Polymer Surface and Interfaces

Direct polymer brush grafting to polymer fibers and films by surface-initiated polymerization

Abstract

Direct surface modification of polymer fibers and films by surface-initiated polymerization has been investigated. The introduction of initiating sites on polymer materials and their successive polymerization produce surface-tethered polymer chains on the polymer surface. The surface-selective modification controls the surface properties, such as wetting, lubrication and anti-fouling, without sacrificing bulk performance. Among the various procedures for introduction of initiating groups and subsequent polymerization proposed to date, this focused review article highlights our studies on polymer brush grafting to electrospun polymer fibers and polymer films through surface-initiated polymerization. We review studies focusing on grafting polymer chains to five different types of solid polymers: poly(methyl methacrylate)-based copolymers, Br-containing polyolefins, poly(vinylidene fluoride-co-trifluoroethylene), poly(butylene terephthalate), and poly(ether-ether ketone).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. 1

    Nitschke, M. in Plasma Modification of Polymer Surfaces and Plasma Polymerization (ed. Stamm M.) 203–214 (Springer, Berlin Heidelberg, 2008).

    Google Scholar 

  2. 2

    Desai, S. M. & Singh, R. P. in Surface Modification of Polyethylene (ed. Albertsson A.-C.) 231–294 (Springer, Berlin Heidelberg, 2004).

    Google Scholar 

  3. 3

    Kresta, J. E. Polymer Additives, (Springer, USA, 1984).

    Google Scholar 

  4. 4

    Hardman, S. J., Muhamad-Sarih, N., Riggs, H. J., Thompson, R. L., Rigby, J., Bergius, W. N. & Hutchings, L. R. Electrospinning superhydrophobic fibers using surface segregating end-functionalized polymer additives. Macromolecules 44, 6461–6470 (2011).

    CAS  Article  Google Scholar 

  5. 5

    Xu, F. J., Neoh, K. G. & Kang, E. T. Bioactive surfaces and biomaterials via atom transfer radical polymerization. Prog. Polym. Sci. 34, 719–761 (2009).

    CAS  Article  Google Scholar 

  6. 6

    Kang, E. T. & Zhang, Y. Surface modification of fluoropolymers via molecular design. Adv. Mater. 12, 1481–1494 (2000).

    CAS  Article  Google Scholar 

  7. 7

    Yoshikawa, C., Goto, A., Tsujii, Y., Fukuda, T., Yamamoto, K. & Kishida, A. Fabrication of high-density polymer brush on polymer substrate by surface-initiated living radical polymerization. Macromolecules 38, 4604–4610 (2005).

    CAS  Article  Google Scholar 

  8. 8

    Zhao, B. & Brittain, W. J. Polymer brushes: surface-immobilized macromolecules. Prog. Polym. Sci. 25, 677–710 (2000).

    CAS  Article  Google Scholar 

  9. 9

    Rånby, B. Surface modification of polymers by photoinitiated graft polymerization. Makromol. Chem. Macromol. Symp. 63, 55–67 (1992).

    Article  Google Scholar 

  10. 10

    Yang, W. & Rånby, B. Radical living graft polymerization on the surface of polymeric materials. Macromolecules 29, 3308–3310 (1996).

    CAS  Article  Google Scholar 

  11. 11

    Zoppe, J. O., Ataman, N.C., Mocny, P., Wang, J., Moraes, J. & Klok, H.-A. Surface-initiated controlled radical polymerization: state-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes. Chem. Rev. 117, 1105–1318 (2017).

    CAS  Article  Google Scholar 

  12. 12

    Kobayashi, M., Terayama, Y., Kikuchi, M. & Takahara, A. Chain dimensions and surface characterization of superhydrophilic polymer brushes with zwitterion side groups. Soft Matter 9, 5138–5148 (2013).

    CAS  Article  Google Scholar 

  13. 13

    Kobayashi, M., Terayama, Y., Yamaguchi, H., Terada, M., Murakami, D., Ishihara, K. & Takahara, A. Wettability and antifouling behavior on the surfaces of superhydrophilic polymer brushes. Langmuir 28, 7212–7222 (2012).

    CAS  Article  Google Scholar 

  14. 14

    Higaki, Y., Nishida, J., Takenaka, A., Yoshimatsu, R., Kobayashi, M. & Takahara, A. Versatile inhibition of marine organism settlement by zwitterionic polymer brushes. Polym. J. 47, 811–818 (2015).

    CAS  Article  Google Scholar 

  15. 15

    Higaki, Y., Kobayashi, M., Murakami, D. & Takahara, A. Anti-fouling behavior of polymer brush immobilized surfaces. Polym. J. 48, 325–331 (2016).

    CAS  Article  Google Scholar 

  16. 16

    Higaki, Y., Hatae, K., Ishikawa, T., Takanohashi, T., Hayashi, J.-I. & Takahara, A. Adsorption and desorption behavior of asphaltene on polymer-brush-immobilized surfaces. ACS Appl. Matr. Interfaces 6, 20385–20389 (2014).

    CAS  Article  Google Scholar 

  17. 17

    Higaki, Y., Fröhlich, B., Yamamoto, A., Murakami, R., Kaneko, M., Takahara, A. & Tanaka, M. Ion-specific modulation of interfacial interaction potentials between solid substrates and cell-sized particles mediated via zwitterionic, super-hydrophilic poly(sulfobetaine) brushes. J. Phys. Chem. B 121, 1396–1404 (2017).

    CAS  Article  Google Scholar 

  18. 18

    Kobayashi, M., Terayama, Y., Hosaka, N., Kaido, M., Suzuki, A., Yamada, N., Torikai, N., Ishihara, K. & Takahara, A. Friction behavior of high-density poly(2-methacryloyloxyethyl phosphorylcholine) brush in aqueous media. Soft Matter 3, 740–746 (2007).

    CAS  Article  Google Scholar 

  19. 19

    Kobayashi, M., Tanaka, H., Minn, M., Sugimura, J. & Takahara, A. Interferometry study of aqueous lubrication on the surface of polyelectrolyte brush. ACS Appl. Mater. Interfaces 6, 20365–20371 (2014).

    CAS  Article  Google Scholar 

  20. 20

    Ishihara, K., Iwasaki, Y., Ebihara, S., Shindo, Y. & Nakabayashi, N. Photoinduced graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on polyethylene membrane surface for obtaining blood cell adhesion resistance. Colloids Surf. B 18, 325–335 (2000).

    CAS  Article  Google Scholar 

  21. 21

    Moro, T., Takatori, Y., Ishihara, K., Konno, T., Takigawa, Y., Matsushita, T., Chung, U. -I., Nakamura, K. & Kawaguchi, H. Surface grafting of artificial joints with a biocompatible polymer for preventing periprosthetic osteolysis. Nat. Mater. 3, 829–836 (2004).

    CAS  Article  Google Scholar 

  22. 22

    Kyomoto, M. & Ishihara, K. Self-initiated surface graft polymerization of 2-methacryloyloxyethyl phosphorylcholine on poly(ether ether ketone) by photoirradiation. ACS Appl. Mater. Interfaces 1, 537–542 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Kyomoto, M., Moro, T., Miyaji, F., Hashimoto, M., Kawaguchi, H., Takatori, Y., Nakamura, K. & Ishihara, K. Effects of mobility/immobility of surface modification by 2-methacryloyloxyethyl phosphorylcholine polymer on the durability of polyethylene for artificial joints. J. Biomed. Mater. Res. 90A, 362–371 (2009).

    CAS  Article  Google Scholar 

  24. 24

    Kyomoto, M., Moro, T., Yamane, S., Hashimoto, M., Takatori, Y. & Ishihara, K. Poly(ether-ether-ketone) orthopedic bearing surface modified by self-initiated surface grafting of poly(2-methacryloyloxyethyl phosphorylcholine). Biomaterials 34, 7829–7839 (2013).

    CAS  Article  Google Scholar 

  25. 25

    Ishihara, K. Highly lubricated polymer interfaces for advanced artificial hip joints through biomimetic design. Polym. J. 47, 585–597 (2015).

    CAS  Article  Google Scholar 

  26. 26

    Yano, T., Yah, W. O., Yamaguchi, H., Terayama, Y., Nishihara, M., Kobayashi, M. & Takahara, A. Precise control of surface physicochemical properties for electrospun fiber mats by surface-initiated radical polymerization. Polym. J. 43, 838–848 (2011).

    CAS  Article  Google Scholar 

  27. 27

    Yano, T., Yah, W.O., Yamaguchi, H., Terayama, Y., Nishihara, M., Kobayashi, M. & Takahara, A. Preparation and surface characterization of surface-modified electrospun poly(methyl methacrylate) copolymer nanofibers. Chem. Lett. 39, 1110–1111 (2010).

    CAS  Article  Google Scholar 

  28. 28

    Matsugi, T., Saito, J., Kawahara, N., Matsuo, S., Kaneko, H., Kashiwa, N., Kobayashi, M. & Takahara, A. Surface modification of polypropylene molded sheets by means of surface-initiated ATRP of methacrylates. Polym. J. 41, 547–554 (2009).

    CAS  Article  Google Scholar 

  29. 29

    Kobayashi, M., Matsugi, T., Saito, J., Imuta, J., Kashiwa, N. & Takahara, A. Direct modification of polyolefin films by surface-initiated polymerization of a phosphobetaine monomer. Polym. Chem 4, 731–739 (2013).

    CAS  Article  Google Scholar 

  30. 30

    Kimura, T., Kobayashi, M., Morita, M. & Takahara, A. Preparation of poly(vinylidene fluoride-co-trifluoroethylene) film with a hydrophilic surface by direct surface-initiated atom transfer radical polymerization without pretreatment. Chem. Lett. 38, 446–447 (2009).

    CAS  Article  Google Scholar 

  31. 31

    Kobayashi, M., Higaki, Y., Kimura, T., Boschet, F., Takahara, A. & Ameduri, B. Direct surface modification of poly(VDF-co-TrFE) films by surface-initiated ATRP without pretreatment. RSC Adv. 6, 86373–86384 (2016).

    CAS  Article  Google Scholar 

  32. 32

    Higaki, Y., Kabayama, H., Tao, D. & Takahara, A. Surface functionalization of electrospun poly(butylene terephthalate) fibers by surface-initiated radical polymerization. Macromol. Chem. Phys. 216, 1103–1108 (2015).

    CAS  Article  Google Scholar 

  33. 33

    Chouwatat, P., Hirai, T., Higaki, K., Higaki, Y., Sue, H.-J. & Takahara, A. Aqueous lubrication of poly(etheretherketone) via surface-initiated polymerization of electrolyte monomers. Polymer 116, 549–555 (2017).

    CAS  Article  Google Scholar 

  34. 34

    Arinstein, A. & Zussman, E. Electrospun polymer nanofibers: mechanical and thermodynamic perspectives. J. Polym. Sci. B Polym. Phys. 49, 691–707 (2011).

    CAS  Article  Google Scholar 

  35. 35

    Tanaka, K., Fujii, Y., Atarashi, H., Akabori, K.-i., Hino, M. & Nagamura, T. Nonsolvents cause swelling at the interface with poly(methyl methacrylate) films. Langmuir 24, 296–301 (2008).

    CAS  Article  Google Scholar 

  36. 36

    Extrand, C. W. Origins of wetting. Langmuir 32, 7697–7706 (2016).

    CAS  Article  Google Scholar 

  37. 37

    Ran, C., Ding, G., Liu, W., Deng, Y. & Hou, W. Wetting on nanoporous alumina surface: transition between Wenzel and Cassie states controlled by surface structure. Langmuir 24, 9952–9955 (2008).

    CAS  Article  Google Scholar 

  38. 38

    Kaminsky, W. Trends in polyolefin chemistry. Macromol. Chem. Phys. 209, 459–466 (2008).

    CAS  Article  Google Scholar 

  39. 39

    Holmes-Farley, S. R., Reamey, R. H., McCarthy, T. J., Deutch, J. & Whitesides, G. M. Acid-base behavior of carboxylic acid groups covalently attached at the surface of polyethylene: The usefulness of contact angle in following the ionization of surface functionality. Langmuir 1, 725–740 (1985).

    CAS  Article  Google Scholar 

  40. 40

    Yamauchi, J., Yamaoka, A., Ikemoto, K. & Matsui, T. Reaction mechanism for ozone oxidation of polyethylene as studied by ESR and IR spectroscopies. Bull. Chem. Soc. Jpn 64, 1173–1177 (1991).

    CAS  Article  Google Scholar 

  41. 41

    Desai, S. M., Solanky, S. S., Mandale, A. B., Rathore, K. & Singh, R. P. Controlled grafting of N-isoproply acrylamide brushes onto self-standing isotactic polypropylene thin films: Surface initiated atom transfer radical polymerization. Polymer 44, 7645–7649 (2003).

    CAS  Article  Google Scholar 

  42. 42

    Imuta, J.-i., Toda, Y. & Kashiwa, N. New metallocene catalyst having an indenyl group and a fluorenyl group for ethylene-Polar monomer copolymerization. Chem. Lett. 30, 710–711 (2001).

    Article  Google Scholar 

  43. 43

    Luengo, G., Israelachvili, J. & Granick, S. Generalized effects in confined fluids: new friction map for boundary lubrication. Wear 200, 328–335 (1996).

    CAS  Article  Google Scholar 

  44. 44

    Stein, R. S. & Misra, A. Morphological studies on polybutylene terephthalate. J. Polym. Sci. Polym. Phys. Ed. 18, 327–342 (1980).

    CAS  Article  Google Scholar 

  45. 45

    Fadeev, A. Y. & McCarthy, T. J. Surface modification of poly (ethylene terephthalate) to prepare surfaces with silica-like reactivity. Langmuir 14, 5586–5593 (1998).

    CAS  Article  Google Scholar 

  46. 46

    Oezcam, A. E., Roskov, K. E., Spontak, R. J. & Genzer, J. Generation of functional PET microfibers through surface-initiated polymerization. J. Mater. Chem. 22, 5855–5864 (2012).

    CAS  Article  Google Scholar 

  47. 47

    Ameduri, B. From vinylidene fluoride (VDF) to the applications of VDF-containing polymers and copolymers: recent developments and future trends. Chem. Rev. 109, 6632–6686 (2009).

    CAS  Article  Google Scholar 

  48. 48

    Kawai, H. The piezoelectricity of poly(vinylidene fluoride). Jpn J. Appl. Phys. 8, 975–976 (1969).

    CAS  Article  Google Scholar 

  49. 49

    Omote, K., Ohigashi, H. & Koga, K. Temperature dependence of elastic, dielectric, and piezoelectric properties of ‘single crystalline’ films of vinylidene fluoride trifluoroethylene copolymer. J. Appl. Phys. 81, 2760–2769 (1997).

    CAS  Article  Google Scholar 

  50. 50

    Xue, J., Chen, L., Wang, H. L., Zhang, Z. B., Zhu, X. L., Kang, E. T. & Neoh, K. G. Stimuli-responsive multifunctional membranes of controllable morphology from poly(vinylidene fluoride)-graft-poly[2-(N N-dimethylamino)ethyl methacrylate] prepared via atom transfer radical polymerization. Langmuir 24, 14151–14158 (2008).

    CAS  Article  Google Scholar 

  51. 51

    Hester, J. F., Banerjee, P., Won, Y. Y., Akthakul, A., Acar, M. H. & Mayes, A. M. ATRP of amphiphilic graft copolymers based on PVDF and their use as membrane additives. Macromolecules 35, 7652–7661 (2002).

    CAS  Article  Google Scholar 

  52. 52

    Kim, Y. W., Lee, D. K., Lee, K. J. & Kim, J. H. Single-step synthesis of proton conducting poly(vinylidene fluoride) (PVDF) graft copolymer electrolytes. Eur. Polym. J. 44, 932–939 (2008).

    CAS  Article  Google Scholar 

  53. 53

    Samanta, S., Chatterjee, D. P., Layek, R. K. & Nandi, A. K. Multifunctional porous poly(vinylidene fluoride)-graft-poly(butyl methacrylate) with good Li+ ion conductivity. Macromol. Chem. Phys. 212, 134–149 (2010).

    Article  Google Scholar 

  54. 54

    Lee, Y. & Porter, R. S. Double-melting behavior of poly(ether ether ketone). Macromolecules 20, 1336–1341 (1987).

    CAS  Article  Google Scholar 

  55. 55

    Denga, J., Wanga, L., Liu, L. & Yang, W. Developments and new applications of UV-induced surface graft polymerizations. Prog. Polym. Sci. 34, 156–193 (2009).

    Article  Google Scholar 

  56. 56

    Yamazoe, K., Higaki, Y., Inutsuka, Y., Miyawaki, J., Cui, Y.-T., Takahara, A. & Harada, Y. Enhancement of the hydrogen-bonding network of water confined in a polyelectrolyte brush. Langmuir 33, 3954–3959 (2017).

    CAS  Article  Google Scholar 

  57. 57

    Kobayashi, M., Ishihara, K. & Takahara, A. Neutron reflectivity study of the swollen structure of polyzwitterion and polyeletrolyte brushes in aqueous solution. J. Biomater. Sci. Polym. Ed. 25, 1673–1686 (2014).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Photon and Quantum Basic Research Coordinated Development Program of the Ministry of Education, Culture, Sports, Science and Technology, Japan. This work was performed under the Cooperative Research Program of ‘Network Joint Research Center for Materials and Devices’.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Atsushi Takahara.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Higaki, Y., Kobayashi, M., Hirai, T. et al. Direct polymer brush grafting to polymer fibers and films by surface-initiated polymerization. Polym J 50, 101–108 (2018). https://doi.org/10.1038/pj.2017.61

Download citation

Further reading