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Summary synthesis of a vasodilator PG that reduces the vasoconstriction. 

Inhibition of prostaglandin cyclooxygenase augments hypoxic 
pulmonary vasoconstriction. We used a neonatal lamb lung prep- 
aration perfused with Krebs' bicarbonate buffer to characterize 
and quantify prostanoids produced by the pulmonary vasculature 
from endogenous arachidonic acid in the absence of formed blood 
elements during ventilation with normoxic and hypoxic gas mix- 
tures. Prostaglandin (PG) 12 synthesis increased from 6.4 + 2.7 
ng/min (SEM) during normoxic ventilation to 14.3 f 5.4 ng/min 
during hypoxia and returned to 4.7 f 1.2 ng/min with resumption 
of normoxia. These data demonstrate that hypoxia stimulates 
pulmonary vascular synthesis of prostaglandin I2 from endoge- 
nous substrate in neonatal lambs and suggest that the augmen- 
tation of hypoxic pulmonary vasoconstriction by prostaglandin 
cyclooxygenase inhibition is due, at least in part, to interference 
with the synthesis of this vasodilator prostanoid. 

Abbreviations 

PG, prostanoid 
PG12, prostacyclin 
TXB2, thromboxane B2 

Inhibition of prostaglandin cyclooxygenase augments hypoxic 
pulmonary vasoconstriction in adult mammals of several species 
(1, 12, 24, 27, 28). A possible explanation for this observation is 
that hypoxia or hypoxic pulmonary vasoconstriction induces the 
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~nhibition of PG synthesis would remove this vasodilator PG 
and, thus, increase the hypoxic constriction. Indirect evidence 
supporting this hypothesis in the neonate includes the observa- 
tions that: 1) PGIa is the most abundant PG produced by fetal 
bovine pulmonary arterial slices (22); 2) under normoxic condi- 
tions, PGI? is the most abundant PG produced by the newly 
ventilated neonatal lamb lung (10, 11); 3) PG12 is a pulmonary 
vasodilator in the fetal and neonatal lamb (3, 9, 13), and its 
vasodilatory effect on the neonatal pulmonary vasculature is 
more evident during hypoxic pulmonary vasoconstriction (13); 
and 4) hypoxic pulmonary vasoconstriction in premature and 
term neonatal goats is augmented by indomethacin, an inhibitor 
of PG synthesis (23). In the present study, we used a neonatal 
lamb lung preparation perfused with Krebs' bicarbonate buffer 
to characterize and quantify prostanoids produced by the pul- 
monary vasculature from endogenous arachidonic acid in the 
absence of formed blood elements. Pulmonary perfusate was 
collected during ventilation with normoxic and hypoxic gas 
mixtures. Analysis of these perfusates allowed determination of 
the effect of hypoxic pulmonary vasoconstriction on pulmonary 
vascular prostanoid synthesis. 

MATERIALS AND METHODS 

Animalpreparation. Fourteen neonatal lambs [10.7 & 2.0 days 
old (SEM); 5.5 +. 1.6 kg) were anesthetized with 50 mg/kg a- 
chloralose IV. A tracheostomy was performed, and ventilation 
with room air was begun using a constant volume ventilator. A 
left thoracotomy was performed and the left lung was removed, 
leaving the mediastinum intact. Consequently, the right lung, 
which was to be perfused, was not exposed to the environment. 
The tidal volume was reduced by approximately 40%, the ductus 
arteriosus was ligated, and the left atrium was cannulated with a 
Teflon catheter. A repeat dose of 10 mg/kg a-chloralose was 
administered, and the pulmonary artery was ligated and cannu- 
lated, thus sacrificing the animal. Perfusion of the lung with 37°C 
Krebs' bicarbonate buffer, pH 7.4, containing 2 g glucose/liter 
equilibrated with 3% 0 ? , 5 %  C02,92% Nq was then begun using 
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a roller pump. The ventilating gas mixture was changed to 20% 
02,  5% C02, 75% N2. The heart was clamped at the atrioventric- 
ular valves so that all perfusate exited through the left atrial 
catheter. The perfusate was not recirculated. During an initial 
15-min equilibration period, formed elements cleared from the 
perfusate. A constant flow was maintained so that changes in 
pressure reflected changes in resistance. Flow was monitored 
electromagnetically. Pressure was monitored with a fluid-filled 
pressure transducer connected to a side arm of the inflow circuit 
just proximal to the pulmonary arterial catheter. Both signals 
were amplified and recorded with a direct-writing recorder. 

Experimental protocol. After the 1 5-min equilibration period, 
pulmonary venous emuent was collected for 10 min. The venti- 
lator gas mixture was then changed to 3% 02 ,  5% C02, 92% N2 
reducing the pulmonary venous PO, from 85 to 33 mm Hg. One 
minute after the initiation of hypoxic ventilation, a second 10- 
min collection was begun. At the conclusion of this collection, 
the ventilating gas mixture was returned to 20% 0 2 ,  5% C02, 
75% NZ, and 10 min were allowed for return to normoxic 
conditions. Then a third 10-min collection was performed. The 
collected perfusates were stored at -60°C for later analysis. 

Prostanoid analysis. The methods used are a modification of 
those which have been described and verified previously (8, 10). 
Each sample was treated thusly. The pulmonary venous emuents 
were allowed to thaw and 600 ng PGAr were added to each as 
an internal standard. A sample containing 600 ng PGA2 and 
known amounts of PGE2, 6-keto-PGF,,,, TXB,, and 6,15-diketo- 
13,14-dihydro-PGF,,, (Upjohn) were processed with each set of 
samples. Following acidification to pH 3 with formic acid, each 
sample was applied to an octadecylsilyl cartridge (Sep-Pak, Wa- 
ters Associates, Inc.) that previously had been washed and wetted 
with 30 ml acetone, 30 ml hexane, 60 ml methanol, and 60 ml 
of water. The Sep-Pak containing the sample was washed with 
20 ml of water followed by 20 ml petroleum ether, both of which 
were discarded. The PGs were eluted with 10 ml of ethyl acetate 
[modified from Powell ( 1  6)]. Fifteen ml of toluene was added to 
the 10 ml of ethyl acetate and the mixture was applied to a silica 
column (Adsorbosil, 8 cm X 5 mm, Anspec, Inc.). PGs on the 
column were washed with 25 ml of 60:40 to1uene:ethyl acetate 
(discarded). PGs were eluted with 15 ml of 60:40:5: 1 tolu- 
ene:ethyl acetate:methanol:formic acid. The eluant was evapo- 
rated under vacuum and the invisible residue was transferred to 
a reaction vial for derivatization prior to analysis by gas chro- 
matography with electron capture detection. Derivatization to 
pentafluorobenzyloximes of PG methyl ester trimethylsilyl ethers 
was accomplished as described pewiously (8, 10). Analyses were 
performed on a Perkin-Elmer Sigma 4, equipped with heated 
splitless injector and h3Ni electron capture detector. Gas-liquid 
chromatography was performed using 0.5 mm x 25 m SCOT 
OV 10 1 capillaries (Scientific Glass Engineering) at 250°C and a 
column pressure of 140 mm Hg, with helium as the camer. 
Injector and detector temperatures were 375°C. 

Details and verification of methods used for quantification 
and mass spectrometric confirmation of derivatized standard 
structures have been published elsewhere (8). Briefly, the relative 
detector responses to PGA2 and other PGs were determined from 
simultaneous extraction plus derivatization of known quantities 
of each. For each PC, a factor (8) encompassing all differences 
between PGs with respect to extraction, derivatization, and de- 
tector response, was calculated: 2 = ( W,. H,,)/(H,. w,), where 
W, is the quantity of PC.,, H., is the detector response to PC,, 
W,, is the quantity of PGA2, and H,, is the detector response to 
PGAr. PGs were quantified in the samples by comparison to 
PGA2 added as the internal standard: W, = H,. W, . 2 .  H A - ' .  

This method (8, 10) is capable of quantifying as little as 5 ng 
of PGD2, PGE?, 6-keto-PGF,,,, TXB2, 6-keto-PGE,, or 6,15- 
diketo-13,14-dihydro-PGF,,, in the initial fluid sample. 

Statistics. Results are reported as the mean * standard error 
of the mean for 14 animals. Hemodynamic data and PG pro- 
duction were analyzed using a two-way analysis of variance 

allowing partitioning of variation into that due to treatments 
(normoxia, hypoxia, normoxia), replications (14 animals), and 
residual variation. The F for the effect of treatments was defined 
as the mean square for treatments divided by the mean square 
for residuals with significance defined as P < 0.05. When the 
effect of treatments was significant, the mean value of a hemo- 
dynamic or PG variable during hypoxia was compared with the 
average of the pre- and posthypoxia means of that variable using 
the t-test for planned comparisons among means as described by 
Snedecor and Cochran (20). 

RESULTS 

The results of these experiments are illustrated in Figure 1. 
Constant flow was maintained throughout each experiment, the 
mean flow being 2.2 f 0.3 ml/min.kg body weight or 11.2 + 
1.1 ml/min. Hypoxia resulted in a significant rise of pulmonary 
perfusion pressure from 10.0 + 2.3 to 14.1 + 3.8 mm Hg, with 
return to 10.9 f 2.5 mm Hg with resumption of normoxic 
ventilation. Calculated pulmonary vascular resistance increased 
significantly from a baseline during normoxia of 4.7 & 0.8 to 5.9 
+ 0.9 mm Hg/(ml/kgmin) during hypoxia, returning to 4.9 f 
0.9 mm Hg/(ml/kg. min) with return to normoxia. PG12 synthe- 
sis, measured as 6-ketoPGF,,, increased significantly from 6.4 + 
2.7 ng/min during normoxic ventilation to 14.3 f 5.4 ng/min 
during hypoxia and returned to 4.7 k 1.2 ng/min with resump- 
tion of normoxia. A metabolite of PGI,, co-migrating on the gas 
chromatographic column with synthetic 6,15-diketo- 13,14-di- 
hydro PGF,,,, was detected sporadically and in concentrations 
far less than that of 6-keto-PGF,,,. Thromboxane A2 (as throm- 
boxane B-) was the only other prostanoid detected, and its 
synthesis did not change significantly with alveolar hypoxia (2.8 

Fig. I .  Hypoxic pulmonary vasoconstriction and prostanoid synthesis 
in neonatal lambs. Bars indicate kSEM. Symbol indicates significant 
difference between hypoxic period and average of pre- and posthypoxic 
control periods (P < 0.05; n = 14). 

Lo, .20 .03 .20 
-20 

I 5  - 
.- 

: IO- 
m = 

I 5  
C .- 
E 
\ 

m C 

m 
I 5  

I 
10 

E 

5  

- 
.- 

;." 4; 

5 -  

- 
T x A e  

10- 

5 -  5 
- 
- 
- 7 PRESSURE 

5 -  : RESISTANCE 

FLOW 

C 



834 GREEN AN ID LEFFLER 

Table 1. Analysis of variance tables for two-wav classification 
Sources of Sum of Mean 
variation df squares square F P 

PC12 
Replications* 13 4060.30 312.33 
Treatments? 2 734.16 367.08 

3.38 <0.05 
Residuals 26 2820.58 108.48 

Total 41 7615.04 
TxA2 

Replications 13 691.20 53.17 
Treatments 2 20.72 10.36 

0.62 N.S. 
Residuals 26 430.86 16.57 

Total 41 1142.78 
Pressure 

Replications 13 4321.37 332.41 
Treatments 2 126.70 63.35 

3.66 <0.05 
Residuals 26 450.34 17.32 

Total 41 4898.41 
Resistance 

Replications 13 400.81 30.83 
Treatments 2 11.34 5.67 

6.16 <0.01 
Residuals 26 23.87 0.92 

Total 41 436.02 
* Fourteen lambs. 
t Three treatments: normoxia, hypoxia, normoxia. 

+ 1.1 ng/min prehypoxia; 3.6 +. 2.0 ng/min during hypoxia; 1.8 
+ 0.9 ng/min posthypoxia). Analysis of variance tables for PGG, 
thromboxane Az, pressure, and resistance are shown in Table 1. 

DISCUSSION 

The role of PGs in hypoxic pulmonary vasoconstriction has 
been of considerable interest since Said et al. (1 8) first suggested 
that alveolar hypoxia may induce PG synthesis. Since then, 
several groups have shown that inhibition of PG synthesis with 
a variety of cyclooxygenase inhibitors augments hypoxic pul- 
monary vasoconstriction (1, 12, 23, 24,27,28) in several species 
including newly ventilated and several-day-old neonatal goats 
(23). Augmentation of hypoxic pulmonary vasoconstriction fol- 
lowing prostaglandin cyclooxygenase inhibition suggests that 
either alveolar hypoxia is associated with increased synthesis of 
a vasodilator PG by the pulmonary vasculature which blunts 
hypoxic pulmonary vasoconstriction or that cyclooxygenase in- 
hibition diverts arachidonic acid to the lipoxygenase pathway 
causing increased synthesis of a vasoconstrictor leukotriene. 

PGI, is a potent pulmonary vasodilator in the perinatal period 
(3, 9, 13) and is the major PG synthesized from endogenous 
arachidonic acid by the perinatal pulmonary vasculature under 
normoxic conditions (10, 11). The present study demonstrates 
that hypoxic pulmonary vasoconstriction is associated with an 
increased synthesis of PGIr from endogenous substrate in the 
neonatal lamb pulmonary vasculature. These data are consistent 
with previous studies showing that PG synthesis inhibition aug- 
ments hypoxic pulmonary vasoconstriction, probably by inhibit- 
ing the synthesis of the vasodilator PG, PG12. Further, the ability 
of cyclooxygenase inhibitors to block the pulmonary vasocon- 
strictor response to exogenous arachidonic acid (6, 12) seems to 
argue against an important role of a vasoconstrictor leukotriene 
in the regulation of pulmonary vascular resistance. 

Initial efforts by other workers at demonstrating the presence 
of and identifying a vasodilator PG employed classical tissue 
cascade bioassay techniques and radioimmunoassays of PGE 
and PGF2,, (19, 25, 29). Augmentation of PG synthesis by 
hypoxic pulmonary vasoconstriction was not detected in these 
studies. The radioimmunoassays used would not have detected 
PGI,. Furtnermore, although PGI2 was first identified by bioas- 
say, the small quantities of PG12 produced by the pulmonary 
vasculature and the spontaneous hydrolysis of PGIl to 6-keto- 
PGF,,, to which bioassay tissue respond poorly, may have 
hindered thedetection of PG12 by the bioassay tissues. Supporting 
this idea are the observations of Mullane et al. (1 5 )  that infusions 
of arachidonic acid cause pulmonary vasodilation due to bioas- 
sayable PG12; infusion of arachidonic acid would allow for syn- 
thesis of considerably more PG12 by the pulmonary vasculature 
than could be produced from endogenous arachidonic acid and 
thus would facilitate detection of PG12 by bioassay. 

The techniques employed in the present study were designed 
to allow detection and quantification of the small quantities of 
PGI, produced by the pulmonary vasculature from endogenous 
arachidonic acid by collecting all of the pulmonary perfusate 
over 10-min periods and concentrating the PGs thus collected. 

Voelkel et al. (26) infused radioactively labeled arachidonic 
acid into perfused adult rat lungs, thus labeling the endogenous 
arachidonic acid pool. They subsequently measured increased 
release of the radioactive label with hypoxic pulmonary vasocon- 
striction and identified PG12 as the major labeled PG. Hamasaki 
et al. (4) found that hypoxia stimulates PGI2 synthesis from 
endogenous arachidonic acid in homogenates of adult dog lung. 
These results are consistent with those of the present study 
performed on neonatal lamb lungs. 

Effects of arachidonic acid, the precursor of PG12 and throm- 
boxane A,, on hypoxic pulmonary vasoconstriction have been 
variable with both dilation (2) and further constriction ( 6 )  de- 
scribed depending upon the experimental circumstances. Infu- 
sion of large quantities of exogenous arachidonic acid per unit 
time into the pulmonary circulation has a vasoconstrictor effect 
(5, 7, 12) and augments the constriction caused by alveolar 
hypoxia (6) or by 15-methyl-PGFz,, (21). On the other hand, 
Spannhake et al. (21) were able to produce pulmonary vasodi- 
lation by slowly infusing small quantities of arachidonic acid 
when pulmonary vascular tone was increased with either hypoxia 
or 15-methyl-PGFz,,. Slow infusion of arachidonic acid may 
allow for more complete conversion of the precursor to PG12 
without producing excessive vasoconstrictor cyclic endoperox- 
ides and rhromboxane Az. Thus, Gerber et al. (2) reported that 
slow arachidonic acid infusion reduces hypoxic pulmonary va- 
soconstriction and identified PGIz in the pulmonary venous 
effluent. These observations are consistent with the results of the 
present study. 

Rubin and Lazar (17) have reported recently that inhibition 
of hypoxic pulmonary vasoconstriction by hydralazine is pre- 
vented by indomethacin. Their data are consistent with ours but 
suggest that alveolar hypoxia alone does not stimulate prostacy- 
clin synthesis maximally, since hydralazine appears to further 
reduce hypoxic pulmonary vasoconstriction by a PG-mediated 
mechanism. 

Recently, Moon et al. (14) were able to reduce hypoxic pul- 
monary vasoconstriction in adult dogs by infusing arachidonic 
acid, and they detected an increase in the ratio of aortic to 
pulmonary arterial PGI2 concentration. However, these workers 
were unable to detect a change in PG12 synthesis from endoge- 
nous substrate during alveolar hypoxia. This latter result differs 
from our own and could represent species or age differences. 

In summary, the present study demonstrates that hypoxia 
stimulates pulmonary vascular synthesis of PG12 from endoge- 
nous substrate in neonatal lambs. These findings suggest that the 
augmentation of hypoxic pulmonary vasoconstriction by pros- 
taglandin cyclooxygenase inhibition is due, at least in part, to 
interference with the synthesis of this vasodilator prostanoid. 
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Summary increased amounts of vasopressin in amniotic fluid would be 
Hypoxia is a potent stimulus to the release of vasopressin in indicative of fetal hypoxia. Therefore, we measured concentra- 

fetal sheep, and plasma concentrations of the hormone correlate tions of vasopressin in amniotic fluid under resting conditions, 
inversely with fetal oxygenation. Since the fetal kidney contrib- during and after fetal h ~ ~ o x i a ,  and with intravenous and intra- 
utes to vasopressin clearance, we propose that measurement of amniotic administration of vasopressin in 15 chronically instru- 

mented fetal lambs between 111 and 141 days gestation. In the 
Received for publication September 19, 1983. resting state, mean (+SE) vasopressin concentrations in amniotic 
Address correspondence to Raymond I. Stark. M.D., Division of Perinatal fluid (1.6 + 0.3 pg ml-l) did not differ from those in maternal Medicine. College of Physicians and Surgeons. Columbia University, New York, 

NY 10032. (1.4 4 0.4 pg ml-') or fetal (1.8 + 0.2 pg ml-') plasma. Following 
This work was supported in part by Grant HD-13063 from the National eXpOSUre of the ewe to 10% 0, Or partial occlusion of the 

Institutes of Health. umbilical cord, vasopressin concentrations in fetal plasma in- 


	Hypoxia Stimulates Prostacyclin Synthesis by Neonatal Lungs

