
basal Ca-ATPase activity (20%, p < 0.02) as there is in the mean
calmodulin-stimulated Ca-ATPase activity (23%, p < 0.001).
However, the mean Ca-ATPase activities for the CF-pancreatic
sufficient population are intermediate between the control and
pancreatic insufficient patients and are not statistically distin-
guishable from controls. The mean basal activities for the two
CF groups do not differ significantly (p > 0.1) while the differ-
ences in calmodulin-stimulated activities approach statistical
significance (p < 0.1). The (Na + K)-ATPase activities of the
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Fig. 3. Maximal Ca-ATPase activities of the three study populations. 4, basal, Ca-stimulated activities; B, Ca-calmodulin-stimulated activities.

See the legend to Table 2 for the statistical comparisons.

Table 2. Comparison of ATPase activities*

Ca-ATPase (Na + K)-
Basal Calmodulin-stimulated ATPase
mean + SEM, pt mean + SEM, pt mean *+ SEM, pt
Controls (24) 358+2.6 84.3+47 134 % 1.1
CF-pancreatic sufficient (10) 353+ 4.2NS 759 £ 6.9 NS 13.3 £ 14 NS
CF-pancreatic insufficient (27) 28.9 + 1.3 <0.02 65.2 + 3.0 <0.001% 10.6 + 0.8 <0.025

* Activities in nmol/min/mg protein; Ca-ATPase activities are maximal values observed as function of pCa (see “Materials and Methods”).
Number of subjects is in parentheses; averages of intrasubject values were used where an individual was studied more than once. NS, not significant.

+ Unpaired, single-tailed Student’s / test; compared to controls.
1 p < 0.1 compared to CF-pancreatic sufficient.
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Fig. 4. Maximal calmodulin-stimulated Ca**-ATPase activities as a
function of clinical scores of the cystic fibrosis patients. Pancreatic
sufficient patients; O; pancreatic insufficient patients, ®; dotted line is
the mean activity for the control group.

CF-pancreatic insufficient group also showed a decrease (21%)
compared to the control group which was marginally significant
(p < 0.025); the CF-pancreatic sufficient group did not differ
from the control group. No significant correlation was found
between any of the ATPase activities and either sex or age within
any of the three groups of subjects or for the entire study
population.

A difference in general clinical status is one possible source of
the different Ca-ATPase activities of the two CF populations
since the pancreatic sufficient group had a significantly higher
mean clinical score (p < 0.005). However, this is not apparent
from Figure 4 which compares calmodulin-stimulated Ca-ATP-
ase activities with the clinical scores. Statistical comparison of
these two parameters failed to reveal any correlation either within
each of the CF groups or for the entire CF study population.
Comparison of the Ca-ATPase activities of those patients studied
while they were hospitalized for intensive therapy for pulmonary
infection with patients studied as outpatients also did not dem-
onstrate any statistical correlations.

DISCUSSION

We have demonstrated a significant decrease in the Ca-ATPase
activity, both in the presence and absence of the activator protein
calmodulin, in a population of CF patients with pancreatic
exocrine insufficiency. In contrast, a subpopulation of CF pa-
tients who do not have a history of steatorrhea, do not require
pancreatic enzyme replacement, and have normal or high levels
of plasma immunoreactive trypsin has average Ca-ATPase activ-
ities which are indistinguishable from controls. Foder et al. (18),
using a method of erythrocyte membrane preparation which
should ensure the retention of calmodulin binding to the Ca-
ATPase, have found a 15% decrease in maximal Ca-ATPase of
CF erythrocyte membranes compared to controls. Our observed
decrease of about 25% in the calmodulin-stimulated Ca-ATPase
for the pancreatic insufficient patient group may be due to
differences in methodology.

While Balfe et al. (2) found the activities of ouabain-sensitive
ATPase of CF erythrocyte membranes to be decreased by about
30%, subsequent investigators (7, 16, 22, 27, 32, 35) have ob-
served that any decreased (Na + K)-ATPase activities are not
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significantly different from control activities. Our finding of a
marginally significant decrease in the pancreatic insufficient
subpopulation probably reflects technical and perhaps patient
population differences from these studies.

Previous reports on Ca-ATPase activities in CF erythrocyte
membranes other than that of Foder et al. (18) did not report
attempts to compare the observed activities with any criteria of
patient clinical status (1, 7, 16, 24, 27-30, 35). In contrast to our
findings of differences based on exocrine pancreatic status, we
failed to observe any correlation of Ca-ATPase activities with
either general clinical status as documented by a standard four-
part clinical scoring system (10, 43) or acute clinical status as
judged by the need for hospitalization for intensive pulmonary
therapy versus comparatively healthy outpatients. This agrees in
general with the findings of Foder et al. (18) as does our failure
to observe any correlation between Ca-ATPase activities and sex
or age. However, the high degree of inter- and intrasubject
variability together with the rather subjective nature of the clin-
ical criteria may obscure any more subtle, disease-related corre-
lations. Our results together with those of Foder ez al. (18), who
in addition found no Ca-ATPase activity difference between
controls and patients with other chronic pulmonary diseases,
suggest that advanced lung involvement is not a source of the
decreased Ca-ATPase activity.

The large amount of overlap in the activities observed between
controls and even the pancreatic insufficient CF patients argues
against decreased Ca-ATPase activity being the primary defect
in this disorder, although until there is a better understanding of
the source of subject variability this cannot be entirely ruled out.
Two general explanations for the different mean activities of the
two CF subpopulations can be considered. Heterogeneity within
CF is well recognized (44) and genetic polymorphism in the Ca-
ATPase may be intrinsic to the differences in pancreatic status.
Perhaps more likely, the maldigestion and malabsorption accom-
panying pancreatic deficiency may affect the Ca-ATPase activity
through nutritional alterations. Deficient lipid nutrition in these
patients has been noted to be reflected in altered fatty acid (25)
and phospholipid (39) composition of erythrocyte membranes,
decreased circulating and tissue levels of fat-soluble vitamins
(especially vitamins E and A) (14, 15, 45) and decreased in vivo
erythrocyte survival times (14). Studies of both intact erythrocyte
membranes (40) and purified, reconstituted Ca-ATPase (18)
indicate that the enzyme activity is very sensitive to lipid com-
position. Similarly, the activity of (Na + K)ATPase is also known
to be dependent upon the lipid environment (37, 38). Investiga-
tions of these factors in both CF subjects and other patients with
pancreatic insufficiency and/or altered lipid nutrition are logical
future areas for study.
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