Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biopolymers, Bio-related Polymer Materials

Metal nanoarchitecture fabrication using DNA as a biotemplate

Abstract

Among the many important biopolymers, DNA has been a key component in material sciences and nanotechnology. We have focused on the fabrication of metal nanoarchitectures using DNA as a template due to its intrinsic properties and advantages, such as a well-ordered structure, rich chemical functionality and programmable base-pairing interactions, as well as the availability of multiple enzymes for DNA manipulation. In this review, various methods for the fabrication of DNA-templated metal nanoarchitecture are introduced. The methods include DNA-mediated metal nanoparticle formation, DNA-templated conductive nanowire fabrication by metal depositions, sequence-selective metal deposition onto DNA for elaborate nanowire fabrication and DNA brushes as templates for use on solid substrates. DNA sequence-selective binding of metal ions and metal complexes and subsequent reduction to metals are fundamental issues for the fabrication of metal nanoarchitectures. The resultant metal nanoparticles and their assemblies can be used as functional nanomaterials in applications such as catalysts, conducting nanowires, optical nanomaterials and especially in metamaterials. This biopolymer-templating method can be applied not only to metal deposition but also to the assembly of functional molecules.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

References

  1. 1

    Willets, K. A. & Van Duyne, R. P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Stewart, M. E., Anderton, C. R., Thompson, L. B., Maria, J., Gray, S. K., Rogers, J. A. & Nuzzo, R. G. Nanostructured plasmonic sensors. Chem. Rev. 108, 494–521 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Chen, H., Ming, T., Zhao, L., Wang, F., Sun, L.-D., Wang, J. & Yan, C.-H. Plasmon–molecule interactions. Nano Today 5, 494–505 (2010).

    Article  CAS  Google Scholar 

  4. 4

    Mitomo, H., Horie, K., Matsuo, Y., Niikura, K., Tani, T., Naya, M. & Ijiro, K. Active gap SERS for the sensitive detection of biomacromolecules with plasmonic nanostructures on hydrogels. Adv. Opt. Mater. 4, 259–263 (2016).

    Article  CAS  Google Scholar 

  5. 5

    Lu, W. & Lieber, C. M. Nanoelectronics from the bottom up. Nat. Mater. 6, 841–850 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Liu, J., Geng, Y., Pound, E., Gyawali, S., Ashton, J. R., Hickey, J., Woolley, A. T. & Harb, J. N. Metallization of branched DNA origami for nanoelectronic circuit fabrication. ACS Nano 5, 2240–2247 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Jin, Z., Sun, W., Ke, Y., Shih, C.-J., Paulus, G. L. C., Hua Wang, Q., Mu, B., Yin, P. & Strano, M. S. Metallized DNA nanolithography for encoding and transferring spatial information for graphene patterning. Nat. Commun. 4, 1663 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Whitcombe, M. J., Kirsch, N. & Nicholls, I. A. Molecular imprinting science and technology: a survey of the literature for the years 2004-2011. J. Mol. Recognit. 27, 297–401 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Alexander, C., Andersson, H. S., Andersson, L. I., Ansell, R. J., Kirsch, N., Nicholls, I. A., O’Mahony, J. & Whitcombe, M. J. Molecular imprinting science and technology: a survey of the literature for the years up to and including 2003. J. Mol. Recognit. 19, 106–180 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Li, X. & Liu, D. R. DNA-templated organic synthesis: Nature’s strategy for controlling chemical reactivity applied to synthetic molecules. Angew. Chem. Int. Ed. 43, 4848–4870 (2004).

    Article  CAS  Google Scholar 

  11. 11

    Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. 12

    Alivisatos, A. P., Johnsson, K. P., Peng, X., Wilson, T. E., Loweth, C. J., Bruchez, M. P. & Schultz, P. G. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  Google Scholar 

  14. 14

    Le, J. D., Pinto, Y., Seeman, N. C., Musier-Forsyth, K., Taton, T. A. & Kiehl, R. A. DNA-templated self-assembly of metallic nanocomponent arrays on a surface. Nano Lett. 4, 2343–2347 (2004).

    Article  CAS  Google Scholar 

  15. 15

    Sharma, J., Chhabra, R., Liu, Y., Ke, Y. & Yan, H. DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays. Angew. Chem. Int. Ed. 45, 730–735 (2006).

    Article  CAS  Google Scholar 

  16. 16

    Kuzuya, A., Kaino, M., Hashizume, M., Matsumoto, K., Uehara, T., Matsuo, Y., Mitomo, H., Niikura, K., Ijiro, K. & Ohya, Y. Encapsulation of a gold nanoparticle in a DNA origami container. Polym. J. 47, 177–182 (2014).

    Article  CAS  Google Scholar 

  17. 17

    Simmel, S. S., Nickels, P. C. & Liedl, T. Wireframe and tensegrity DNA nanostructures. Acc. Chem. Res. 47, 1691–1699 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Zhang, F., Nangreave, J., Liu, Y. & Yan, H. Structural DNA nanotechnology : state of the art and future perspective. J. Am. Chem. Soc. 136, 11198–11211 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. 19

    Saccà, B. & Niemeyer, C. M. DNA origami: the art of folding DNA. Angew. Chem. Int. Ed. 51, 58–66 (2012).

    Article  CAS  Google Scholar 

  20. 20

    Kuzuya, A. & Ohya, Y. Nanomechanical molecular devices made of DNA origami. Acc. Chem. Res. 47, 1742–1749 (2014).

    Article  CAS  Google Scholar 

  21. 21

    Kuzuya, A. & Ohya, Y. DNA nanostructures as scaffolds for metal nanoparticles. Polym. J. 44, 452–460 (2012).

    Article  CAS  Google Scholar 

  22. 22

    Izatt, R. M., Christensen, J. J. & Rytting, J. H. Sites and thermodynamic quantities associated with proton and metal ion interaction with ribonucleic acid, deoxyribonucleic acid, and their constituent bases, nucleosides, and and nucleotides. Chem. Rev. 71, 439–482 (1971).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Petty, J. T., Zheng, J., Hud, N. V. & Dickson, R. M. DNA-templated Ag nanocluster formation. J. Am. Chem. Soc. 126, 5207–5212 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Ritchie, C. M., Johnsen, K. R., Kiser, J. R., Antoku, Y., Dickson, R. M. & Petty, J. T. Ag nanocluster formation using a cytosine oligonucleotide template. J. Phys. Chem. C 111, 175–181 (2007).

    Article  CAS  Google Scholar 

  25. 25

    Richards, C. I., Choi, S., Hsiang, J. C., Antoku, Y., Vosch, T., Bongiorno, A., Tzeng, Y. L. & Dickson, R. M. Oligonucleotide-stabilized Ag nanocluster fluorophores. J. Am. Chem. Soc. 130, 5038–5039 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26

    Gwinn, E. G., O’Neill, P., Guerrero, A. J., Bouwmeester, D. & Fygenson, D. K. Sequence-dependent fluorescence of DNA-hosted silver nanoclusters. Adv. Mater. 20, 279–283 (2008).

    Article  CAS  Google Scholar 

  27. 27

    Shemer, G., Krichevski, O., Markovich, G., Molotsky, T., Lubitz, I. & Kotlyar, A. B. Chirality of silver nanoparticles synthesized on DNA. J. Am. Chem. Soc. 128, 11006–11007 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Silverman, S. K. Deoxyribozymes: DNA catalysts for bioorganic chemistry. Org. Biomol. Chem. 2, 2701–2706 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. 29

    Berti, L., Alessandrini, A. & Facci, P. DNA-templated photoinduced silver deposition. J. Am. Chem. Soc. 127, 11216–11217 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. 30

    Wang, G., Nishio, T., Sato, M., Ishikawa, A., Nambara, K., Nagakawa, K., Matsuo, Y., Niikura, K. & Ijiro, K. Inspiration from chemical photography: accelerated photoconversion of AgCl to functional silver nanoparticles mediated by DNA. Chem. Commun. 47, 9426–9428 (2011).

    Article  CAS  Google Scholar 

  31. 31

    Wang, G., Mitomo, H., Matsuo, Y., Shimamoto, N., Niikura, K. & Ijiro, K. DNA-templated plasmonic Ag/AgCl nanostructures for molecular selective photocatalysis and photocatalytic inactivation of cancer cells. J. Mater. Chem. B 1, 5899 (2013).

    Article  CAS  Google Scholar 

  32. 32

    Wang, G., Mitomo, H., Matsuo, Y., Niikura, K., Maeda, M. & Ijiro, K. DNA-modulated photo-transformation of AgCl to silver nanoparticles: visiting the formation mechanism. J. Colloid Interface Sci. 452, 224–234 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Taniguchi, M. & Kawai, T. DNA electronics. Physica E Low Dimens. Syst. Nanostruct. 33, 1–12 (2006).

    Article  CAS  Google Scholar 

  34. 34

    Deng, Z. & Mao, C. DNA-templated fabrication of 1D parallel and 2D crossed metallic nanowire arrays. Nano Lett. 3, 1545–1548 (2003).

    Article  CAS  Google Scholar 

  35. 35

    Ford, W. E., Harnack, O., Yasuda, A. & Wessels, J. M. Platinated DNA as precursors to templated chains of metal nanoparticles. Adv. Mater. 13, 1793–1797 (2001).

    Article  CAS  Google Scholar 

  36. 36

    Hashimoto, Y., Matsuo, Y. & Ijiro, K. Fabrication of silver nanowires by selective electroless plating of DNA stretched using the LB method. Chem. Lett. 34, 112–113 (2005).

    Article  CAS  Google Scholar 

  37. 37

    Nishinaka, T., Takano, A., Doi, Y., Hashimoto, M., Nakamura, A., Matsushita, Y., Kumaki, J. & Yashima, E. Conductive metal nanowires templated by the nucleoprotein filaments, complex of DNA and RecA protein. J. Am. Chem. Soc. 127, 8120–8125 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. 38

    Ma, Y., Zhang, J., Zhang, G. & He, H. Polyaniline nanowires on Si surfaces fabricated with DNA templates. J. Am. Chem. Soc. 126, 7097–7101 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Dong, L., Hollis, T., Connolly, B. A., Wright, N. G., Horrocks, B. R. & Houlton, A. DNA-templated semiconductor nanoparticle chains and wires. Adv. Mater. 19, 1748–1751 (2007).

    Article  CAS  Google Scholar 

  40. 40

    Liqin, D., Hollis, T., Fishwick, S., Connolly, B. A., Wright, N. G., Horrocks, B. R. & Houlton, A. Synthesis, manipulation and conductivity of supramolecular polymer nanowires. Chem. A Eur. J. 13, 822–828 (2007).

    Article  CAS  Google Scholar 

  41. 41

    Farha Al-Said, S. A., Hassanien, R., Hannant, J., Galindo, M. A., Pruneanu, S., Pike, A. R., Houlton, A. & Horrocks, B. R. Templating Ag on DNA/polymer hybrid nanowires: control of the metal growth morphology using functional monomers. Electrochem. Commun. 11, 550–553 (2009).

    Article  CAS  Google Scholar 

  42. 42

    Burley, G. A., Gierlich, J., Mofid, M. R., Nir, H., Tal, S., Eichen, Y. & Carell, T. Directed DNA metallization. J. Am. Chem. Soc. 128, 1398–1399 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Braun, E., Eichen, Y., Sivan, U. & Ben-Yoseph, G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391, 775–778 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Ijiro, K., Matsuo, Y. & Hashimoto, Y. Fabrication of metal nanowires by electroless plating of DNA. e-J. Surf. Sci. Nanotechnol. 3, 82–85 (2005).

    Article  CAS  Google Scholar 

  45. 45

    Houlton, A., Pike, A. R., Angel Galindo, M. & Horrocks, B. R. DNA-based routes to semiconducting nanomaterials. Chem. Commun. 1797–1806 (2009).

  46. 46

    Watson, S. M. D., Pike, A. R., Pate, J., Houlton, A. & Horrocks, B. R. DNA-templated nanowires: morphology and electrical conductivity. Nanoscale 6, 4027–4037 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Wang, G. Q., Tanaka, H., Hong, L., Matsuo, Y., Niikura, K., Abe, M., Matsumoto, K., Ogawa, T. & Ijiro, K. Novel charge transport in DNA-templated nanowires. J. Mater. Chem. 22, 13691–13697 (2012).

    Article  CAS  Google Scholar 

  48. 48

    Negishi, R., Hasegawa, T., Terabe, K., Aono, M., Ebihara, T., Tanaka, H. & Ogawa, T. Fabrication of nanoscale gaps using a combination of self-assembled molecular and electron beam lithographic techniques. Appl. Phys. Lett. 88, 1–4 (2006).

    Article  CAS  Google Scholar 

  49. 49

    Romero, H. E. & Drndic, M. Coulomb blockade and hopping conduction in PbSe quantum dots. Phys. Rev. Lett. 95, 1–4 (2005).

    Article  CAS  Google Scholar 

  50. 50

    Cho, C.-H., Kim, B.-H. & Park, S.-J. Room-temperature Coulomb blockade effect in silicon quantum dots in silicon nitride films. Appl. Phys. Lett. 89, 13116 (2006).

    Article  CAS  Google Scholar 

  51. 51

    Azuma, Y., Hatanaka, T., Kanehara, M., Teranishi, T., Chorley, S., Prance, J., Smith, C. G. & Majima, Y. One by one single-electron transport in nanomechanical Coulomb blockade shuttle. Appl. Phys. Lett. 91, 1–4 (2007).

    Article  CAS  Google Scholar 

  52. 52

    Pearson, A. C., Liu, J., Pound, E., Uprety, B., Woolley, A. T., Davis, R. C. & Harb, J. N. DNA origami metallized site specifically to form electrically conductive nanowires. J. Phys. Chem. B 116, 10551–10560 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Schreiber, R., Kempter, S., Holler, S., Schüller, V., Schiffels, D., Simmel, S. S., Nickels, P. C. & Liedl, T. DNA origami-templated growth of arbitrarily shaped metal nanoparticles. Small 7, 1795–1799 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Geng, Y., Liu, J., Pound, E., Gyawali, S., Harb, J. N. & Woolley, A. T. Rapid metallization of lambda DNA and DNA origami using a Pd seeding method. J. Mater. Chem. 21, 12126 (2011).

    Article  CAS  Google Scholar 

  55. 55

    Keren, K., Krueger, M., Gilad, R., Ben-Yoseph, G., Sivan, U. & Braun, E. Sequence-specific molecular lithography on single DNA molecules. Science 297, 72–75 (2002).

    Article  CAS  PubMed  Google Scholar 

  56. 56

    Keren, K., Berman, R. S., Buchstab, E., Sivan, U. & Braun, E. DNA-templated carbon nanotube field-effect transistor. Science 302, 1380–1382 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. 57

    Sharma, R., Davies, A. G. & Wälti, C. Nanoscale programmable sequence-specific patterning of DNA scaffolds using RecA protein. Nanotechnology 23, 365301 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Kotlyar, A. B., Borovok, N., Molotsky, T., Fadeev, L. & Gozin, M. In vitro synthesis of uniform poly (dG)– poly (dC) by Klenow exo À fragment of polymerase I. Nucleic Acid Res. 33, 525–535 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Karthikeyan, G., Chary, K. V. R. & Rao, B. J. Fold-back structures at the distal end influence DNA slippage at the proximal end during mononucleotide repeat expansions. Nucleic Acids Res. 27, 3851–3858 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Schlötterer, C. & Tautz, D. Slippage synthesis of simple sequence DNA. Nucleic Acids Res. 20, 211–215 (1992).

    Article  PubMed  PubMed Central  Google Scholar 

  61. 61

    Ji, J., Clegg, N. J., Peterson, K. R., Jackson, A. L., Laird, C. D. & Loeb, L. A. In vitro expansion of GGC:GCC repeats: identification of the preferred strand of expansion. Nucleic Acids Res. 24, 2835–2840 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. 62

    Tanaka, A., Matsuo, Y., Hashimoto, Y. & Ijiro, K. Sequence-specifically platinum metal deposition on enzymatically synthesized DNA block copolymer. Chem. Commun. 4270–4272 (2008).

  63. 63

    Fletcher, T. M., Salazar, M. & Chen, S. Human telomerase inhibition by 7-deaza-2‘-deoxypurine nucleoside triphosphates †. Biochemistry 35, 15611–15617 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Pivoňková, H., Horáková, P., Fojtová, M. & Fojta, M. Direct voltammetric analysis of DNA modified with enzymatically incorporated 7-deazapurines. Anal. Chem. 82, 6807–6813 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Yang, I. V., Ropp, P. A. & Thorp, H. H. Toward electrochemical resolution of two genes on one electrode: Using 7-deaza analogues of guanine and adenine to prepare PCR products with differential redox activity. Anal. Chem. 74, 347–354 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. 66

    Takahara, P. M., Rosenzweig, A., Frederick, C., C., Lippard, A. & S. J. Crystal structure of double-stranded DNA containing the major adduct of the anticancer drug cisplatin. Nature 377, 649–652 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Huang, H., Zhu, L., Reid, B. R., Drobny, G. P. & Hopkins, P. B. Solution structure of a cisplatin-induced DNA interstrand cross-link. Science 270, 1842–1845 (1995).

    Article  CAS  PubMed  Google Scholar 

  68. 68

    Onoa, G. B. B., Cervantes, G., Moreno, V. & Prieto, M. J. Study of the interaction of DNA with cisplatin and other Pd(II) and Pt(II) complexes by atomic force microscopy. Nucleic Acids Res. 26, 1473–1480 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. 69

    Mitomo, H., Watanabe, Y., Matsuo, Y., Niikura, K. & Ijiro, K. Enzymatic synthesis of a DNA triblock copolymer that is composed of natural and unnatural nucleotides. Chem. Asian J. 10, 455–460 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Eidelshtein, G., Fardian-Melamed, N., Gutkin, V., Basmanov, D., Klinov, D., Rotem, D., Levi-Kalisman, Y., Porath, D. & Kotlyar, A. Synthesis and properties of novel silver-containing DNA molecules. Adv. Mater. 28, 4839–4844 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Senesi, A. J., Eichelsdoerfer, D. J., Macfarlane, R. J., Jones, M. R., Auyeung, E., Lee, B. & Mirkin, C. A. Stepwise evolution of DNA-programmable nanoparticle superlattices. Angew. Chem. Int. Ed. 52, 6624–6628 (2013).

    Article  CAS  Google Scholar 

  72. 72

    Trevino, V., Falciani, F. & Barrera-saldaña, H. A. DNA microarrays : a powerful genomic tool for biomedical and clinical research. Mol. Med. 13, 527–541 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Stoughton, R. B. Applications of DNA microarrays in biology. Annu. Rev. Biochem. 74, 53–82 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Zoppe, J. O., Cavusoglu Ataman, N., Mocny, P., Wang, J., Moraes, J. & Klok, H.-A. Surface-initiated controlled radical polymerization: state-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes. Chem. Rev. 117, 1105–1318 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Krishnamoorthy, M., Hakobyan, S., Ramstedt, M. & Gautrot, J. E. Surface-initiated polymer brushes in the biomedical field: Applications in membrane science, biosensing, cell culture, regenerative medicine and antibacterial coatings. Chem. Rev. 114, 10976–11026 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Azzaroni, O. Polymer brushes here, there, and everywhere: recent advances in their practical applications and emerging opportunities in multiple research fields. J. Polym. Sci. A Polym. Chem. 50, 3225–3258 (2012).

    Article  CAS  Google Scholar 

  77. 77

    Ayres, N. Polymer brushes: applications in biomaterials and nanotechnology. Polym. Chem. 1, 769 (2010).

    Article  CAS  Google Scholar 

  78. 78

    Brittain, W. J., Minko, S. & Brittain, W. A structural definition of polymer brushes. J. Polym. Sci. A Polym. Chem. 45, 3505–3512 (2007).

    Article  CAS  Google Scholar 

  79. 79

    Kobayashi, M., Terayama, Y., Yamaguchi, H., Terada, M., Murakami, D., Ishihara, K. & Takahara, A. Wettability and antifouling behavior on the surfaces of superhydrophilic polymer brushes. Langmuir 28, 7212–7222 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Kreer, T. Polymer-brush lubrication: a review of recent theoretical advances. Soft Matter 12, 3479–3501 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. 81

    Zhou, X., Wang, X., Shen, Y., Xie, Z. & Zheng, Z. Fabrication of arbitrary three-dimensional polymer structures by rational control of the spacing between nanobrushes. Angew. Chem. Int. Ed. 50, 6506–6510 (2011).

    Article  CAS  Google Scholar 

  82. 82

    Zhou, X., Liu, X., Xie, Z. & Zheng, Z. 3D-patterned polymer brush surfaces. Nanoscale 3, 4929 (2011).

    Article  CAS  Google Scholar 

  83. 83

    Shemer, G., Atsmon, Y., Karzbrun, E. & Bar-Ziv, R. H. Collective conformations of DNA polymers assembled on surface density gradients. J. Am. Chem. Soc. 134, 3954–3956 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. 84

    Bracha, D., Karzbrun, E., Shemer, G., Pincus, P. A. & Bar-ziv, R. H. Entropy-driven collective interactions in DNA brushes on a biochip. Proc. Natl Acad. Sci. USA 110, 4534–4538 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  85. 85

    Nakamura, S., Mitomo, H., Aizawa, M., Tani, T., Matsuo, Y., Niikura, K., Pike, A., Naya, M., Shishido, A. & Ijiro, K. DNA brush-directed vertical alignment of extensive gold nanorod array with controlled density. ACS Omega 2, 2208–2213 (2017).

    Article  CAS  Google Scholar 

  86. 86

    Baker, J. L., Widmer-Cooper, A., Toney, M. F., Geissler, P. L. & Alivisatos, A. P. Device-scale perpendicular alignment of colloidal nanorods. Nano Lett. 10, 195–201 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. 87

    Singh, A., Gunning, R. D., Ahmed, S., Barrett, C. A., English, N. J., Garate, J.-A. A. & Ryan, K. M. Controlled semiconductor nanorod assembly from solution: influence of concentration, charge and solvent nature. J. Mater. Chem. 22, 1562–1569 (2012).

    Article  CAS  Google Scholar 

  88. 88

    Thai, T., Zheng, Y., Ng, S. H., Mudie, S., Altissimo, M. & Bach, U. Self-assembly of vertically aligned gold nanorod arrays on patterned substrates. Angew. Chem. Int. Ed. 51, 8732–8735 (2012).

    Article  CAS  Google Scholar 

  89. 89

    Flauraud, V., Mastrangeli, M., Bernasconi, G. D., Butet, J., Alexander, D. T. L., Shahrabi, E., Martin, O. J. F. & Brugger, J. Nanoscale topographical control of capillary assembly of nanoparticles. Nat. Nanotechnol. 12, 73–80 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Kim, K., Han, H. S., Choi, I., Lee, C., Hong, S., Suh, S., Lee, L. P. & Kang, T. Interfacial liquid-state surface-enhanced Raman spectroscopy. Nat. Commun. 4, 2182 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. 91

    Chow, D. C., Lee, W., Zauscher, S. & Chilkoti, A. Enzymatic fabrication of DNA nanostructures : extension of a self-assembled oligonucleotide monolayer on gold arrays. J. Am. Chem. Soc. 5, 14122–14123 (2005).

    Article  CAS  Google Scholar 

  92. 92

    Chow, D. C. & Chilkoti, A. Surface-initiated enzymatic polymerization of DNA. Langmuir 23, 11712–11717 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Barbee, K. D., Chandrangsu, M. & Huang, X. Fabrication of DNA polymer brush arrays by destructive micropatterning and rolling-circle amplification. Macromol. Biosci. 11, 607–617 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. 94

    Chi, Y. S., Jung, Y. H., Choi, I. S. & Kim, Y. Surface-initiated growth of poly d(A-T) by Taq DNA polymerase. Langmuir 21, 4669–4673 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Mitomo, H., Nakamura, S., Suzuki, Y., Matsuo, Y., Niikura, K. & Ijiro, K. Preparation and characterization of double-stranded DNA brushes via surface-initiated enzymatic polymerization. J. Nanosci. Nanotechnol. in press

  96. 96

    Mitomo, H., Eguchi, A., Suzuki, Y., Matsuo, Y., Niikura, K., Nakazawa, K. & Ijiro, K. Fabrication of a novel cell culture system using DNA-grafted substrates and DNase. J. Biomed. Nanotechnol. 12, 286–295 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the ‘Dynamic Alliance for Open Innovation Bridging Human, Environment and Materials’ from the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT). This work was performed under the Cooperative Research Program of the ‘Network Joint Research Center for Materials and Devices’. A part of this work was conducted at Hokkaido University, supported by the ‘Nanotechnology Platform’ Program of the MEXT, Japan. Support from the Noguchi Institute (HM) is also acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kuniharu Ijiro.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ijiro, K., Mitomo, H. Metal nanoarchitecture fabrication using DNA as a biotemplate. Polym J 49, 815–824 (2017). https://doi.org/10.1038/pj.2017.63

Download citation

Search

Quick links