Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Supramolecular Polymers

Functional liquid-crystalline polymers and supramolecular liquid crystals

Abstract

The design and functions of liquid-crystalline (LC) polymers with classifying them into conventional-, supramolecular-, dendritic- and network-type LC polymers are described. LC polymers show new functions as new devices in the field of energy and environment by incorporating mesogenic moieties exhibiting photonic, electronic and ionic functions. Supramolecular LC polymers show dynamic and unique properties because the mesogenic moieties are built with non-covalent interactions. Dendritic-type LC polymers exhibit liquid crystallinity by nanosegregation of aromatic and aliphatic moieties. Dendritic fork-like mesogens have also been prepared. A variety of nonmesogeic functional building blocks including fullerene, π-conjugated moieties, catenane, rotaxane and others can be incorporated into LC phases by attaching these dendritic moieties. LC networks are constructed in situ polymerization of polymerizable nematic or nanostructured liquid crystals. The specific characteristics of the LC networks have generated new research trends to develop well-defined polymers that exhibit optical, transport and separation properties. In these materials, through suitable design of LC monomers, the preservation of smectic, columnar and bicontinuous cubic phases has been successfully used for the development of membranes with one-dimensional, two-dimensional and three-dimensional nanostructures.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

References

  1. Goodby, J. W., Collings, P. J., Kato, T., Tschierske, C., Gleeson, H. F. & Raynes, P. (eds) Handbook of Liquid Crystals, 2nd edn (Wiley-VCH, Weinheim, Germany, 2014).

  2. Demus, D., Goodby, J. W., Gray, G. W., Spiess, H.-W. & Vill, V. (eds) Handbook of Liquid Crystals (Wiley-VCH, Weinheim, Germany, 1998).

  3. Collyer, A. A. (ed.) Liquid Crystal Polymers: From Structures to Applications (Elsevier, London, UK, 1992).

  4. Kwolek, S. L. & Morgan, P. W. Process for the production of a highly orientable, crystallizable, filament forming polyamide. US Patent 3287323 (1966).

  5. Jackson, W. J. Jr & Kuhfuss, H. F. Liquid crystal polymers. I. Preparation and properties of p-hydroxybenzoic acid copolyesters. J. Polym. Sci. Polym. Chem. Ed. 14, 2043–2058 (1976).

    CAS  Article  Google Scholar 

  6. Lenz, R. W. Synthesis and properties of thermotropic liquid crystal polymers with main chain mesogenic units. Polym. J. 17, 105–115 (1985).

    CAS  Article  Google Scholar 

  7. Ober, C. K ., Jin, J.-I ., Zhou, Q. & Lenz, R. W. Liquid crystal polymers with flexible spacers in the main chain. Adv. Polym. Sci. 58, 103–146 (1985).

    Google Scholar 

  8. Ringsdorf, H. & Schneller, A. Synthesis, structure and properties of liquid crystalline polymers. Br. Polym. J. 13, 43–46 (1981).

    CAS  Article  Google Scholar 

  9. Finkelmann, H. & Rehage, G. Liquid crystal side chain polymers. Adv. Polym. Sci. 60/61, 99–172 (1984).

    CAS  Article  Google Scholar 

  10. Shibaev, V. P. & Plate, N. A. Thermotropic liquid-crystalline polymers with mesogenic side groups. Adv. Polym. Sci. 60/61, 173–252 (1984).

    CAS  Article  Google Scholar 

  11. O’Neill, M. & Kelly, S. M. Ordered materials for organic electronics and photonics. Adv. Mater. 23, 566–584 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. McCulloch, I ., Heeney, M ., Bailey, C ., Genevicius, K ., MacDonald, I ., Shkunov, M ., Sparrowe, D ., Tierney, S ., Wagner, R ., Zhang, W ., Chabinyc, M. L ., Kline, R. J ., McGehee, M. D. & Toney, M. F. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 5, 328–333 (2006).

    CAS  Article  PubMed  Google Scholar 

  13. Ikeda, T ., Horiuchi, S ., Karanjit, D. B ., Kurihara, S. & Tazuke, S. Photochemically induced isothermal phase transition in polymer liquid crystals with mesogenic phenyl benzoate side chains. 1. Calorimetric studies and order parameters. Macromolecules 23, 36–42 (1990).

    CAS  Article  Google Scholar 

  14. Kim, S ., Ogata, T. & Kurihara, S. Azobenzene-containing polymers for photonic crystal materials. Polym. J. 49, 407–412 (2017).

    CAS  Article  Google Scholar 

  15. Thünemann, A. F ., Kubowicz, S ., Burger, C ., Watson, M. D ., Tchebotareva, N. & Müllen, K. α-helical-within-discotic columnar structures of a complex between poly(ethylene oxide)-block-poly(L-lysine) and a hexa-peri-hexabenzocoronene. J. Am. Chem. Soc. 125, 352–356 (2003).

    Article  CAS  PubMed  Google Scholar 

  16. Matsui, A ., Funahashi, M ., Tsuji, T. & Kato, T. High hole mobility for a side-chain liquid-crystalline smectic polysiloxane exhibiting a nanosegregated structure with a terthiophene moiety. Chem. Eur. J. 16, 13465–13472 (2010).

    CAS  Article  PubMed  Google Scholar 

  17. Kumar, M. & Kumar, S. Liquid crystals in photovoltaics: a new generation of organic photovoltaics. Polym. J. 49, 85–111 (2017).

    CAS  Article  Google Scholar 

  18. Xiao, Y ., Zeng, D ., Mazur, L. M ., Castiglione, A ., Lacaze, E ., Heinrich, B ., Donnio, B ., Kreher, D ., Attias, A.-J ., Ribierre, J.-C. & Mathevet, F. A new class of nanostructured supramolecular organic semiconductors based on intertwined multi-lamellar co-assemblies in π-conjugated liquid-crystalline side-chain polymers. Polym. J. 49, 31–39 (2017).

    CAS  Article  Google Scholar 

  19. Kato, T ., Yoshio, M ., Ichikawa, T ., Soberats, B ., Ohno, H. & Funahashi, M. Transport of ions and electrons in nanostructured liquid crystals. Nat. Rev. Mater 2, 17001 (2017).

    Article  Google Scholar 

  20. Kishimoto, K ., Yoshio, M ., Mukai, T ., Yoshizawa, M ., Ohno, H. & Kato, T. Nanostructured anisotropic ion-conductive films. J. Am. Chem. Soc. 125, 3196–3197 (2003).

    CAS  Article  PubMed  Google Scholar 

  21. Hoshino, K ., Yoshio, M ., Mukai, T ., Kishimoto, K ., Ohno, H. & Kato, T. Nanostructured ion-conductive films: layered assembly of a side-chain liquid-crystalline polymer with an imidazolium ionic moiety. J. Polym. Sci. A Polym. Chem. 41, 3486–3492 (2003).

    CAS  Article  Google Scholar 

  22. Kishimoto, K ., Suzawa, T ., Yokota, T ., Mukai, T ., Ohno, H. & Kato, T. Nano-segregated polymeric film exhibiting high ionic conductivities. J. Am. Chem. Soc. 127, 15618–15623 (2005).

    CAS  Article  PubMed  Google Scholar 

  23. Percec, V ., Johansson, G ., Heck, J ., Ungar, G. & Batty, S. V. Molecular recognition directed self-assembly of supramolecular cylindrical channel-like architectures from 6,7,9,10,12,13,15,16-octahydro-1,4,7,10,13-pentaoxabenzocyclopentadecen-2-ylmethyl 3,4,5-tris(p-dodecyloxybenzyloxy)benzoate. J. Chem. Soc. Perkin Trans. 1, 1411–1420 (1993).

    Article  Google Scholar 

  24. Percec, V ., Johansson, G. & Rodenhouse, R. Molecular recognition directed phase transitions in side-chain liquid crystalline polymers containing crown ethers. Macromolecules 25, 2563–2565 (1992).

    CAS  Article  Google Scholar 

  25. Ikeda, T ., Mamiya, J. & Yu, Y. Photomechanics of liquid-crystalline elastomers and other polymers. Angew. Chem. Int. Ed. Engl. 46, 506–528 (2007).

    CAS  Article  PubMed  Google Scholar 

  26. Shishido, A. Rewritable holograms based on azobenzene-containing liquid-crystalline polymers. Polym. J. 42, 525–533 (2010).

    CAS  Article  Google Scholar 

  27. Yamamoto, T ., Kimura, T ., Komura, M ., Suzuki, Y ., Iyoda, T ., Asaoka, S. & Nakanishi, H. Block copolymer permeable membrane with visualized high-density straight channels of poly(ethylene oxide). Adv. Funct. Mater. 21, 918–926 (2011).

    CAS  Article  Google Scholar 

  28. Komiyama, H ., Nishiyama, H ., Sawayama, J ., Iyoda, T. & Sanji, T. Synthesis and microphase-separated nanostructures of P4VP-based amphiphilic liquid-crystalline block copolymer. Polym. J. 47, 571–575 (2015).

    CAS  Article  Google Scholar 

  29. Kato, T. & Fréchet, J. M. J. Hydrogen bonding and the self-assembly of supramolecular liquid-crystalline materials. Macromol. Symp. 98, 311–326 (1995).

    CAS  Article  Google Scholar 

  30. Kato, T ., Mizoshita, N. & Kishimoto, K. Functional liquid-crystalline assemblies: self-organized soft materials. Angew. Chem. Int. Ed. Engl. 45, 38–68 (2006).

    CAS  Article  Google Scholar 

  31. Kato, T. Hydrogen-bonded liquid crystals: molecular self-assembly for dynamically functional materials. Struct. Bond. 96, 95–146 (2000).

    CAS  Article  Google Scholar 

  32. Kato, T ., Mizoshita, N. & Kanie, K. Hydrogen-bonded liquid crystalline materials: supramolecular polymeric assembly and the induction of dynamic function. Macromol. Rapid Commun. 22, 797–814 (2001).

    CAS  Article  Google Scholar 

  33. Kato, T. & Fréchet, J. M. J. Development of supramolecular hydrogen-bonded liquid crystals and its impact on liquid-crystalline and materials science. Liq. Cryst. 33, 1429–1433 (2006).

    CAS  Article  Google Scholar 

  34. Ciferri, A. Supramolecular Polymers, 2nd edn (Taylor & Francis, London, UK, 2005).

  35. Lehn, J.-M. Supramolecular Chemistry: Concepts and Perspectives (VCH, Weinheim, Germany, 1995).

  36. Rowan, S. J. & Mather, P. T. Supramolecular interactions in the formation of thermotropic liquid crystalline polymers. Struct. Bond. 128, 119–149 (2008).

    CAS  Article  Google Scholar 

  37. Kato, T. & Fréchet, J. M. J. Stabilization of a liquid-crystalline phase through noncovalent interaction with a polymer side chain. Macromolecules 22, 3818–3819 (1989).

    CAS  Article  Google Scholar 

  38. Fouquey, C ., Lehn, J.-M. & Levelut, A.-M. Molecular recognition directed self-assembly of supramolecular liquid crystalline polymers from complementary chiral components. Adv. Mater. 2, 254–257 (1990).

    CAS  Article  Google Scholar 

  39. Alexander, C ., Jariwala, C. P ., Lee, C. M. & Griffin, A. C. Self-assembly of main chain liquid crystalline polymers via heteromeric hydrogen bonding. Macromol. Symp. 77, 283–294 (1994).

    CAS  Article  Google Scholar 

  40. Kato, T. & Fréchet, J. M. J. A new approach to mesophase stabilization through hydrogen bonding molecular interactions in binary mixtures. J. Am. Chem. Soc. 111, 8533–8534 (1989).

    CAS  Article  Google Scholar 

  41. Ponomarenko, S. A ., Rebrov, E. A ., Bobrovsky, A. Y ., Boiko, N. I ., Muzafarov, A. M. & Shibaev, V. P. Liquid crystalline carbosilane dendrimers: first generation. Liq. Cryst. 21, 1–12 (1996).

    CAS  Article  Google Scholar 

  42. Baars, M. W. P. L ., Söntjens, S. H. M ., Fischer, H. M ., Peerlings, H. W. I. & Meijer, E. W. Liquid-crystalline properties of poly(propylene imine) dendrimers functionalized with cyanobiphenyl mesogens at the periphery. Chem. Eur. J. 4, 2456–2466 (1998).

    CAS  Article  Google Scholar 

  43. Rosen, B. M ., Wilson, C. J ., Wilson, D. A ., Peterca, M ., Imam, M. R. & Percec, V. Dendron-mediated self-assembly, disassembly, and self-organization of complex systems. Chem. Rev. 109, 6275–6540 (2009).

    CAS  Article  PubMed  Google Scholar 

  44. Sagara, Y. & Kato, T. Mechanically induced luminescence changes in molecular assemblies. Nat. Chem. 1, 605–610 (2009).

    CAS  Article  PubMed  Google Scholar 

  45. Krause, S ., Zander, F ., Bergmann, G ., Brandt, H ., Wertmer, H. & Finkelmann, H. Nematic main-chain elastomers: coupling and orientational behavior. C. R. Chim. 12, 85–104 (2009).

    CAS  Article  Google Scholar 

  46. Broer, D. J ., Bastiaansen, C. M. W ., Debije, M. G. & Schenning, A. P. H. J. Functional organic materials based on polymerized liquid-crystal monomers: supramolecular hydrogen-bonded systems. Angew. Chem. Int. Ed. Engl. 51, 7102–7109 (2012).

    CAS  Article  PubMed  Google Scholar 

  47. White, T. J. & Broer, D. J. Programmable and adaptive mechanics with liquid crystal polymer networks and elastomers. Nat. Mater. 14, 1087–1098 (2015).

    CAS  Article  PubMed  Google Scholar 

  48. Yoshio, M ., Kagata, T ., Hoshino, K ., Mukai, T ., Ohno, H. & Kato, T. One-dimensional ion-conductive polymer films: alignment and fixation of ionic channels formed by self-organization of polymerizable columnar liquid crystals. J. Am. Chem. Soc. 128, 5570–5577 (2006).

    CAS  Article  PubMed  Google Scholar 

  49. Gin, D. L ., Bara, J. E ., Noble, R. D. & Elliott, B. J. Polymerized lyotropic liquid crystal assemblies for membrane applications. Macromol. Rapid Commun. 29, 367–389 (2008).

    CAS  Article  Google Scholar 

  50. Kumar, U ., Kato, T. & Fréchet, J. M. J. Use of intermolecular hydrogen bonding for the induction of liquid crystallinity in the side chain of polysiloxanes. J. Am. Chem. Soc. 114, 6630–6639 (1992).

    CAS  Article  Google Scholar 

  51. Kumar, U ., Fréchet, J. M. J ., Kato, T ., Ujiie, S. & Iimura, K. Induction of ferroelectricity in polymeric systems through hydrogen bonding. Angew. Chem. Int. Ed. Engl. 31, 1531–1533 (1992).

    Article  Google Scholar 

  52. Araki, K ., Kato, T ., Kumar, U. & Fréchet, J. M. J. Dielectric properties of a hydrogen-bonded liquid-crystalline side-chain polymer. Macromol. Rapid Commun. 16, 733–739 (1995).

    CAS  Article  Google Scholar 

  53. Kato, T ., Nakano, M ., Moteki, T ., Uryu, T. & Ujiie, S. Supramolecular liquid-crystalline side-chain polymers built through a molecular recognition process by double hydrogen bonds. Macromolecules 28, 8875–8876 (1995).

    CAS  Article  Google Scholar 

  54. Kato, T ., Kihara, H ., Ujiie, S ., Uryu, T. & Fréchet, J. M. J. Structures and properties of supramolecular liquid-crystalline side-chain polymers built through intermolecular hydrogen bonds. Macromolecules 29, 8734–8739 (1996).

    CAS  Article  Google Scholar 

  55. Kato, T ., Hirota, N ., Fujishima, A. & Fréchet, J. M. J. Supramolecular hydrogen-bonded liquid-crystalline polymer complexes. Design of side-chain polymers and a host-guest system by noncovalent interaction. J. Polym. Sci. A 34, 57–62 (1996).

    CAS  Article  Google Scholar 

  56. Brandys, F. A. & Bazuin, C. G. Mixtures of an acid-functionalized mesogen with poly(4-vinylpyridine). Chem. Mater. 8, 83–92 (1996).

    CAS  Article  Google Scholar 

  57. Bazuin, C. G. & Brandys, F. A. Novel liquid-crystalline polymeric materials via noncovalent ‘grafting’. Chem. Mater. 4, 970–972 (1992).

    CAS  Article  Google Scholar 

  58. Bazuin, C. G ., Brandys, F. A ., Eve, T. M. & Plante, M. Use of noncovalent interactions to form novel liquid crystalline polymeric materials. Macromol. Symp. 84, 183–196 (1994).

    CAS  Article  Google Scholar 

  59. Stewart, D. & Imrie, C. T. Supramolecular side-chain liquid-crystal polymers. J. Mater. Chem. 5, 223–228 (1995).

    CAS  Article  Google Scholar 

  60. Kawakami, T. & Kato, T. Use of intermolecular hydrogen bonding between imidazolyl moieties and carboxylic acids for the supramolecular self-association of liquid-crystalline side-chain polymers and networks. Macromolecules 31, 4475–4479 (1998).

    CAS  Article  Google Scholar 

  61. Kato, T ., Kubota, Y ., Uryu, T. & Ujiie, S. Self-assembly of a mesogenic polyamide: induction and significant stabilization of a liquid-crystalline phase through complexation of a phenylbenzoic acid with a polymer backbone derived from 2,6-bis(amino)pyridine units. Angew. Chem. Int. Ed. Engl. 36, 1617–1618 (1997).

    CAS  Article  Google Scholar 

  62. Kato, T ., Ihata, O ., Ujiie, S ., Tokita, M. & Watanabe, J. Self-assembly of liquid-crystalline polyamide complexes through the formation of double hydrogen bonds between a 2,6-bis(amino)pyridine moiety and benzoic acids. Macromolecules 31, 3551–3555 (1998).

    CAS  Article  Google Scholar 

  63. Ihata, O ., Yokota, H ., Kanie, K ., Ujiie, S. & Kato, T. Induction of mesophases through the complexation between benzoic acids with lateral groups and polyamides containing a 2,6-diaminopyridine moiety. Liq. Cryst. 27, 69–74 (2000).

    CAS  Article  Google Scholar 

  64. Brienne, M.-J ., Gabard, J ., Lehn, J.-M. & Stibor, I. Macroscopic expression of molecular recognition. Supramolecular liquid crystalline phases induced by association of complementary heterocyclic components. J. Chem. Soc. Chem. Commun. 1868–1870 (1989).

  65. Kotera, M ., Lehn, J.-M. & Vigneron, J.-P. Self-assembled supramolecular rigid rods. J. Chem. Soc. Chem. Commun. 197–199 (1994).

  66. Würthner, F ., Yao, S ., Heise, B. & Tschierske, C. Hydrogen bond directed formation of liquid-crystalline merocyanine dye assemblies. Chem. Commun. 2260–2261 (2001).

  67. Kato, T ., Kihara, H ., Kumar, U ., Uryu, T. & Fréchet, J. M. J. A liquid-crystalline polymer network built by molecular self-assembly through intermolecular hydrogen bonding. Angew. Chem. Int. Ed. Engl. 33, 1644–1645 (1994).

    Article  Google Scholar 

  68. Kihara, H ., Kato, T ., Uryu, T. & Fréchet, J. M. J. Supramolecular liquid-crystalline networks built by self-assembly of multifunctional hydrogen-bonding molecules. Chem. Mater. 8, 961–968 (1996).

    CAS  Article  Google Scholar 

  69. Kihara, H ., Kato, T ., Uryu, T. & Fréchet, J. M. J. Induction of a cholesteric phase via self-assembly in supramolecular networks built of non-mesomorphic molecular components. Liq. Cryst. 24, 413–418 (1998).

    CAS  Article  Google Scholar 

  70. van Nunen, J. L. M ., Folmer, B. F. B. & Nolte, R. J. M. Induction of liquid crystallinity by host-guest interactions. J. Am. Chem. Soc. 119, 283–291 (1997).

    CAS  Article  Google Scholar 

  71. Castellano, R. K ., Nuckolls, C ., Eichhorn, S. H ., Wood, M. R ., Lovinger, A. J. & Rebek, J. Jr. Hierarchy of order in liquid crystalline polycaps. Angew. Chem. Int. Ed. Engl. 38, 2603–2606 (1999).

    CAS  Article  PubMed  Google Scholar 

  72. Castellano, R. K ., Clark, R ., Craig, S. L ., Nuckolls, C. & Rebek, J. Jr. Emergent mechanical properties of self-assembled polymeric capsules. Proc. Natl Acad. Sci. USA 97, 12418–12421 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Cavallo, G ., Metrangolo, P ., Milani, R ., Pilati, T ., Priimagi, A ., Resnati, G. & Terraneo, G. The halogen bond. Chem. Rev. 116, 2478–2601 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. Nguyen, H. L ., Horton, P. N ., Hursthouse, M. B ., Legon, A. C. & Bruce, D. W. Halogen bonding: a new interaction for liquid crystal formation. J. Am. Chem. Soc. 126, 16–17 (2004).

    CAS  Article  PubMed  Google Scholar 

  75. Xu, J ., Liu, X ., Lin, T ., Huang, J. & He, C. Synthesis and self-assembly of difunctional halogen-bonding molecules: a new family of supramolecular liquid-crystalline polymers. Macromolecules 38, 3554–3557 (2005).

    CAS  Article  Google Scholar 

  76. Harada, A ., Li, J. & Kamachi, M. The molecular necklace: a rotaxane containing many threaded α-cyclodextrins. Nature 356, 325–327 (1992).

    CAS  Article  Google Scholar 

  77. Harada, A ., Takashima, Y. & Yamaguchi, H. Cyclodextrin-based supramolecular polymers. Chem. Soc. Rev. 38, 875–882 (2009).

    CAS  Article  PubMed  Google Scholar 

  78. Ito, K. Novel entropic elasticity of polymeric materials: why is slide-ring gel so soft? Polym. J. 44, 38–41 (2012).

    CAS  Article  Google Scholar 

  79. Koyama, Y ., Suzuki, Y ., Asakawa, T ., Kihara, N ., Nakazono, K. & Takata, T. Polymer architectures assisted by dynamic covalent bonds: synthesis and properties of boronate-functionalized polyrotaxane and graft polyrotaxane. Polym. J. 44, 30–37 (2012).

    CAS  Article  Google Scholar 

  80. Sakuda, J ., Yasuda, T. & Kato, T. Liquid-crystalline catenanes and rotaxanes. Isr. J. Chem. 52, 854–862 (2012).

    CAS  Article  Google Scholar 

  81. Kidowaki, M ., Nakajima, T ., Araki, J ., Inomata, A ., Ishibashi, H. & Ito, K. Novel liquid crystalline polyrotaxane with movable mesogenic side chains. Macromolecules 40, 6859–6862 (2007).

    CAS  Article  Google Scholar 

  82. Inomata, A ., Ishibashi, H ., Nakajima, T ., Sakai, Y ., Kidowaki, M ., Shimomura, T. & Ito, K. Dielectric relaxation of liquid-crystalline polyrotaxane. Europhys. Lett. 79, 66004 (2007).

    Article  CAS  Google Scholar 

  83. Inomata, A ., Kidowaki, M ., Sakai, Y ., Yokoyama, H. & Ito, K. Orientational motions in mesogenic polyrotaxane and local mode relaxations of polymer segments in solid state polyrotaxane. Soft Matter 7, 922–928 (2011).

    CAS  Article  Google Scholar 

  84. Terao, J ., Tsuda, S ., Tanaka, Y ., Okoshi, K ., Fujihara, T ., Tsuji, Y. & Kambe, N. Synthesis of organic-soluble conjugated polyrotaxanes by polymerization of linked rotaxanes. J. Am. Chem. Soc. 131, 16004–16005 (2009).

    CAS  Article  PubMed  Google Scholar 

  85. Terao, J. π-conjugated molecules covered by permethylated cyclodextrins. Chem. Rec. 11, 269–283 (2011).

    CAS  Article  PubMed  Google Scholar 

  86. Mansueto, M., Laschat, S. in Handbook of Liquid Crystals, Vol. 6 (eds Goodby J., Collings P. J., Kato T., Tschierske C., Gleeson H. & Raynes P.) Ch. 8 (Wiley-VCH Verlag KGaA, Weinheim, Germany, 2014).

  87. Ikkala, O., Houbenov, N., Rannou, P. in Handbook of Liquid Crystals, Vol. 7 (eds Goodby J., Collings P. J., Kato T., Tschierske C., Gleeson H. & Raynes P.) Ch. 16 (Wiley-VCH Verlag KGaA, Weinheim, Germany, 2014).

  88. Ujiie, S. & Iimura, K. Thermal properties and orientational behavior of a liquid-crystalline ion complex polymer. Macromolecules 25, 3174–3178 (1992).

    CAS  Article  Google Scholar 

  89. Ujiie, S. & Iimura, K. Formation of smectic orientational order in an ionic thermotropic liquid-crystalline side-chain polymer. Polym. J. 25, 347–354 (1993).

    CAS  Article  Google Scholar 

  90. Tork, A. & Bazuin, C. G. Mixtures of tertiary amine-functionalized mesogens with poly(acrylic acid). Macromolecules 34, 7699–7706 (2001).

    CAS  Article  Google Scholar 

  91. Bazuin, C. G. & Tork, A. Generation of liquid crystalline polymeric materials from non liquid crystalline components via ionic complexation. Macromolecules 28, 8877–8880 (1995).

    CAS  Article  Google Scholar 

  92. Antonietti, M ., Conrad, J. & Thünemann, A. Polyelectrolyte-surfactant complexes: a new type of solid, mesomorphous material. Macromolecules 27, 6007–6011 (1994).

    CAS  Article  Google Scholar 

  93. Gohy, J. F ., Vanhoorne, P. & Jérôme, R. Synthesis and preliminary characterization of model liquid crystalline ionomers. Macromolecules 29, 3376–3383 (1996).

    CAS  Article  Google Scholar 

  94. Maeda, K ., Takeyama, Y ., Sakajiri, K. & Yashima, E. Nonracemic dopant-mediated hierarchical amplification of macromolecular helicity in a charged polyacetylene leading to a cholesteric liquid crystal in water. J. Am. Chem. Soc. 126, 16284–16285 (2004).

    CAS  Article  PubMed  Google Scholar 

  95. Ringsdorf, H ., Wüstefeld, R ., Zerta, E ., Ebert, M. & Wendorff, J. H. Induction of liquid crystalline phases: formation of discotic systems by doping amorphous polymers with electron acceptors. Angew. Chem. Int. Ed. Engl. 28, 914–918 (1989).

    Article  Google Scholar 

  96. Green, M. M ., Ringsdorf, H ., Wagner, J. & Wüstefeld, R. Induction and variation of chirality in discotic liquid crystalline polymers. Angew. Chem. Int. Ed. Engl. 29, 1478–1481 (1990).

    Article  Google Scholar 

  97. Osuji, C ., Chao, C.-Y ., Bita, I ., Ober, C. K. & Thomas, E. L. Temperature-dependent photonic bandgap in a self-assembled hydrogen-bonded liquid-crystalline diblock copolymer. Adv. Funct. Mater. 12, 753–758 (2002).

    CAS  Article  Google Scholar 

  98. Sivakova, S. & Rowan, S. J. Fluorescent supramolecular liquid crystalline polymers from nucleobase-terminated monomers. Chem. Commun. 2428–2429 (2003).

  99. Kawatsuki, N ., Ando, R ., Ishida, R ., Kondo, M. & Minami, Y. Photoluminescent color and polarized light emission tuning of fluorene derivatives using a photoreactive H-bonded liquid crystalline polymer. Macromol. Chem. Phys. 211, 1741–1749 (2010).

    CAS  Article  Google Scholar 

  100. Mamiya, J.-I ., Yoshitake, A ., Kondo, M ., Yu, Y. & Ikeda, T. Is chemical crosslinking necessary for the photoinduced bending of polymer films? J. Mater. Chem. 18, 63–65 (2008).

    CAS  Article  Google Scholar 

  101. Ikkala, O. & ten Brinke, G. Hierarchical self-assembly in polymeric complexes: towards functional materials. Chem. Commun. 2131–2137 (2004).

  102. Ruokolainen, J ., Mäkinen, R ., Torkkeli, M ., Mäkelä, T ., Serimaa, R ., ten Brinke, G. & Ikkala, O. Switching supramolecular polymeric materials with multiple length scales. Science 280, 557–560 (1998).

    CAS  Article  PubMed  Google Scholar 

  103. Mäki-Ontto, R ., de Moel, K ., Polushkin, E ., Alberda, G ., van Ekenstein, G. A ., ten Brinke, G. & Ikkala, O. Tridirectional protonic conductivity in soft materials. Adv. Mater. 14, 357–361 (2002).

    Article  Google Scholar 

  104. Kosonen, H ., Ruokolainen, J ., Knaapila, M ., Torkkeli, M ., Jokela, K ., Serimaa, R ., ten Brinke, G ., Bras, W ., Monkman, A. P. & Ikkala, O. Nanoscale conducting cylinders based on self-organization of hydrogen-bonded polyaniline supramolecules. Macromolecules 33, 8671–8675 (2000).

    CAS  Article  Google Scholar 

  105. Percec, V ., Glodde, M ., Bera, T. K ., Miura, Y ., Shiyanovskaya, I ., Singer, K. D ., Balagurusamy, V. S. K ., Heiney, P. A ., Schnell, I ., Rapp, A ., Spiess, H.-W ., Hudson, S. D. & Duan, H. Self-organization of supramolecular helical dendrimers into complex electronic materials. Nature 419, 384–387 (2002).

    CAS  Article  PubMed  Google Scholar 

  106. Tschierske, C. in Handbook of Liquid Crystals, Vol. 5 (eds Goodby J., Collings P. J., Kato T., Tschierske C., Gleeson H. & Raynes P.) Ch. 1 (Wiley-VCH Verlag KGaA, Weinheim, Germany, 2014).

  107. Tschierske, C. in Handbook of Liquid Crystals, Vol. 5 (eds Goodby J., Collings P. J., Kato T., Tschierske C., Gleeson H. & Raynes P.) Ch. 2 (Wiley-VCH Verlag KGaA, Weinheim, Germany, 2014).

  108. Cho, B.-K. Spontaneous bulk organization of molecular assemblers based on aliphatic polyether and/or poly(benzyl ether) dendrons. Polym. J. 44, 475–489 (2012).

    CAS  Article  Google Scholar 

  109. Hawker, C. J. & Fréchet, J. M. J. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc. 112, 7638–7647 (1990).

    CAS  Article  Google Scholar 

  110. Fréchet J. M. J. & Tomalia D. A. (eds) Dendrimers and Other Dendritic Polymers (Wiley-VCH, Weinheim, Germany, 2001).

  111. Percec, V. & Kawasumi, M. Synthesis and characterization of a thermotropic nematic liquid crystalline dendrimeric polymer. Macromolecules 25, 3843–3850 (1992).

    CAS  Article  Google Scholar 

  112. Balagurusamy, V. S. K ., Ungar, G ., Percec, V. & Johansson, G. Rational design of the first spherical supramolecular dendrimers self-organized in a novel thermotropic cubic liquid-crystalline phase and the determination of their shape by X-ray analysis. J. Am. Chem. Soc. 119, 1539–1555 (1997).

    CAS  Article  Google Scholar 

  113. Percec, V ., Cho, W.-D ., Mosier, P. E ., Ungar, G. & Yeardley, D. J. P. Structural analysis of cylindrical and spherical supramolecular dendrimers quantifies the concept of monodendron shape control by generation number. J. Am. Chem. Soc. 120, 11061–11070 (1998).

    CAS  Article  Google Scholar 

  114. Ungar, G ., Liu, Y ., Zeng, X ., Percec, V. & Cho, W.-D. Giant supramolecular liquid crystal lattice. Science 299, 1208–1211 (2003).

    CAS  Article  PubMed  Google Scholar 

  115. Lorenz, K ., Hölter, D ., Stühn, B ., Mülhaupt, R. & Frey, H. A mesogen-functionalized carbosilane dendrimer: a dendritic liquid crystalline polymer. Adv. Mater. 8, 414–416 (1996).

    CAS  Article  Google Scholar 

  116. Barberá, J ., Donnio, B ., Gehringer, L ., Guillon, D ., Marcos, M ., Omenata, A. & Serrano, J. L. Self-organization of nanostructured functional dendrimers. J. Mater. Chem. 15, 4093–4105 (2005).

    Article  CAS  Google Scholar 

  117. Barberá, J ., Marcos, M. & Serrano, J. L. Dendromesogens: liquid crystal organizations versus starburst structures. Chem. Eur. J. 5, 1834–1840 (1999).

    Article  Google Scholar 

  118. Tomalia, D. A ., Baker, H ., Dewald, J ., Hall, M ., Kallos, G ., Martin, S ., Roeck, J ., Ryder, J. & Smith, P. A new class of polymers: starburst-dendritic macromolecules. Polym. J. 17, 117–132 (1985).

    CAS  Article  Google Scholar 

  119. de Brabander-van den Berg, E. M. M. & Meijer, E. W. Poly(propylene imine) dendrimers: large-scale synthesis by hetereogeneously catalyzed hydrogenations. Angew. Chem. Int. Ed. Engl. 32, 1308–1311 (1993).

    Article  Google Scholar 

  120. Goodby, J. W ., Saez, I. M ., Cowling, S. J ., Görtz, V ., Draper, M ., Hall, A. W ., Sia, S ., Cosquer, G ., Lee, S.-E. & Raynes, E. P. Transmission and amplification of information and properties in nanostructured liquid crystals. Angew. Chem. Int. Ed. Engl. 47, 2754–2787 (2008).

    CAS  Article  PubMed  Google Scholar 

  121. Saez, I. M. in Handbook of Liquid Crystals Vol. 7 (eds Goodby J., Collings P. J., Kato T., Tschierske C., Gleeson H. & Raynes P.) Ch. 6 (Wiley-VCH KGaA, Weinheim, Germany, 2014).

  122. Mehl, G. H. & Goodby, J. W. Liquid-crystalline, substituted octakis(dimethylsiloxy)octasilsesquioxanes: oligomeric supermolecular materials with defined topology. Angew. Chem. Int. Ed. Engl. 35, 2641–2643 (1996).

    CAS  Article  Google Scholar 

  123. Saez, I. M ., Goodby, J. W. & Richardson, R. M. A liquid-crystalline silsesquioxane dendrimer exhibiting chiral nematic and columnar mesophases. Chem. Eur. J. 7, 2758–2764 (2001).

    CAS  Article  PubMed  Google Scholar 

  124. Saez, I. M. & Goodby, J. W. ‘Janus’ supermolecular liquid crystals - giant molecules with hemispherical architectures. Chem. Eur. J. 9, 4869–4877 (2003).

    CAS  Article  PubMed  Google Scholar 

  125. Deschenaux, R ., Donnio, B. & Guillon, D. Liquid-crystalline fullerodendrimers. New J. Chem. 31, 1064–1073 (2007).

    CAS  Article  Google Scholar 

  126. Sawamura, M ., Kawai, K ., Matsuo, Y ., Kanie, K ., Kato, T. & Nakamura, E. Stacking of conical molecules with a fullerene apex into polar columns in crystals and liquid crystals. Nature 419, 702–705 (2002).

    CAS  Article  PubMed  Google Scholar 

  127. Matsuo, Y ., Muramatsu, A ., Kamikawa, Y ., Kato, T. & Nakamura, E. Synthesis and structural, electrochemical, and stacking properties of conical molecules possessing buckyferrocene on the apex. J. Am. Chem. Soc. 128, 9586–9587 (2006).

    CAS  Article  PubMed  Google Scholar 

  128. Chuard, T. & Deschenaux, R. First fullerene[60]-containing thermotropic liquid crystal. Helv. Chim. Acta 79, 736–741 (1996).

    CAS  Article  Google Scholar 

  129. Even, M ., Heinrich, B ., Guillon, D ., Guldi, D. M ., Prato, M. & Deschenaux, R. A mixed fullerene-ferrocene thermotropic liquid crystal: synthesis, liquid-crystalline properties, supramolecular organization and photoinduced electron transfer. Chem. Eur. J. 7, 2595–2604 (2001).

    CAS  Article  PubMed  Google Scholar 

  130. Allard, E ., Oswald, F ., Donnio, B ., Guillon, D ., Delgado, J. L ., Langa, F. & Deschenaux, R. Liquid-crystalline [60]fullerene-TTF dyads. Org. Lett. 7, 383–386 (2005).

    CAS  Article  PubMed  Google Scholar 

  131. Sagara, Y ., Yamane, S ., Mitani, M ., Weder, C. & Kato, T. Mechanoresponsive luminescent molecular assemblies: an emerging class of materials. Adv. Mater. 28, 1073–1095 (2016).

    CAS  Article  PubMed  Google Scholar 

  132. Kato, T ., Shoji, Y ., Yoshio, M ., Yamane, S. & Yasuda, T. Functional soft materials: nanostructured liquid crystals and self-assembled fibrous aggregates. J. Synth. Org. Chem. Jpn 68, 1169–1174 (2010).

    CAS  Article  Google Scholar 

  133. Yamane, S ., Tanabe, K ., Sagara, Y. & Kato, T. Stimuli-responsive photoluminescent liquid crystals. Top. Curr. Chem. 318, 395–406 (2012).

    CAS  Article  PubMed  Google Scholar 

  134. Sagara, Y. & Kato, T. Stimuli-responsive luminescent liquid crystals: change of photoluminescent colors triggered by a shear-induced phase transition. Angew. Chem. Int. Ed. Engl. 47, 5175–5178 (2008).

    CAS  Article  PubMed  Google Scholar 

  135. Sagara, Y. & Kato, T. A mechanical and thermal responsive luminescent liquid crystal forming a colourless film under room light. Supramol. Chem. 23, 310–314 (2011).

    CAS  Article  Google Scholar 

  136. Mitani, M ., Yamane, S ., Yoshio, M ., Funahashi, M. & Kato, T. Mechanochromic photoluminescent liquid crystals containing 5,5'-bis(2-phenylethynyl)-2,2'-bithiophene. Mol. Cryst. Liq. Cryst. 594, 112–121 (2014).

    CAS  Article  Google Scholar 

  137. Mitani, M ., Ogata, S ., Yamane, S ., Yoshio, M ., Hasegawa, M. & Kato, T. Mechanoresponsive liquid crystals exhibiting reversible luminescent color changes at ambient temperature. J. Mater. Chem. C 4, 2752–2760 (2016).

    CAS  Article  Google Scholar 

  138. Sagara, Y ., Yamane, S ., Mutai, T ., Araki, K. & Kato, T. A stimuli-responsive, photoluminescent, anthracene-based liquid crystal: emission color determined by thermal and mechanical processes. Adv. Funct. Mater. 19, 1869–1875 (2009).

    CAS  Article  Google Scholar 

  139. Sagara, Y. & Kato, T. Brightly tricolored mechanochromic luminescence from a single-luminophore liquid crystal: reversible writing and erasing of images. Angew. Chem. Int. Ed. Engl. 50, 9128–9132 (2011).

    CAS  Article  PubMed  Google Scholar 

  140. Yamane, S ., Sagara, Y. & Kato, T. A thermoresponsive photoluminescent smectic liquid crystal: change of photoluminescent color on the smectic-smectic phase transition. Chem. Commun. 3597–3599 (2009).

  141. Yamane, S ., Sagara, Y. & Kato, T. Steric effects on excimer formation for photoluminescent smectic liquid-crystalline materials. Chem. Commun. 49, 3839–3841 (2013).

    CAS  Article  Google Scholar 

  142. Yamane, S ., Sagara, Y ., Mutai, T ., Araki, K. & Kato, T. Mechanochromic luminescent liquid crystals based on a bianthryl moiety. J. Mater. Chem. C 1, 2648–2656 (2013).

    CAS  Article  Google Scholar 

  143. Uchida, J. & Kato, T. Liquid-crystalline fork-like dendrons. Liq. Cryst. doi:10.1080/02678292.2017.1342147 (in the press).

  144. Pucci, D. & Donnio, B. in Handbook of Liquid Crystals, Vol. 5 (eds Goodby J., Collings P. J., Kato T., Tschierske C., Gleeson H. & Raynes P.) Ch. 4 (Wiley-VCH Verlag KGaA, Weinheim, Germany, 2014).

  145. Donnio, B. Liquid-crystalline metallodendrimers. Inorg. Chim. Acta 409, 53–67 (2014).

    CAS  Article  Google Scholar 

  146. Li, W. & Wu, L. Liquid crystals from star-like clusto-supramolecular macromolecules. Polym. Int. 63, 1750–1764 (2014).

    CAS  Article  Google Scholar 

  147. Terazzi, E ., Bourgogne, C ., Welter, R ., Gallani, J.-L ., Guillon, D ., Rogez, G. & Donnio, B. Single-molecule magnets with mesomorphic lamellar ordering. Angew. Chem. Int. Ed. Engl. 47, 490–495 (2008).

    CAS  Article  PubMed  Google Scholar 

  148. Terazzi, E ., Rogez, G ., Gallani, J.-L. & Donnio, B. Supramolecular organization and magnetic properties of mesogen-hybridized mixed-valent manganese single molecule magnets [MnIII8MnIV4O12(Lx,y,z-CB 16(H2O)4]. J. Am. Chem. Soc. 135, 2708–2722 (2013).

    CAS  Article  PubMed  Google Scholar 

  149. Molard, Y ., Dorson, F ., Cîrcu, V ., Roisnel, T ., Artzner, F. & Cordier, S. Clustomesogens: liquid crystal materials containing transition-metal clusters. Angew. Chem. Int. Ed. Engl. 49, 3351–3355 (2010).

    CAS  Article  PubMed  Google Scholar 

  150. Nealon, G. L ., Greget, R ., Dominguez, C ., Nagy, Z. T ., Guillon, D ., Gallani, J.-L. & Donnio, B. Liquid-crystalline nanoparticles: hybrid design and mesophase structures. Beilstein J. Org. Chem. 8, 349–370 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  151. Draper, M ., Saez, I. M ., Cowling, S. J ., Gai, P ., Heinrich, B ., Donnio, B ., Guillon, D. & Goodby, J. W. Self-assembly and shape morphology of liquid-crystalline gold metamaterials. Adv. Funct. Mater. 21, 1260–1278 (2011).

    CAS  Article  Google Scholar 

  152. Cseh, L. & Mehl, G. H. The design and investigation of room temperature thermotropic nematic gold nanoparticles. J. Am. Chem. Soc. 128, 13376–13377 (2006).

    CAS  Article  PubMed  Google Scholar 

  153. Yamada, M ., Shen, Z. & Miyake, M. Self-assembly of discotic liquid crystalline molecule-modified gold nanoparticles: control of 1D and hexagonal ordering induced by solvent polarity. Chem. Commun. 2569–2571 (2006).

  154. Donnio, B ., García-Vázquez, P ., Gallani, J.-L ., Guillon, D. & Terazzi, E. Dendronized ferromagnetic gold nanoparticles self-organized in a thermotropic cubic phase. Adv. Mater. 19, 3534–3539 (2007).

    CAS  Article  Google Scholar 

  155. Kanie, K ., Matsubara, M ., Zeng, X ., Liu, F ., Ungar, G ., Nakamura, H. & Muramatsu, A. Simple cubic packing of gold nanoparticles through rational design of their dendrimeric corona. J. Am. Chem. Soc. 134, 808–811 (2012).

    CAS  Article  PubMed  Google Scholar 

  156. Wojcik, M ., Lewandowski, W ., Matraszek, J ., Mieczkowski, J ., Borysiuk, J ., Pociecha, D. & Gorecka, E. Liquid-crystalline phases made of gold nanoparticles. Angew. Chem. Int. Ed. Engl. 48, 5167–5169 (2009).

    CAS  Article  PubMed  Google Scholar 

  157. Baranoff, E. D ., Voignier, J ., Yasuda, T ., Heitz, V ., Sauvage, J.-P. & Kato, T. A liquid-crystalline [2]catenane and its copper(I) complex. Angew. Chem. Int. Ed. Engl. 46, 4680–4683 (2007).

    CAS  Article  PubMed  Google Scholar 

  158. Aprahamian, I ., Yasuda, T ., Ikeda, T ., Saha, S ., Dichtel, W. R ., Isoda, K ., Kato, T. & Stoddart, J. F. A liquid-crystalline bistable [2]rotaxane. Angew. Chem. Int. Ed. Engl. 46, 4675–4679 (2007).

    CAS  Article  PubMed  Google Scholar 

  159. Aprahamian, I ., Miljanić, O. Š ., Dichtel, W. R ., Isoda, K ., Yasuda, T ., Kato, T. & Stoddart, J. F. Clicked interlocked molecules. Bull. Chem. Soc. Jpn. 80, 1856–1869 (2007).

    CAS  Article  Google Scholar 

  160. Yasuda, T ., Tanabe, K ., Tsuji, T ., Coti, K. K ., Aprahamian, I ., Stoddart, J. F. & Kato, T. A redox-switchable [2]rotaxane in a liquid-crystalline state. Chem. Commun. 46, 1224–1226 (2010).

    CAS  Article  Google Scholar 

  161. Kanie, K ., Nishii, M ., Yasuda, T ., Taki, T ., Ujiie, S. & Kato, T. Self-assembly of thermotropic liquid-crystalline folic acid derivatives: hydrogen-bonded complexes forming layers and columns. J. Mater. Chem. 11, 2875–2886 (2001).

    CAS  Article  Google Scholar 

  162. Kato, T ., Matsuoka, T ., Nishii, M ., Kamikawa, Y ., Kanie, K ., Nishimura, T ., Yashima, E. & Ujiie, S. Supramolecular chirality of thermotropic liquid-crystalline folic acid derivatives. Angew. Chem. Int. Ed. Engl. 43, 1969–1972 (2004).

    CAS  Article  PubMed  Google Scholar 

  163. Kamikawa, Y ., Nishii, M. & Kato, T. Self-assembly of folic acid derivatives: induction of supramolecular chirality by hierarchical chiral structures. Chem. Eur. J. 10, 5942–5951 (2004).

    CAS  Article  PubMed  Google Scholar 

  164. Sakai, N ., Kamikawa, Y ., Nishii, M ., Matsuoka, T ., Kato, T. & Matile, S. Dendritic folate rosettes as ion channels in lipid bilayers. J. Am. Chem. Soc. 128, 2218–2219 (2006).

    CAS  Article  PubMed  Google Scholar 

  165. Nishii, M ., Matsuoka, T ., Kamikawa, Y. & Kato, T. Thermotropic liquid-crystalline peptide derivatives: oligo(glutamic acid)s forming hydrogen-bonded columns. Org. Biomol. Chem. 3, 875–880 (2005).

    CAS  Article  PubMed  Google Scholar 

  166. Yazaki, S ., Kamikawa, Y ., Yoshio, M ., Hamasaki, A ., Mukai, T ., Ohno, H. & Kato, T. Ionic liquid crystals: self-assembly of imidazolium salts containing an L-glutamic acid moiety. Chem. Lett. 37, 538–539 (2008).

    CAS  Article  Google Scholar 

  167. Kamikawa, Y. & Kato, T. Color-tunable fluorescent organogels: columnar self-assembly of pyrene-containing oligo(glutamic acid)s. Langmuir 23, 274–278 (2007).

    CAS  Article  PubMed  Google Scholar 

  168. Wright, P. V. Developments in polymer electrolytes for lithium batteries. MRS Bull. 27, 597–602 (2002).

    CAS  Article  Google Scholar 

  169. Yoshio, M ., Mukai, T ., Kanie, K ., Yoshizawa, M ., Ohno, H. & Kato, T. Layered ionic liquids: anisotropic ion conduction in new self-organized liquid-crystalline materials. Adv. Mater. 14, 351–354 (2002).

    CAS  Article  Google Scholar 

  170. Yoshio, M ., Mukai, T ., Ohno, H. & Kato, T. One-dimensional ion transport in self-organized columnar ionic liquids. J. Am. Chem. Soc. 126, 994–995 (2004).

    CAS  Article  PubMed  Google Scholar 

  171. Yoshio, M ., Ichikawa, T ., Shimura, H ., Kagata, T ., Hamasaki, A ., Mukai, T ., Ohno, H. & Kato, T. Columnar liquid-crystalline imidazolium salts. Effects of anions and cations on mesomorphic properties and ionic conductivities. Bull. Chem. Soc. Jpn 80, 1836–1841 (2007).

    CAS  Article  Google Scholar 

  172. Sakuda, J ., Hosono, E ., Yoshio, M ., Ichikawa, T ., Matsumoto, T ., Ohno, H ., Zhou, H. & Kato, T. Liquid-crystalline electrolytes for lithium-ion batteries: ordered assemblies of a mesogen-containing carbonate and a lithium salt. Adv. Funct. Mater. 25, 1206–1212 (2015).

    CAS  Article  Google Scholar 

  173. Högberg, D ., Soberats, B ., Yatagai, R ., Uchida, S ., Yoshio, M ., Kloo, L ., Segawa, H. & Kato, T. Liquid-crystalline dye-sensitized solar cells: design of two-dimensional molecular assemblies for efficient ion transport and thermal stability. Chem. Mater. 28, 6493–6500 (2016).

    Article  CAS  Google Scholar 

  174. Kobayashi, T ., Ichikawa, T ., Kato, T. & Ohno, H. Development of glassy bicontinuous cubic liquid crystals for solid proton-conductive materials. Adv. Mater. 29, 1604429 (2017).

    Article  CAS  Google Scholar 

  175. Ichikawa, T. Zwitterions as building blocks for functional liquid crystals and block copolymers. Polym. J. 49, 413–421 (2017).

    CAS  Article  Google Scholar 

  176. Kawabata, K ., Saito, M ., Takemura, N ., Osaka, I. & Takimiya, K. Effects of branching position of alkyl side chains on ordering structure and charge transport property in thienothiophenedione- and quinacridone-based semiconducting polymers. Polym. J. 49, 169–176 (2017).

    CAS  Article  Google Scholar 

  177. Funahashi, M. Integration of electro-active π-conjugated units in nanosegregated liquid-crystalline phases. Polym. J. 49, 75–83 (2017).

    CAS  Article  Google Scholar 

  178. Yoshio, M. & Kato, T. in Handbook of Liquid Crystals Vol. 8 (eds Goodby J., Collings P. J., Kato T., Tschierske C., Gleeson H. & Raynes P.) Ch. 23 (Wiley-VCH Verlag KGaA, Weinheim, Germany, 2014).

  179. Cho, B.-K. Nanostructured organic electrolytes. RSC Adv. 4, 395–405 (2014).

    CAS  Article  Google Scholar 

  180. Zheng, Y. G ., Lui, J. G ., Ungar, G. & Wright, P. V. Solvent-free low-dimensional polymer electrolytes for lithium-polymer batteries. Chem. Rec. 4, 176–191 (2004).

    CAS  Article  PubMed  Google Scholar 

  181. Hoshino, K ., Kanie, K ., Ohtake, T ., Mukai, T ., Yoshizawa, M ., Ujiie, S ., Ohno, H. & Kato, T. Ion-conductive liquid crystals: formation of stable smectic semi-bilayers by the introduction of perfluoroalkyl moieties. Macromol. Chem. Phys. 203, 1547–1555 (2002).

    CAS  Article  Google Scholar 

  182. Bacher, A ., Erdelen, C. H ., Paulus, W ., Ringsdorf, H ., Schmidt, H. W. & Schuhmacher, P. Photo-cross-linked triphenylenes as novel insoluble hole transport materials in organic LEDs. Macromolecules 32, 4551–4557 (1999).

    CAS  Article  Google Scholar 

  183. Aldred, M. P ., Contoret, A. E. A ., Farrar, S. R ., Kelly, S. M ., Mathieson, D ., O'Neill, M ., Tsoi, W. C. & Vlachos, P. A full-color electroluminescent device and patterned photoalignment using light-emitting liquid crystals. Adv. Mater. 17, 1368–1369 (2005).

    CAS  Article  PubMed  Google Scholar 

  184. Schenning, A. P. H. J ., Gonzalez-Lemus, Y. C ., Shishmanova, I. K. & Broer, D. J. Nanoporous membranes based on liquid crystalline polymers. Liq. Cryst. 38, 1627–1639 (2011).

    CAS  Article  Google Scholar 

  185. Gonzalez, C. L ., Bastiaansen, C. W. M ., Lub, J ., Loos, J ., Lu, K. B ., Wondergem, H. J. & Broer, D. J. Nanoporous membranes of hydrogen-bridged smectic networks with nanometer transverse pore dimensions. Adv. Mater. 20, 1246–1247 (2008).

    CAS  Article  Google Scholar 

  186. Bögels, G. M ., Lugger, J. A. M ., Goor, O. J. G. M. & Sijbesma, R. P. Size-selective binding of sodium and potassium ions in nanoporous thin films of polymerized liquid crystals. Adv. Funct. Mater. 26, 8023–8030 (2016).

    Article  CAS  Google Scholar 

  187. Bhattacharjee, S ., Lugger, J. A. M. & Sijbesma, R. P. Tailoring pore size and chemical interior of near 1 nm sized pores in a nanoporous polymer based on a discotic liquid crystal. Macromolecules 50, 2777–2783 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  188. Yamashita, A ., Yoshio, M ., Shimizu, S ., Ichikawa, T ., Ohno, H. & Kato, T. Columnar nanostructured polymer films containing ionic liquids in supramolecular one-dimensional nanochannels. J. Polym. Sci. Polym. Chem. 53, 366–371 (2015).

    CAS  Article  Google Scholar 

  189. Shimura, H ., Yoshio, M ., Hamasaki, A ., Mukai, T ., Ohno, H. & Kato, T. Electric-field-responsive lithium-ion conductors of propylenecarbonate-based columnar liquid crystals. Adv. Mater. 21, 1591–1594 (2009).

    CAS  Article  Google Scholar 

  190. Yoshio, M ., Konishi, R ., Sakamoto, T & Kato, T. Bisphenylsulfone-based molecular assemblies: polar columnar liquid crystals aligned in electric fields and fibrous aggregates in organic solvents. New J. Chem. 37, 143–147 (2013).

    CAS  Article  Google Scholar 

  191. Feng, X ., Tousley, M. E ., Cowan, M. G ., Wiesenauer, B. R ., Nejati, S ., Choo, Y ., Noble, R. D ., Elimelech, M ., Gin, D. L. & Osuji, C. O. Scalable fabrication of polymer membranes with vertically aligned 1 nm pores by magnetic field directed self-assembly. ACS Nano 8, 11977–11986 (2014).

    CAS  Article  PubMed  Google Scholar 

  192. Feng, X ., Nejati, S ., Cowan, M. G ., Tousley, M. E ., Wiesenauer, B. R ., Noble, R. D ., Elimelech, M ., Gin, D. L. & Osuji, C. O. Thin polymer films with continuous vertically aligned 1 nm pores fabricated by soft confinement. ACS Nano 10, 150–158 (2016).

    CAS  Article  PubMed  Google Scholar 

  193. Uchida, Y ., Matsumoto, T ., Akita, T. & Nishiyama, N. Ion conductive properties in ionic liquid crystalline phases confined in a porous membrane. J. Mater. Chem. C 3, 6144–6147 (2015).

    CAS  Article  Google Scholar 

  194. Beginn, U ., Zipp, G. & Moller, M. Functional membranes containing ion-selective matrix-fixed supramolecular channels. Adv. Mater. 12, 510–511 (2000).

    CAS  Article  Google Scholar 

  195. Beginn, U ., Zipp, G ., Mourran, A ., Walther, P. & Moller, M. Membranes containing oriented supramolecular transport channels. Adv. Mater. 12, 513–514 (2000).

    CAS  Article  Google Scholar 

  196. Soberats, B ., Uchida, E ., Yoshio, M ., Kagimoto, J ., Ohno, H. & Kato, T. Macroscopic photocontrol of iontransporting pathways of a nanostructured imidazolium-based photoresponsive liquid crystal. J. Am. Chem. Soc. 136, 9552–9555 (2014).

    CAS  Article  PubMed  Google Scholar 

  197. Ichikawa, T ., Yoshio, M ., Hamasaki, A ., Mukai, T ., Ohno, H. & Kato, T. Self-organization of room-temperature ionic liquids exhibiting liquid-crystalline bicontinuous cubic phases: formation of nano-ion channel networks. J. Am. Chem. Soc. 129, 10662–10663 (2007).

    CAS  Article  PubMed  Google Scholar 

  198. Kerr, R. L ., Miller, S. A ., Shoemaker, R. K ., Elliot, B. J. & Gin, D. L. New type of Li ion conductor with 3D interconnected nanopores via polymerization of a liquid organic electrolyte-filled lyotropic liquid-crystal assembly. J. Am. Chem. Soc. 131, 15972–15973 (2009).

    CAS  Article  PubMed  Google Scholar 

  199. Ichikawa, T ., Yoshio, M ., Hamasaki, A ., Kagimoto, J ., Ohno, H. & Kato, T. 3D interconnected ionic nano-channels formed in polymer films: self-organization and polymerization of thermotropic bicontinuous cubic liquid crystals. J. Am. Chem. Soc. 133, 2163–2169 (2011).

    CAS  Article  PubMed  Google Scholar 

  200. Kerr, R. L ., Edwards, J. P ., Jones, S. C, Elliott, B. J. & Gin, D. L. Effect of varying the composition and nanostructure of organic carbonate-containing lyotropic liquid crystal polymer electrolytes on their ionic conductivity. Polym. J. 48, 635–643 (2016).

    CAS  Article  Google Scholar 

  201. Wiesenauer, B. R. & Gin, D. L. Nanoporous polymer materials based on self-organized, bicontinuous cubic lyotropic liquid crystal assemblies and their applications. Polym. J. 44, 461–468 (2012).

    CAS  Article  Google Scholar 

  202. Cho, B.-K ., Jain, A ., Gruner, S. M. & Wiesner, U. Mesophase structure-mechanical and ionic transport correlations in extended amphiphilic dendrons. Science 305, 1598–1601 (2004).

    CAS  Article  PubMed  Google Scholar 

  203. Zhang, H ., Li, L ., Möller, M ., Zhu, X ., Rueda, J. J. H ., Rosenthal, M. & Ivanov, D. A. From channel-forming ionic liquid crystals exhibiting humidity-induced phase transitions to nanostructured ion-conducting polymer membranes. Adv. Mater. 25, 3543–3548 (2013).

    CAS  Article  PubMed  Google Scholar 

  204. Henmi, M ., Nakatsuji, K ., Ichikawa, T ., Tomioka, H ., Sakamoto, T ., Yoshio, M. & Kato, T. Self-organized liquid-crystalline nanostructured membranes for water treatment: selective permeation of ions. Adv. Mater. 24, 2238–2241 (2012).

    CAS  Article  PubMed  Google Scholar 

  205. Marets, N., Kuo, D., Torrey, J. R., Sakamoto, T., Henmi, M., Katayama, H. & Kato, T. Highly efficient virus rejection with self-organized membranes based on a crosslinked bicontinuous cubic liquid crystal. Adv. Healthcare Mater. doi:10.1002/adhm.201700252 (in the press).

  206. Gin, D. L ., Lu, X. Y ., Nemade, P. R ., Pecinovsky, C. S ., Xu, Y. J. & Zhou, M. J. Recent advances in the design of polymerizable lyotropic liquid-crystal assemblies for heterogeneous catalysis and selective separations. Adv. Funct. Mater. 16, 865–878 (2006).

    CAS  Article  Google Scholar 

  207. Zhou, M ., Nemade, P. R ., Lu, X ., Zeng, X ., Hatakeyama, E. S ., Noble, R. D. & Gin, D. L. New type of membrane material for water desalination based on a cross-linked bicontinuous cubic lyotropic liquid crystal assembly. J. Am. Chem. Soc. 129, 9574–9575 (2007).

    CAS  Article  PubMed  Google Scholar 

  208. Noble, R. D ., Zhou, M. J ., Kidd, T. J. & Gin, D. L. Supported lyotropic liquid-crystal polymer membranes: promising materials for molecular-size-selective aqueous nanofiltration. Adv. Mater. 17, 1850–1853 (2005).

    Article  CAS  Google Scholar 

  209. Hatakeyama, E. S ., Wiesenauer, B. R ., Gabriel, C. J ., Noble, R. D. & Gin, D. L. Nanoporous, bicontinuous cubic lyotropic liquid crystal networks via polymerizable gemini ammonium surfactants. Chem. Mater. 22, 4525–4527 (2010).

    CAS  Article  Google Scholar 

  210. Carter, B. M ., Wiesenauer, B. R ., Hatakeyama, E. S ., Barton, J. L ., Noble, R. D. & Gin, D. L. Glycerol-based bicontinuous cubic lyotropic liquid crystal monomer system for the fabrication of thin-film membranes with uniform nanopores. Chem. Mater. 24, 4005–4007 (2012).

    CAS  Article  Google Scholar 

  211. Bushby, R. J. & Kawata, K. Liquid crystals that affected the world: discotic liquid crystals. Liq. Cryst. 38, 1415–1426 (2011).

    CAS  Article  Google Scholar 

  212. Kawata, K. Orientation control and fixation of discotic liquid crystal. Chem. Rec. 2, 59–80 (2002).

    CAS  Article  PubMed  Google Scholar 

  213. Mol, G. N ., Harris, K. D ., Bastiaansen, C. W. M. & Broer, D. J. Thermo-mechanical responses of liquid-crystal networks with a splayed molecular organization. Adv. Funct. Mater. 15, 1155–1159 (2005).

    CAS  Article  Google Scholar 

  214. Lee, K. M ., Bunning, T. J. & White, T. J. Autonomous, hands-free shape memory in glassy, liquid crystalline polymer networks. Adv. Mater. 24, 2839–2843 (2012).

    CAS  Article  PubMed  Google Scholar 

  215. de Haan, L. T ., Sánchez-Somolinos, C ., Bastiaansen, C. M. W ., Schenning, A. P. H. J. & Broer, D. J. Engineering of complex order and the macroscopic deformation of liquid crystal polymer networks. Angew. Chem. Int. Ed. Engl. 51, 12469–12472 (2012).

    CAS  Article  PubMed  Google Scholar 

  216. Ware, T. H ., McConney, M. E ., Wie, J. J ., Tondiglia, V. P. & White, T. J. Voxelated liquid crystal elastomers. Science 347, 982–984 (2015).

    CAS  Article  PubMed  Google Scholar 

  217. Ohm, C ., Brehmer, M. & Zentel, R. Liquid crystalline elastomers as actuators and sensors. Adv. Mater. 22, 3366–3387 (2010).

    CAS  Article  PubMed  Google Scholar 

  218. Zentel, R. Liquid-crystalline elastomers. Angew. Chem. Int. Ed. Engl. 28, 1407–1415 (1989).

    Article  Google Scholar 

  219. Sánchez-Ferrer, A. & Finkelmann, H. Thermal and mechanical properties of new main-chain liquid-crystalline elastomers. Solid State Sci. 12, 1849–1852 (2010).

    Article  CAS  Google Scholar 

  220. Ube, T. & Ikeda, T. Photomobile polymer materials with crosslinked liquid-crystalline structures: molecular design, fabrication, and functions. Angew. Chem. Int. Ed. Engl. 53, 10290–10299 (2014).

    CAS  Article  PubMed  Google Scholar 

  221. Wermter, H. & Finkelmann, H. Liquid crystalline elastomers as artificial muscles. e-Polymers 1, 111–113 (2001).

    Article  Google Scholar 

  222. Finkelmann, H ., Kock, H.-J. & Rehage, G. Investigations on liquid crystalline polysiloxanes 3. Liquid crystalline elastomers-A new type of liquid crystalline material. Makromol. Chem. Rapid Commun. 2, 317–322 (1981).

    CAS  Article  Google Scholar 

  223. Küpfer, J. & Finkelmann, H. Nematic liquid single crystal elastomers. Makromol. Chem. Rapid Commun. 12, 717–726 (1991).

    Article  Google Scholar 

  224. Warner, M. & Terentjev, E. M. Liquid Crystals Elastomers (Revised Edition) (Clarendon Press, London, UK, 2007).

  225. Schätzle, J ., Kaufhold, W. & Finkelmann, H. Nematic elastomers: the influence of external mechanical stress on the liquid-crystalline phase behavior. Makromol. Chem. 190, 3269–3284 (1989).

    Article  Google Scholar 

  226. Zentel, R. & Reckert, G. Liquid crystalline elastomers based on liquid crystalline side group, main chain and combined polymers. Makromol. Chem. 187, 1915–1926 (1986).

    CAS  Article  Google Scholar 

  227. Zentel, R. & Benalia, M. Stress-induced orientation in lightly crosslinked liquid-crystalline side-group polymers. Makromol. Chem. 188, 665–674 (1987).

    CAS  Article  Google Scholar 

  228. Yu, H. & Ikeda, T. Photocontrollable liquid-crystalline actuators. Adv. Mater. 23, 2149–2180 (2011).

    CAS  Article  PubMed  Google Scholar 

  229. Ikeda, T. & Tsutsumi, O. Optical switching and image storage by means of azobenzene liquid-crystal films. Science 268, 1873–1875 (1995).

    CAS  Article  PubMed  Google Scholar 

  230. Yu, Y ., Nakano, M. & Ikeda, T. Photomechanics: directed bending of a polymer film by light. Nature 425, 145–145 (2003).

    CAS  Article  PubMed  Google Scholar 

  231. van Oosten, C. L ., Bastiaansen, C. W. M. & Broer, D. J. Printed artificial cilia from liquid-crystal network actuators modularly driven by light. Nat. Mater. 8, 677–682 (2009).

    CAS  Article  PubMed  Google Scholar 

  232. White, T. J ., Tabiryan, N. V ., Serak, S. V ., Hrozhyk, U. A ., Tondiglia, V. P ., Koerner, H ., Vaia, R. A. & Bunning, T. A high frequency photodriven polymer oscillator. Soft Matter 4, 1796–1798 (2008).

    CAS  Article  Google Scholar 

  233. Serak, S ., Tabiryan, N ., Vergara, R ., White, T. J ., Vaia, R. A. & Bunning, T. J. S. Liquid crystalline polymer cantilever oscillators fueled by light. Soft Matter 6, 779–783 (2010).

    CAS  Article  Google Scholar 

  234. Kumar, K ., Knie, C ., Bleger, D ., Peletier, M. A ., Friedrich, H ., Hecht, S ., Broer, D. J ., Debije, M. G. & Schenning, A. P. H. J. A chaotic self-oscillating sunlight-driven polymer actuator. Nat. Commun. 7, 11975 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  235. Gelebart, A. H ., Vantomme, G ., Meijer, E. W. & Broer, D. J. Mastering the photothermal effect in liquid crystal networks: a general approach for self-sustained mechanical oscillators. Adv. Mater. 29, 1606712 (2017).

    Article  CAS  Google Scholar 

  236. Yin, R. Y ., Xu, W. X ., Kondo, M ., Yen, C. C ., Mamiya, J ., Ikeda, T. & Yu, Y. L. Can sunlight drive the photoinduced bending of polymer films? J. Mater. Chem. 19, 3141–3143 (2009).

    CAS  Article  Google Scholar 

  237. Yamada, M ., Kondo, M ., Mamiya, J.-I ., Yu, Y. L ., Kinoshita, M ., Barrett, C. J. & Ikeda, T. Photomobile polymer materials: towards light-driven plastic motors. Angew. Chem. Int. Ed. Engl. 47, 4986–4988 (2008).

    CAS  Article  PubMed  Google Scholar 

  238. Yamada, M ., Kondo, M ., Miyasato, R ., Naka, Y ., Mamiya, J ., Kinoshita, M ., Shishido, A ., Yu, Y. L ., Barrett, C. J. & Ikeda, T. Photomobile polymer materials-various three-dimensional movements. J. Mater. Chem. 19, 60–62 (2009).

    CAS  Article  Google Scholar 

  239. Dierking, I. Polymer network-stabilized liquid crystals. Adv. Mater. 12, 167–181 (2000).

    CAS  Article  Google Scholar 

  240. Urayama, K. Selected issues in liquid crystal elastomers and gels. Macromolecules 40, 2277–2288 (2007).

    CAS  Article  Google Scholar 

  241. Kato, T ., Hirai, Y ., Nakaso, S. & Moriyama, M. Liquid-crystalline physical gels. Chem. Soc. Rev. 36, 1857–1867 (2007).

    CAS  Article  PubMed  Google Scholar 

  242. Sonin, A. S. & Churochkina, N. A. Liquid crystals stabilized by physical networks. Polym. Sci. Ser. A 55, 353–384 (2013).

    CAS  Article  Google Scholar 

  243. Hikmet, R. A. M. Anisotropic gels in liquid crystal devices. Adv. Mater. 4, 679–683 (1992).

    CAS  Article  Google Scholar 

  244. Hikmet, R. A. M. Electrically induced light scattering from anisotropic gels. J. Appl. Phys. 68, 4406–4412 (1990).

    CAS  Article  Google Scholar 

  245. Hikmet, R. A. M. & Kemperman, H. Electrically switchable mirrors and optical components made from liquid-crystal gels. Nature 392, 476–479 (1998).

    CAS  Article  Google Scholar 

  246. Kikuchi, H. Liquid crystalline blue phases. Struct. Bond. 128, 99–117 (2008).

    CAS  Article  Google Scholar 

  247. Kikuchi, H ., Yokota, M ., Hisakado, Y ., Yang, H. & Kajiyama, T. Polymer-stabilized liquid crystal blue phases. Nat. Mater. 1, 64–68 (2002).

    CAS  Article  PubMed  Google Scholar 

  248. Castles, F ., Morris, S. M ., Hung, J. M. C ., Qasim, M. M ., Wright, A. D ., Nosheen, S ., Choi, S. S ., Outram, B. I ., Elston, S. J ., Burgess, C ., Hill, L ., Wilkinson, T. D. & Coles, H. J. Stretchable liquid-crystal blue-phase gels. Nat. Mater. 13, 817–821 (2014).

    CAS  Article  PubMed  Google Scholar 

  249. Castles, F ., Day, F. V ., Morris, S. M ., Ko, D. H ., Gardiner, D. J ., Qasim, M. M ., Nosheen, S ., Hands, P. J. W ., Choi, S. S ., Friend, R. H. & Coles, H. J. Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications. Nat. Mater. 11, 599–603 (2012).

    CAS  Article  PubMed  Google Scholar 

  250. Urayama, K. Switching shapes of nematic elastomers with various director configurations. React. Funct. Polym. 73, 885–890 (2013).

    CAS  Article  Google Scholar 

  251. Urayama, K ., Okuno, Y ., Kawamura, T. & Kohjiya, S. Volume phase transition of liquid crystalline gels in a nematic solvent. Macromolecules 35, 4567–4569 (2002).

    CAS  Article  Google Scholar 

  252. Urayama, K ., Okuno, Y ., Nakao, T. & Kohjiya, S. Volume transition of nematic gels in nematogenic solvents. J. Chem. Phys. 118, 2903–2910 (2003).

    CAS  Article  Google Scholar 

  253. Doi, H. & Urayama, K. Thermal bending coupled with volume change in liquid crystal gels. Soft Matter 13, 4341–4348 (2017).

    CAS  Article  PubMed  Google Scholar 

  254. Chang, C. C ., Chien, L. C. & Meyer, R. B. Electro-optical study of nematic elastomer gels. Phys. Rev. E 56, 595–599 (1997).

    CAS  Article  Google Scholar 

  255. Yusuf, Y ., Huh, J. H ., Cladis, P. E ., Brand, H. R ., Finkelmann, H. & Kai, S. Low-voltage-driven electromechanical effects of swollen liquid-crystal elastomers. Phys. Rev. E 71, 061702 (2005).

    Article  CAS  Google Scholar 

  256. Suzuki, M. & Hanabusa, K. L-Lysine-based low-molecular-weight gelators. Chem. Soc. Rev. 38, 967–975 (2009).

    CAS  Article  PubMed  Google Scholar 

  257. Kato, T ., Kutsuna, T ., Yabuuchi, K. & Mizoshita, N. Anisotropic self-aggregation of an anthracene derivative: formation of liquid-crystalline physical gels in oriented states. Langmuir 18, 7086–7088 (2002).

    CAS  Article  Google Scholar 

  258. Suzuki, Y ., Mizoshita, N ., Hanabusa, K. & Kato, T. Homeotropically oriented nematic physical gels for electrooptical materials. J. Mater. Chem. 13, 2870–2874 (2003).

    CAS  Article  Google Scholar 

  259. Mizoshita, N ., Suzuki, Y ., Kishimoto, K ., Hanabusa, K. & Kato, T. Electrooptical properties of liquid-crystalline physical gels: a new oligo(amino acid) gelator for light scattering display materials. J. Mater. Chem. 12, 2197–2201 (2002).

    CAS  Article  Google Scholar 

  260. Hirai, Y ., Mizoshita, N ., Moriyama, M. & Kato, T. Self-assembled fibers photopolymerized in nematic liquid crystals: stable electrooptical switching in light-scattering mode. Langmuir 25, 8423–8427 (2009).

    CAS  Article  PubMed  Google Scholar 

  261. Eimura, H ., Yoshio, M ., Shoji, Y ., Hanabusa, K. & Kato, T. Liquid-crystalline gels exhibiting electrooptical light scattering properties: fibrous polymerized network of a lysine-based gelator having acrylate moieties. Polym. J. 44, 594–599 (2012).

    CAS  Article  Google Scholar 

  262. Wu, Y ., Hirai, Y ., Tsunobuchi, Y ., Tokoro, H ., Eimura, H ., Yoshio, M ., Ohkoshi, S. & Kato, T. Supramolecular approach to the formation of magneto-active physical gels. Chem. Sci. 3, 3007–3010 (2012).

    CAS  Article  Google Scholar 

  263. Eimura, H ., Umeta, Y ., Tokoro, H ., Yoshio, M ., Ohkoshi, S. & Kato, T. Self-assembled fibers containing stable organic radical moieties: alignment and magnetic properties in liquid crystals. Chem. Eur. J. 22, 8872–8878 (2016).

    CAS  Article  PubMed  Google Scholar 

  264. Mizoshita, N ., Monobe, H ., Inoue, M ., Ukon, M ., Watanabe, T ., Shimizu, Y ., Hanabusa, K. & Kato, T. The positive effect on hole transport behaviour in anisotropic gels consisting of discotic liquid crystals and hydrogen-bonded fibres. Chem. Commun. 428–429 (2002).

  265. Kitamura, T ., Nakaso, S ., Mizoshita, N ., Tochigi, Y ., Shimomura, T ., Moriyama, M ., Ito, K. & Kato, T. Electroactive supramolecular self-assembled fibers comprised of doped tetrathiafulvalene-based gelators. J. Am. Chem. Soc. 127, 14769–14775 (2005).

    CAS  Article  PubMed  Google Scholar 

  266. Yabuuchi, K ., Tochigi, Y ., Mizoshita, N ., Hanabusa, K. & Kato, T. Self-assembly of carbazole-containing gelators: alignment of the chromophore in fibrous aggregates. Tetrahedron 63, 7358–7365 (2007).

    CAS  Article  Google Scholar 

  267. Moriyama, M ., Mizoshita, N ., Yokota, T ., Kishimoto, K. & Kato, T. Photoresponsive anisotropic soft-solids: liquid-crystalline physical gels based on a chiral photochromic gelator. Adv. Mater. 15, 1335–1338 (2003).

    CAS  Article  Google Scholar 

  268. Moriyama, M ., Mizoshita, N. & Kato, T. Photopatterning of discotic liquid-crystalline gels. Polym. J. 36, 661–664 (2004).

    CAS  Article  Google Scholar 

  269. Wang, X ., Miller, D. S ., Bukusoglu, E ., de Pablo, J. J. & Abbott, N. L. Topological defects in liquid crystals as templates for molecular self-assembly. Nat. Mater. 15, 106–112 (2016).

    CAS  Article  PubMed  Google Scholar 

  270. Seki, T. New strategies and implications for the photoalignment of liquid crystalline polymers. Polym. J. 46, 751–768 (2014).

    CAS  Article  Google Scholar 

  271. Fukuhara, K ., Nagano, S ., Hara, M. & Seki, T. Free-surface molecular command systems for photoalignment of liquid crystalline materials. Nat. Commun. 5, 3320 (2014).

    Article  CAS  PubMed  Google Scholar 

  272. Kawatsuki, N ., Fujii, R ., Fujioka, Y ., Minami, S. & Kondo, M. Birefringent pattern formation in photoinactive liquid crystalline polymer films based on a photoalignment technique with top-coating of cinnamic acid derivatives via H-bonds. Langmuir 33, 2427–2432 (2017).

    CAS  Article  PubMed  Google Scholar 

  273. Minami, S ., Kondo, M. & Kawatsuki, N. Fabrication of UV-inactive photoaligned films by photoinduced orientation of H-bonded composites of non-photoreactive polymer and cinnamate derivative. Polym. J. 48, 267–271 (2016).

    CAS  Article  Google Scholar 

  274. Nakayama, M ., Kajiyama, S ., Nishimura, T. & Kato, T. Liquid-crystalline calcium carbonate: biomimetic synthesis and alignment of nanorod calcite. Chem. Sci. 6, 6230–6234 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  275. van der Kooij, F. M ., Kassapidou, K. & Lekkerkerker, H. N. W. Liquid crystal phase transitions in suspensions of polydisperse plate-like particles. Nature 406, 868–871 (2000).

    CAS  Article  PubMed  Google Scholar 

  276. Muševič, I, Škarabot, M ., Tkalec, U ., Ravnik, M. & Žumer, S. Two-dimensional nematic colloidal crystals self-assembled by topological defects. Science 313, 954–958 (2006).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partly supported by a Grant-in-Aid for Scientific Research (KAKENHI, no. 22107003) on Innovative Areas of ‘Fusion Materials’ (area no. 2206) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and CREST, JST (no. JPMJCR1422) (TK). JU is grateful for financial support from the JSPS Research Fellowship for Young Scientists and Program for Leading Graduate Schools (MERIT). TI is grateful for financial support from the Precursory Research for Embryonic Science and Technology (PRESTO) from the Japan Science and Technology Corporation (JST) (no. JPMJPR1413).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Kato.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kato, T., Uchida, J., Ichikawa, T. et al. Functional liquid-crystalline polymers and supramolecular liquid crystals. Polym J 50, 149–166 (2018). https://doi.org/10.1038/pj.2017.55

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/pj.2017.55

Further reading

Search

Quick links