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Summary 

Plasma branched chain amino acid levels and their respective 
ketoacid analogues were determined in seven maple syrup urine 
disease patients ranging in age from 12 h to 12 years. One 
hundred one pairs were analyzed. There was a high degree of 
correlation between the amino acid and its ketoacid analogue at 
every amino acid level. The coefficient of correlation (0.84) was 
highest for leucine-a-ketoisocaproic acid. The ratio of ketoacid 
analogue to amino acid, (0.87), was also the greatest for leucine. 
The close correlation implies that adequate monitoring for ther- 
apy can be accomplished by the use of the technically simpler 
and more rapid determination of the plasma branched chain 
amino acids. 

Received August 22, 1983; accepted February 7, 1984. 
Correspondence may be addressed to Selma E. Snyderman, M.D., Department 

of Pediatrics, New York University Medical Center, 550 First Avenue, New York, 
New York 10016. 

Supported by Grant MCJ-0003 17, Office for Maternal and Child Health, Bureau 
of Community Health Services, Health Service Administration, Department of 
Health, ~ducai ion,  and Welfare. 

* Deceased. 

Maple syrup urine disease (branched chain ketoacidemia) in 
its classical form is a devastating disease. Untreated, it results in 
rapid neurologic deterioration and death in the first weeks of life. 
It is the consequence of a defect in the metabolism of the 
branched chain amino acids. The first step, transamination, takes 
place normally, but there is failure of the second step, oxidative 
decarboxylation. As a result, there is accumulation of both the 
branched chain amino acids and their ketoacid analogues in a 
number of body fluids. One of the still unexplained findings in 
this disease has been the much greater abnormality of the plasma 
leucine level than that of the other two branched chain amino 
acids. This is of special importance because the appearance of 
clinical symptoms can be most closely related to the degree of 
elevation of the plasma leucine level; we have been able to 
document this relationship in our treatment of over 20 cases. In 
addition, study of animal tissue homogenates and brain slices 
has demonstrated the toxic effect of a-ketoisocaproic acid, the 
derivative of leucine. Inhibition of 1-glutamic acid decarboxylase 
(24), depressed oxygen utilization (8), and inhibition of pyruvate 
oxidation have been reported (1). 

Very few quantitative determinations of the individual 
branched chain keto acids in the plasma have been performed 
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in this disease because of technical difficulties. We undertook a 
study of these derivatives in order to determine if these levels 
could be related to those of the branched chain amino acids in 
the plasma, and if they might account for the different degree of 
abnormality of these amino acids. 

SUBJECTS AND METHODS 

The subjects were seven infants and children with classical 
maple syrup urine disease as determined by the degree of 
branched chain amino acid elevation at the time of diagnosis, 
the degree of enzyme deficiency, and the clinical course. Three 
were studied in the neonatal period at the time of diagnosis and 
all were studied when there was biochemical and clinical relapse 
as a result of an intercurrent infection. The patients ranged in 
age from 12 h to 12 years at the time of study, and there were 
four males and three females in the group. Informed consent was 
obtained from the parents of all the patients. 

All plasma amino acid levels were determined with a Beckman 
12 1 M analyzer according to the method of Piez and Moms (1 9). 
Ketoacid analogues were determined by a modification of the 
method of Langenbeck et al. (1 1); recovery by this method is 
over 8 1 %. Molar response factors were determined in the original 
description of the method by the addition of a wide range of 
concentration of a-ketoacids and of an internal standard to urine 
samples. This was repeated in the present study with the addition 
of similar concentrations of a-ketoacids to normal plasma sam- 
ples. Similar results were obtained. 

RESULTS 
One hundred one pairs of the branched chain amino acids and 

their a-keto analogues were determined. There was a definite 
correlation between the amino acid and its ketoacid analogue at 
all levels of the amino acid. Leucine levels ranged between 0.7 
and 69 mg/dl, isoleucine between 0.1 and 1 1 mg/dl, alloisoleu- 
cine between 0.8 and 5.8 mg/dl, and valine between 0.4 and 17.9 
mg/dl. a-Ketoisocaproate acid levels were between 0.1 1 and 5 1.6, 
a-keto-0-methylvaleric acid between 0.1 and 17, and a-ketoiso- 
valeric acid levels between 0.1 and 3.9 mg/dl. The degree of 
correlation was highest for leucine and a-ketoisocaproate, 0.84, 
p < 0.0001; it was 0.77, p < 0.0001 for valine and a-ketoisoval- 
erate; and 0.74, p < 0.000 1 for isoleucine, alloisoleucine and a- 
ketop-methylvalerate. These results are expressed graphically in 
figures 1 to 3. 

The ratio of ketoacid to amino acid was much higher for 
leucine than for the other two pairs of amino-ketoacids. The 
majority of these ratios fell within very narrow limits; 85% of all 
values were within 1 SD of the mean. The small number of 
values which lay at either extreme of the range occurred a similar 
number of times in all subjects.Average ratios, standard devia- 
tion, and range are listed in Table 1. 

LEUCINE mg/d l  

Fig. 1. The relationship of plasma a-ketoisocaproate (KIC) to leucine 
in maple syrup urine disease (r  = 0.84; p < 0.0001). 

VALINE mg/dl 

Fig. 2. The relationship of plasma a-ketoisovalerate (KIV) to valine 
(r = 0.77: p < 0.0001). 
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Fig. 3. The relationship of plasma a-keto-P-methylvalerate (KMV)  to 
isoleucine and alloisoleucine (r = 0.74; p < 0.0001). 

Table 1. Ratio of  ketoacid analonue to amino acid 

Average and SD Range 
a-Ketoisocaproic acidlleucine 0.87 + 0.34 0.15-1.6 
a-Keto-P-methylvaleric acidliso- 0.58 & 0.21 0.09-1.0 

leucine + alloisoleucine 
a-Ketoisovaleric acidlvaline 0.19 & 0.1 1 0.08-0.47 

DISCUSSION 

Our results do not confirm those of Lancaster et al. (10) who 
found that the ketoacid analogues do not accumulate until the 
level of each branched chain amino acid exceeds 0.8 to 1.0 mM 
(10.5-13 mg/dl). This conclusion was based on a small number 
of samples and a technique with poor recoveries of ketoacid 
analogues in serum, which ranged from 42 to 52%. Our findings 
do confirm those of Langenbeck et al. (13) who, in a smaller 
number of subjects and determinations, also found a close cor- 
relation between the branched chain amino acids and their 
corresponding ketoacid analogues. 

In every instance, the value for the ketoacid analogue of leucine 
was the highest and that for the analogue of valine was the lowest. 
This is similar to the situation with the amino acids where leucine 
is always the most abnormal, and valine the least abnormal. The 
plasma branched chain amino acids in 22 infants at the time of 
diagnosis are summarized in Table 2 and demonstrate these 
differences quite strikingly. This also occurs whenever biochem- 
ical control is lost as a result of an intercurrent infection. These 
differences in branched chain amino acid accumulation cannot 
be ascribed to intake. Although there is more leucine then either 
valine or isoleucine in both cow's and human milk (7), the 
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Table 2. Plasma branched chain amino acids at diagnosis* 
Isoleucine + 

Leucine alloisoleucine Valine 
(mgldl) (meldl) (mg/dl) 

MSUD 42.8 + 15.9 12.1 + 3.47 11.2 + 5.3 
Normal 1.3 -t 0.59 0.65 + 0.35 2.0 + 0.61 
MSUDInormal 32.9 18.6 5.6 

* MSUD, maple syrup urine disease; mean + SD, 22 patients. 

infant's requirement for leucine (23) is much higher than that 
for the other two branched chain amino acids (21, 22), and 
would thus compensate for the differences in intake. 

There are several explanations for the lower level of the ke- 
toacid derivative of valine. There is a greater formation of the 
hydroxy derivative of valine than of the other two amino acids 
(9); the mechanism for this has not yet been determined. The 
greater renal clearance of this derivative would also tend to lower 
the plasma concentration (12). In addition, there are several 
instances in which there was more residual decarboxylation of 
this amino acid (4). There is no similar explanation for the much 
less abnormal level of isoleucine. The combined isoleucine- 
alloisoleucine level is usually only about one-third as abnormal 
as the leucine level. 

There has been a great deal of investigation recently on the 
mechanism of action of the branched chain a-ketoacid dehy- 
drogenase but none of the findings offers an explanation for the 
observed differences in amino acid and ketoacid levels. The 
relative rates of decarboxylation seem to vary with the type of 
tissue preparation employed. With the use of isolated bovine 
liver mitochondria (5, 16), perfused rat heart (2), and bovine 
kidney mitochondria (1 8), a-ketoisovalerate was decarboxylated 
more rapidly than a-ketoisocaproate. However, when isolated 
perfused rat liver was used, the rate of a-ketoisocaproate oxida- 
tion exceeded that of a-ketoisovalerate decarboxylation at all 
levels of substrate concentration studied (17). Coinfusion of 
either a-ketoisovalerate or of a-keto-P-methylvalerate inhibited 
the rate of a-ketoisocaproate decarboxylation in both types of 
tissue preparation. Such inhibition might play a role in the 
accumulation of a-ketoisocaproate if there were a significant 
degree of residual enzyme activity. A study utilizing a disrupted 
cell system obtained from fibroblasts of maple syrup urine disease 
patients demonstrated a decreased substrate affinity (3); the 
acitvity of the El component of the dehydrogenase was depend- 
ent on the substrate concentration and approached 40 to 60% of 
normal at 5 mM substrate. This concentration is considerably 
higher than the highest value observed in this present study. The 
other two ketoacid analogues were not studied; it is therefore 
possible that activation might occur at lower concentrations of 
substrate for these two derivatives. Clearly, much more infor- 
mation is needed about the exact nature of the enzyme deficits 
in this disorder; the effect of accumulated ketoacids on pyruvate 
dehydrogenase activity (25), one component of which may be 
the same as the Ej component of the branched chain amino acid 
dehydrogenase, the possibility of acyl-CoA inhibition, and the 
influence of carnitine on the accumulation of these derivatives 
(14) are possible directions for further investigation of this dis- 
ease. 

The significantly higher ratio of a-ketoisocaproic acid-leucine 
than of the other two ketoacid-amino acid pairs is also of some 
interest. Branched chain amino acid transaminase activity of 
isolated rat kidney has been increased by perfusion with a- 
ketoisocaproate but not with either of the other two branched 
chain ketoacid analogues (1 5). This stimulation of transamina- 
tion by a-ketoisocaproate in addition to any inhibitory effect on 
decarboxylation by the other two branched chain ketoacid ana- 

logues might account for the greater accumulation of the leucine 
derivative. 

The data reported do support the use of plasma levels of 
branched chain amino acids to monitor the therapy of maple 
syrup urine disease. The possibility that a-ketoisocaproate is 
more toxic to the central nervous system than leucine (6,20) has 
led to the suggestion that therapy might be improved by moni- 
toring the ketoacids in preference to the amino acids. The close 
correlation found in this study does imply that adequate moni- 
toring for therapy can be accomplished by the use of the tech- 
nically simpler and more rapid determination of the plasma 
branched chain amino acids. 
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