Abstract
Conjugated polymer nanoparticles in aqueous media have received much attention because of their specific electronic, optical and medicinal properties. However, flexible hydrophilic chains such as oligo(ethylene oxide) groups on the outer surface of the nanoparticles may induce increases in the particle size resulting from the aggregation of nanoparticles in water. We designed a bolaamphiphilic monomer to produce polythiophene nanoparticles. The resulting nanoparticles exhibit multichromic responses to solvent, temperature and acid/base that can be detected by the naked eye. The nanoparticles, with an average diameter of 170 nm and a large zeta potential of −66.6 mV, remain stable in tetrahydrofuran/water mixtures even after 8 months. As the concentration of water increases, the nanoparticles turn from yellow to violet because the molecular conformation of the thiophene units changes. The nanoparticles dispersed in water display a reversible thermochromic response between 20 and 90 °C, which originates from their different morphologies of an amorphous solid below and an isotropic liquid above their melting point of 60 °C. Adding hydrobromic acid yields an almost colorless dispersion because of the formation of polarons (p-doping), and the nanoparticles revert to their initial violet dispersion upon bubbling with ammonia gas owing to the dedoping of the polythiophene nanoparticles.
Access options
Subscribe to Journal
Get full journal access for 1 year
$259.00
only $21.58 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Rent or Buy article
Get time limited or full article access on ReadCube.
from$8.99
All prices are NET prices.









References
- 1
Thomas, S. W., Joly, G. D. & Swager, T. M. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem. Rev. 107, 1339–1386 (2007).
- 2
Hoeben, F. J. M., Jonkheijm, P., Meijer, E. W. & Schenning, A. P. H. J. About supramolecular assemblies of π-conjugated systems. Chem. Rev. 105, 1491–1546 (2005).
- 3
Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).
- 4
Stuart, M. A. C., Huck, W. T., Genzer, J., Müller, M., Ober, C., Stamm, M., Sukhorukov, G. B., Szleifer, I., Tsukruk, V. V., Urban, M., Winnik, F., Zauscher, S., Luzinov, I. & Minko, S. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101–113 (2010).
- 5
Lee, J., Pyo, M., Lee, S. H., Kim, J., Ra, M., Kim, W. Y., Park, B. J., Lee, C. W. & Kim, J. M. Hydrochromic conjugated polymers for human sweat pore mapping. Nat. Commun. 5, 3736 (2014).
- 6
Lee, J., Chang, H. T., An, H., Ahn, S., Shim, J. & Kim, J. M. A Protective Layer Approach to Solvatochromic Sensors. Nat. Commun. 4, 2461 (2013).
- 7
Lee, E., Hammer, B., Kim, J. K., Page, Z., Emrick, T. & Hayward, R. C. Hierarchical helical assembly of conjugated poly(3-hexylthiophene)-block-poly(3-triethylene glycol thiophene) diblock copolymers. J. Am. Chem. Soc. 133, 10390–10393 (2011).
- 8
Lévesque, I., Bazinet, P. & Roovers, J. Optical properties and dual electrical and ionic conductivity in poly(3-methylhexa(oxyethylene)oxy-4-methylthiophene). Macromolecules 33, 2952–2957 (2000).
- 9
Turchetti, D. A., Domingues, R. A., Zanlorenzi, C., Nowacki, B., Atvars, T. D. Z. & Akcelrud, L. C. A photophysical interpretation of the thermochromism of a polyfluorene derivative-europium complex. J. Phys. Chem. C 118, 30079–30086 (2014).
- 10
Richards, C. E. & Phillips, R. T. Solvatochromic effects on the photoinduced charge-transfer states in donor-acceptor substituted polydioctylfluorenes. Chem. Phys. Chem. 12, 2831–2835 (2011).
- 11
Pecher, J. & Mecking, S. Nanoparticles of conjugated polymers. Chem. Rev. 110, 6260–6279 (2010).
- 12
Tuncel, D. & Demir, H. V. Conjugated polymer nanoparticles. Nanoscale 2, 484–494 (2010).
- 13
Ong, B. S., Wu, Y., Liu, P. & Gardner, S. Structurally ordered polythiophene nanoparticles for high-performance organic thin-film transistors. Adv. Mater. 17, 1141–1144 (2005).
- 14
Palner, M., Pu, K., Shao, S. & Rao, J. Semiconducting polymer nanoparticles with persistent near-infrared luminescence for in vivo optical imaging. Angew. Chem. Int. Ed. 54, 11477–11480 (2015).
- 15
Pu, K., Shuhendler, A. J., Jokerst, J. V., Mei, J., Gambhir, S. S., Bao, Z. & Rao, J. Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol. 9, 233–239 (2014).
- 16
Xiong, L., Shuhendler, A. J. & Rao, J. Self-luminescing BRET-FRET near-infrared dots for in vivo lymph-node mapping and tumour imaging. Nat. Commun. 3, 1193 (2012).
- 17
Wu, C. & Chiu, D. T. Highly fluorescent semiconducting polymer dots for biology and medicine. Angew. Chem. Int. Ed. 52, 3086–3109 (2013).
- 18
Moon, J. H., Mendez, E., Kim, Y. & Kaur, A. Conjugated polymer nanoparticles for small interfering RNA delivery. Chem. Commun. 47, 8370–8372 (2011).
- 19
Das, S., Samanta, S., Chatterjee, D. P. & Nandi, A. K. Thermosensitive water-soluble poly(ethylene glycol)-based polythiophene graft copolymers. J. Polym. Sci. Part A 51, 1417–1427 (2013).
- 20
Moon, J. H., Deans, R., Krueger, E. & Hancock, L. F. Capture and detection of a quencher labeled oligonucleotide by poly(phenylene ethynylene) particles. Chem. Commun. 104–105 (2003).
- 21
Brustolin, F., Goldoni, F., Meijer, E. W. & Sommerdijk, N. A. J. M. Highly ordered structures of amphiphilic polythiophenes in aqueous media. Macromolecules 35, 1054–1059 (2002).
- 22
Gilbert, T. W., Sellaro, T. L. & Badylak, S. F. Decellularization of tissues and organs. Biomaterials 27, 3675–3683 (2006).
- 23
Garvalov, B. K., Foss, F., Henze, A. T., Bethani, I., Gräf-Höchst, S., Singh, D., Filatova, A., Dopeso, H., Seidel, S., Damm, M., Acker-Palmer, A. & Acker, T. PHD3 regulates EGFR internalization and signalling in tumours. Nat. Commun. 5, 5577 (2014).
- 24
Wu, X., Liu, H., Liu, J., Haley, K. N., Treadway, J. A., Larson, J. P., Ge, N., Peale, F. & Bruchez, M. P. Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21, 41–46 (2003).
- 25
Mei, J. & Bao, Z. Side chain engineering in solution-processable conjugated polymers. Chem. Mater. 26, 604–615 (2014).
- 26
Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005).
- 27
Wu, C., Szymanski, C. & McNeill, J. Preparation and encapsulation of highly fluorescent conjugated polymer nanoparticles. Langmuir 22, 2956–2960 (2006).
- 28
Qin, G. & Cai, C. Oxidative degradation of oligo(ethylene glycol)-terminated monolayers. Chem. Commun. 5112–5114 (2009).
- 29
Matthews, J. R., Goldoni, F., Schenning, A. P. H. J. & Meijer, E. W. Non-ionic polythiophenes: a non-aggregating folded structure in water. Chem. Commun. 5503–5505 (2005).
- 30
Crosby, G. A. & Demas, J. N. Measurement of photoluminescence quantum yields. Review. J. Phys. Chem. 75, 991–1024 (1971).
- 31
Li, C., Numata, M., Bae, A. H., Sakurai, K. & Shinkai, S. Self-assembly of supramolecular chiral insulated molecular wire. J. Am. Chem. Soc. 127, 4548–4549 (2005).
- 32
Lai, S. K., O'Hanlon, D. E., Harrold, S., Man, S. T., Wang, Y. Y., Cone, R. & Hanes, J. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc. Natl. Acad. Sci. USA 104, 1482–1487 (2007).
- 33
Chen, K., Liang, D., Tian, J., Shi, L. & Zhao, H. In-situ polymerization at the interfaces of micelles: a ‘grafting from’ method to prepare micelles with mixed coronal chains. J. Phys. Chem. B 112, 12612–12617 (2008).
- 34
Lévesque, I. & Leclerc, M. Ionochromic and thermochromic phenomena in a regioregular polythiophene derivative bearing oligo(oxyethylene) side chains. Chem. Mater. 8, 2843–2849 (1996).
- 35
Kim, Y. H., Hotta, S. & Heeger, A. J. Infrared photoexcitation and doping studies of poly(3-methylthienylene). Phys. Rev. B 36, 7486–7490 (1987).
- 36
Yamamoto, J. & Furukawa, Y. Electronic and vibrational spectra of positive polarons and bipolarons in regioregular poly(3-hexylthiophene) doped with ferric chloride. J. Phys. Chem. B 119, 4788–4794 (2015).
- 37
Kim, Y. H., Spiegel, D., Hotta, S. & Heeger, A. J. Photoexcitation and doping studies of poly(3-hexylthienylene). Phys. Rev. B 38, 5490–5495 (1988).
- 38
Pron, A., Louarn, G., Lapkowski, M., Zagorska, M., Glowczy-Zubek, J. & Lefrant, S. ‘In situ’ Raman spectroelectrochemical studies of poly(3,3'-dibutoxy-2,2'-bithiophene). Macromolecules 28, 4644–4649 (1995).
Acknowledgements
We thank Dr Daisuke Hashizume and Ms Tomoka Kikitsu of the Materials Characterization Support Unit, RIKEN Center for Emergent Matter Science (CEMS), for the X-ray diffraction and TEM measurements and for their valuable comments and discussion. We also thank Professor Yu Nagase and Mr Tomoki Mimura of Tokai University for the GPC measurements and their comments. We acknowledge Dr Keisuke Tajima of the Emergent Functional Polymers Research Team, RIKEN CEMS, for the electrical conductivity measurements. We also thank Dr Zhaomin Hou and Dr Masayoshi Nishiura of the Organometallic Chemistry Laboratory, RIKEN, for the thermogravimetric analysis and DSC measurements. We thank Mr Takeo Soejima of the Applicative Solution Laboratory Division, JASCO, for the Raman measurements and technical support. This work was partially supported by a Grant-in-Aid for Scientific Research (C) (No. 15K05639) to MK from the Ministry of Education, Culture, Sports, Science and Technology of Japan.
Author information
Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no conflict of interest.
Additional information
Supplementary Information accompanies the paper on Polymer Journal website
Supplementary information
Rights and permissions
About this article
Cite this article
Salikolimi, K., Kawamoto, M., He, P. et al. Polythiophene nanoparticles that display reversible multichromism in aqueous media. Polym J 49, 429–437 (2017). https://doi.org/10.1038/pj.2017.5
Received:
Revised:
Accepted:
Published:
Issue Date:
Further reading
-
Noncovalent Modification of Single-Walled Carbon Nanotubes Using Thermally Cleavable Polythiophenes for Solution-Processed Thermoelectric Films
ACS Applied Materials & Interfaces (2019)
-
Alkyl-end phenanthroimidazole modification of benzotriazole based conjugated polymers for optoelectronic applications
Synthetic Metals (2018)
-
An electrochemical biosensor based on conductive colloid particles self-assembled from poly(3-thiophenecarboxylic acid) and chitosan
Journal of Applied Polymer Science (2018)