SERUM THYROID STIMULATING HORMONE (TSH), THYROXINE (T<sub>4</sub>) AND TRIIODOTHYRONINE (T<sub>3</sub>) LEVELS IN THE PRE-TERM INFANT. Allen Erenberg, Mary M. Weinstein and Richard **295** 

M. Cowett (Spon. by William Oh). U. of Iowa Coll. Med., Dept. Ped., Iowa City and Brown U., Women & Infant's Hosp., Prov. R.I. To determine if inclusion of the healthy pre-term infant in mass neonatal screening programs would increase the number of false-positive results, the changes in serum TSH,  $T_4$  and  $T_3$  levels were studied in healthy infants between 30 and 35, Group (G)

I, and 36 to 38, G II, weeks gestation during the 1st 72 hours

(h) of age. (Value = Mean ± SEM) (h) of age. Cord 12-24h 5-4h 36-48h 43.8±21.4 16.6±2.9 TSH GI 13.9±2.3 12.6±3.5 4.4±1.0 4.1±1.1 9.7±1.4 μU/ml GII 13.0±3.3 30.9±10.9 6.7±1.4 15.6± 0.9 15.0±2.0 12.7± 1.9 17.4±1.7 GI 11.6±1.2 15.3±1.8 14.7±1.3 ug/dl GII 11.4±1.2 16.4±1.8 15.8±1.2 GI 49.3±8.3 82.7±11.1 88.7±5.6 67.7±6.5 162.3±42.9 146.6±25.1 106.2±17.8

ng/dl GII 47.0±9.0 162.3±42.9 146.6±25.1 106.2±17.8
In both G there was a rise in the mean serum TSH level at .5 to 4 h after birth. Mean  $T_4$  and  $T_3$  levels increased by 24 h and remained unchanged until 72 h of age, although the rise in mean  $T_3$  level was less in the younger gestational age infant. Conclusions: 1) In the healthy pre-term neonate, the rise in serum TSH level at .5 to 4 h of age is followed by a rise in serum T, and C, levels by 24 h. 2) Screening of healthy pre-term infants from 30 to 38 weeks gestation for congenital hypothyroidism by serum or TSH levels at 24 to 72 h will most likely not increase the mber of false-positive results.

296 DIABETES MELLITUS (DM), HASHIMUIU S INTROTUTUS (...)
AND JUVENILE RHEUMATOID ARTHRITIS (JRA) IN A 14-YEAR.

OLD GIRL.Martin M. Fisher and Cyril A.L. Abrams (spon by Arturo Aballi).School of Medicine, Health Sciences Center, SUNY at Stony Brook, and Long Island Jewish-Hillside Medical Center, Department Pediatrics, New Hyde Park, New York.

The association of DM,HT and JRA has not been previously recorded. The purpose of this communication is to report our preliminary findings in a 14 year old Haitian girl who developed in-sulln- dependent DM at age 6 yrs, goiter at 9 yrs, and polyarti-cular JRA at 12 yrs.No evidence of iridocyclitis was present.Folcular JNA at 12 yrs. No evidence of iridocyclitis was present. Following thyroid and gold therapy the golter regressed and the arthritis improved. There was a family history of DM and golter in the mother and of DM in maternal relatives. Investigations revealed normal T4; antimicrosomal thyroid antibodies (1:25,000 and 1:7,000); antinuclear antibodies (1:32,768 and 1:1,024); rheumatoid factor (1:320 and 1:640); high-normal C3 (240mg%) and elevated C4 (240mg%);normal IgA and IgM,elevated IgG;elevated gamma globulin normal CBC peripheral smear and serum B12;normal adrenal responsi to ACTH stimulation; HL-A, A-28, A-9, B-27, B-7, CW-2; elevated ESR (33 and 26 mm/hr); and evidence of JRA on wrist x-ray. These findings are consistent with the presence of an autoimmune disorder. Furthermore, their association with DM in this patient lends support to the concept that DM may itself be a disease of autoimmun origin.We believe this to be the first report of the coexistence and concurrent expression of DM, HT and JRA in one individual.

CONTINUOUS MONITORING OF BLOOD GLUCOSE DURING ARGIN-INE-INSULIN GROWTH HORMONE (GH) STIMULATION TEST. 297

Angeliki Georgopoulos, Maria I. Schmidt, Leslie P.
Plotnick, Peter A. Lee, Claude J. Migeon and A. Avinoam Kowarski
The Johns Hopkins University School of Medicine, Department of Pediatrics, Baltimore, Maryland 21205 ·

A newly developed continuous glucose monitor (CGM) incorporates a non-thrombogenic blood withdrawal system and a glucose electrode which generates a continuous tracing of real blood glucose (BG) during an Arginine-Insulin GH Stimulation Test (AIST) which was administered to seven children with short stat-

The intravenous infusion of arginine was associated with an increase of BG from a baseline of  $83 \pm 10.9$  to  $107.7 \pm 14.9$  (mg/ 100 ml  $\pm 1$  SD). The peak level was reached  $26.3 \pm 6.5$  minutes, and returned to baseline  $51.3 \pm 9.5$  minutes, after the IV injection.

The nadir in BG occurred 30.4  $\pm$  8.5 minutes after IV insulin. The baseline level of 76.6  $\pm$  10.1 mg/100 ml  $\pm$  1 SD fell to 29.1  $\pm$  6.2. The BG returned to normal 57.2  $\pm$  7.5 minutes after the IV injection.

Symptoms of hypoglycemia may force premature termination of the AIST. In two of the patients the AIST was continued despite symptoms because the BG level was increasing at the time. The use of CGM increases the safety of the AIST by providing real time level of BG.

METABOLIC CLEARANCE RATE OF OXYTOCIN IN MATERNAL AND FETAL SHEEP. T.H. Glatz, R.E. Weitzman, P.W. Nathanielsz, and D.A. Fisher. Fetal-Maternal Research Laboratories, UCLA-Harbor General Hospital, Torrance, CA. Simultaneous maternal and fetal plasma oxytocin (OXY) concn.

(µU/ml) were measured by radioimmunoassay before and during continuous infusion of synthetic OXY to steady state conditions into ewe or fetus (gestational age 124-140 days; at least 5 days post-

### OF TELLS (1955 tational 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1... 1955 1.. 6.8±1.2 47.3±6.4 80 μU/kg/min 4.8±0.3 1.1±0.3 1.9±0.7 800 µU/kg/min 41.8±4.6  $0.9 \pm 0.2$ 2.0±0.8 Fetal metabolic clearance rates (MCR in ml/kg/min) were calculated to be 18.1 ± 1.1 and 15.0 ± 1.3 at the two infusion rates; maternal MCR were 12.7 ± 2.8 and 13.4 ± 2.3, respectively. Examination of simultaneous fetal and maternal baseline OXY concentrations revealed that fetal levels were significantly higher than maternal:  $1.9\pm0.2$  vs  $0.7\pm0.1$  (p<.05). Continuous monitoring of uterine pressure revealed that uterine contractions were induced by maternal infusion of 800 uU/kg/min; no uterine contractions were induced by fetal infusion. Conclusions based on these data are: 1) plasma OXY levels exceed maternal levels in fetuses of 124-140 days gestation; 2) transplacental passage of OXY is minimal in both M-F and F-M directions; 3) maternal and fetal MCR of OXY are similar and unrelated to plasma OXY levels.

NEW SYNDROME OF SHORT STATURE DUE TO BIOLOGICALLY **299** INACTIVE BUT IMMUNOREACTIVE GROWTH HORMONE, Alberto Hayek, Glenn T. Peake and Robert E. Greenberg, Depts. of Peds. and Med., Univ. of New Mexico School of Med.,

Albuquerque, New Mexico.

A 25 month old girl was first seen because of growth deceleration beginning at 3 months of age. Birth weight was  $6rac{1}{2}$  lbs. and length 19". P. examination was normal except for a height-age of 13 months. After estrogen priming a growth hormone (GH) stimulation test following sequential L-Dopa, arginine and glucagon peaked at 124 ng/ml from a base-line of 63 ng/ml. Serum somatomedin-C (Sm-C) concentration, both basal and post-stimulation, measured 0.24 U/ml. (Nl.  $1.5\pm0.5$  U/ml. Measured by Dr. I Underwood, Univ. of North Carolina, Chapel Hill). At the end of a 24 hour fast her blood glucose was 68 mg%. GH was given for 6 days and her Sm-C level increased to 0.43 U/ml. Four months later her metabolic response to the administration of GH for  $\boldsymbol{6}$ days showed: release of FFA from 757 to 1341 µM/l and no increase in urinary Ca++. Again her Sm-C increased from 0.19 to peak of .73 U/ml. Prior to GH, her basal GH levels ranged from peak or ./3 U/ml. Frior to GH, her basal GH levels ranged from 8 to 14 ng/ml. By RIA her GH produced a parallel dose-response to pituitary GH standard. After the above study, the patient was discharged on GH, 0.1 U/kg three times a week. In the last 2 months her growth rate has increased from 0.5 to 1/cm/month. The data on this patient appear to rule out a defect in Sm-C synthesis or function, as well as factors, either inhibiting GH action or receptor function. The growth deceleration could be explained on the basis of an abnormal circulating GH molecule.

TRANSPLACENTAL TRANSFER, METABOLISM & PHARMACOKINETICS
OF DIETHYLSTILBESTROL(DES) AND ESTRADIOL 17β(E2) IN
PREGNANT RHESUS MONKEYS. D.E. Hill, E.D. Helton, G. W.
pe, G.D.Newport, T.J.Sziszak, J.R. Bailey and J.F.Young(Spon.
R.H. Fiser). Dept. of Ped., Univ. of Ark. for Med. Sci.and
tional Center For Toxicological Research, Little Rock and
feerson. Arkansa

Jefferson, Arkansas.

egnant rhesus monkeys(120-145 days) were anesthetized with rregnant rnesus monkeys (120-145 days) were anesthetized with Ketamine, and a femoral maternal artery catheter and fetal umbilical artery and/or vein were cannulated by an extra-amniotic technique. Either [UL-14c] DES, [monoethy]-1-3H] DES or [6,7,3H] E2 in 20% ethanol was given in a maternal vein. Blood samples were collected for a 2 hr period. The maternal Ti<sub>2</sub> for the 14C-DES was 35 min as compared to 100 min for 3H DES. The Ti<sub>3</sub> for E2 was 45 min. Both DES and E2 appeared in the fetal circulation within 5 min and preached a maximum total radioactivity at 40-60 min Padioactivity. reached a maximum total radioactivity at 40-60 min. Radioactivity accumulated primarily in fetal liver, lung, intestine, uterus and brain of animals dissected immediately after the experiment. Complete analysis was performed on the total fecal and urinary products in one animal. Urinary conjugates were purified by XAD-2 plete analysis was performed on the total fecal and urinary products in one animal. Urinary conjugates were purified by XAD-2 and Sephadex LH-20(MEOH/ETOH 1:1). Three urinary conjugate fractions were obtained, hydrolyzed, and the aglycones identified by GC/MS to be cis/trans DES and possibly dienestrol. The principal fecal product found after extraction and LH-20 purification (benzene/MEOH 80:20) was identified thru GC/MS as DES. The fecal conjugates were chromatographically similar to the urinary conjugates. This is the first non-human primate evidence that DES. gates. This is the first non-human primate evidence that DES rosses the placenta and accumulates in the fetus. DES pharmaco-cinetics and metabolism appear similar to natural estrogens.