
REVIEW

Functional liquid-crystalline polymers and
supramolecular liquid crystals

Takashi Kato1, Junya Uchida1, Takahiro Ichikawa2,3 and Bartolome Soberats4

The design and functions of liquid-crystalline (LC) polymers with classifying them into conventional-, supramolecular-, dendritic-

and network-type LC polymers are described. LC polymers show new functions as new devices in the field of energy and

environment by incorporating mesogenic moieties exhibiting photonic, electronic and ionic functions. Supramolecular LC

polymers show dynamic and unique properties because the mesogenic moieties are built with non-covalent interactions.

Dendritic-type LC polymers exhibit liquid crystallinity by nanosegregation of aromatic and aliphatic moieties. Dendritic fork-like

mesogens have also been prepared. A variety of nonmesogeic functional building blocks including fullerene, π-conjugated
moieties, catenane, rotaxane and others can be incorporated into LC phases by attaching these dendritic moieties. LC networks

are constructed in situ polymerization of polymerizable nematic or nanostructured liquid crystals. The specific characteristics of

the LC networks have generated new research trends to develop well-defined polymers that exhibit optical, transport and

separation properties. In these materials, through suitable design of LC monomers, the preservation of smectic, columnar and

bicontinuous cubic phases has been successfully used for the development of membranes with one-dimensional,

two-dimensional and three-dimensional nanostructures.
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INTRODUCTION

Liquid-crystalline (LC) polymers have attracted attention for these five
decades since the discovery of LC states of synthetic rigid-rod
polymers.1–3 The well-designed LC polymer structures are expected
to be useful in a variety of fields of new devices, energy, environment,
resources and biotechnologies (Figure 1). In the history of synthetic
LC polymers, aromatic polyamides 1 having rigid-rod structures were
discovered to show lyotropic LC phases in 1960.4 The processing of
these polymers in aligned LC states leads to the formation of high-
modulus high-strength fibers. In 1976, aromatic polyester 2 and
polyazomethines were reported to exhibit thermotropic LC
properties.5,6 Since then, a variety of LC main-chain polymers have
been extensively studied.5–7 Representative molecular structures of the
main-chain and side-chain LC polymers are shown in Figure 2. Side-
chain polymers 3 and 4 have also been obtained in early 1980.8–10

They were expected to show electro-optical effects and film-forming
abilities.9

LC polymers having a variety of functional groups have been
extensively studied (Figure 3). For example, functional main-chain LC
polymers 5 have been prepared to exhibit electron conductivities and
luminescence properties.11,12 Photofunctional,13,14 electro-active,15–18

and ion-active19–24 groups have been incorporated into the side chains
of LC polymers. For example, LC polymers 6 and 7 bearing electro-
active moieties are obtained by using π-conjugated molecules as

mesogenic units.15–18 The introduction of azobenzene moieties into
the side chain of LC polymers leads to the development of photo-
responsive optical systems 8 and photo-actuators.25,26 Anisotropic
two-dimensional (2D) ion-conductive materials 9 and 10 are achieved
by incorporation of ionic moieties or oligo(oxyethylene) units
complexed with inorganic salts in the spacer or the terminal group
of the side-chain LC polymers.19–22 Side-chain-block LC polymers
were prepared for membrane applications.27,28

In addition to these conventional structures of covalently bonded
main-chain and side-chain LC polymers, newly designed functional
LC polymers have been developed since late 1980’s.1,2,29,30 Supramo-
lecular hydrogen-bonded LC polymers emerged by introducing
supramolecular chemistry into the design of LC polymers.31–39 These
polymers were firstly prepared through the formation of complemen-
tary hydrogen bonds by Kato and Frechet37 and Lehn,38 respectively.
They exhibit LC phases in their bulk states. It should be noted that
non-covalent interactions can be used for the functional LC
design.29,40 Supramolecular approach is now well recognized and used
as a new design strategy of a variety of molecular-based functional
materials as new molecular architecture.
As new structures for polymer backbones, dendritic structures have

been introduced to the design of LC polymers.41–44 There are two
types: the first type is dendrimers having many mesogenic rigid-rod
groups;41,42 the second type is dendrimers that show LC phases due to
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nanosegregation.43,44 This second type shows liquid crystallinity with-
out rigid-rod mesogenic groups.
Network structures and partial cross-linked structures of the LC

polymers are also useful to tune and preserve specific properties of the
polymers.45 Highly cross-linked side-chain-type polymers45–47 and
network polymerizable functional molecules48,49 have been prepared
to develop free-standing and mechanically tough functional polymers.
In this review, we describe development of new functional LC

polymeric materials.

SUPRAMOLECULAR DESIGN OF LC POLYMERS

The preparation and functionalization of polymeric LC assemblies
based on supramolecular design are described in this section. The
supramolecular approach has been utilized for the preparation of
main-chain, side-chain and network LC polymers. These supramole-
cular LC polymers offer a unique platform for the development of
dynamic functional materials.
The first supramolecular hydrogen-bonded LC polymers were side-

chain LC polymers 11 formed by complexation of the benzoic acid
moieties in the side chain with stilbazoles (Figure 4a).37 A variety of
polysiloxane-based50–52 and polyacrylate-based53,54 side-chain LC
polymers have been obtained by the formation of supramolecular
mesogens through a variety of hydrogen bonds. Nonmesogenic poly

(vinylpyridine) (PVP)55–59 and poly(acrylic acid) (PAA)60 were also
used to prepare LC polymers by the complexation with complemen-
tary hydrogen-bond donors or acceptors. A main-chain polyamide
incorporating 2,6-bis(amino)pyridine units can form supramolecular
complexes with a biphenylcarboxylic acid.61–63 The direct attachment
of supramolecular mesogens to the polymer backbone results in
stabilization of the induced smectic A phase over 350 °C.
Main-chain supramolecular LC polymers were built through the

formation of hydrogen bonds between two complementary bifunc-
tional components (Figure 4b).38,39,64–66 LC polymeric complex 12
was prepared through the formation of triple hydrogen bonds.38,65

The influence of chirality on the mesomorphic behavior of the
supramolecular polymers was studied. In a similar manner to the
hydrogen-bonded side-chain LC polymers,37,50–63 main-chain LC
polymer 13 was synthesized by using hydrogen bonds between
pyridines and benzoic acids. The complex exhibited nematic and
smectic phases.39 LC polymeric merocyanine dye assemblies exhibiting
columnar phases were also obtained by combining triple hydrogen
bonds and π–π aggregation.66

Use of multifunctional components for the formation of non-
covalent interactions can produce supramolecular LC network
structures.67–69 One of representative examples is self-assembled LC
polymer network 14 formed by complexation of 4,4′-bipyridine and

Figure 1 Design and applications of liquid-crystalline polymers. Reproduced with permission from Wiley-VCH, American Chemical Society and Springer Nature.

O RO

C C N
O

N

C
O

CH2 CH O Si O Si

CH3

CH3

CH3

(CH2)p O R

n

OC
O

C (CH2)2 O C O
H

HO O Onn m

mn

(CH2)p

1 2

3 4

Side-chain LC polymers

Main-chain LC polymers

Figure 2 Representative molecular structures of historical LC polymers. LC, liquid crystalline.

Functional liquid-crystalline polymers
T Kato et al

150

Polymer Journal



hydrogen-bond donor polymer (Figure 5).67 In the network structures
of 14, 4,4′-bipyridine recognizes carboxylic acid moieties and functions
as a cross-linker. Remarkably, these LC networks show reversible
phase transition between isotropic and LC phases due to dynamic
properties of hydrogen bonds, which is in contrast to covalently cross-
linked networks. Another example is self-assembly of small molecular
components to construct hydrogen-bonded network structures.68

Trifunctional hydrogen-bond donors and bifunctional hydrogen-
bond acceptors self-organize into nematic and smectic LC networks
through the formation of hydrogen-bonded supramolecular mesogens.
Chiral LC networks exhibiting cholesteric phases were also developed
by using a chiral bispyridyl molecule as a cross-linker.69 The helical
structures of the cholesteric phase are preserved in the glassy state at
room temperature.
Host-guest LC polymers built through the formation of inclusion

complexes were reported.55,70–72 Hydrogen bonds have a key role in
the formation of host-guest complexes. Complexation of hydroxyl-
functionalized polymers with clip molecules affords inclusion poly-
meric complexes exhibiting LC properties.70 Phase transition behavior
of the LC polymers is tuned by the ratio of host and guest molecules.

Main-chain host-guest LC polymers were developed by the formation
of host-guest complexes.71,72 In this case, two calixarene molecules are
covalently connected through phenyl spacer, and therefore, polymeric
complexes are formed by self-organization of calixarene moieties into
capsules to show lyotropic LC behavior in chloroform.
The concept of hydrogen-bonded liquid crystals29–40 has been

extended to halogen-bonded LC complexes73–75 because of the
similarities of these non-covalent interactions. Halogen-bonded
main-chain LC polymers were obtained by self-assembly of bifunc-
tional halogen-bonding molecules.75 In these polymeric complexes,
interactions between fluoro-substituted iodobenzene and stilbazole
moieties are used to form halogen-bonded adducts exhibiting LC
properties.
Polyrotaxanes are mechanically interlocked polymers consisting of

ring molecules threaded onto a linear polymer chain.76–80 Ito and
colleagues81 attached mesogenic rigid-rod moieties to α-cyclodextrin
on the polymer backbone to synthesize LC polyrotaxanes. Detailed
dielectric relaxation measurements revealed that the mesogenic
moieties in LC polyrotaxanes can move and rotate around the main
chain more easily than those in conventional side-chain LC
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polymers,82,83 which provides potential applications for new stimuli-
responsive materials. Main-chain LC polyrotaxanes were synthesized
by polymerization of pseudorotaxane monomers prepared by intra-
molecular self-inclusion.84,85 Formation of a cholesteric phase in a
concentrated chloroform solution is confirmed by fingerprint texture
observed under polarizing microscopy.
Ionic interactions based on ammonium moieties as cationic

components have been employed for the formation of ionic LC
polymers.86–94 Ujiie and Iimura88 synthesized ionic LC polymers by
appending azobenzene-based mesogens having ammonium groups to
the poly(vinylsulfonate) through ionic interactions between ammo-
nium and sulfonate moieties. They also studied the effects of ionic
backbone on the LC behavior.89 Ionic LC polymers with poly
(ammonium salt) backbone exhibit smectic phases, while their non-
ionic analogs show nematic phases. Acidic polymers such as PAA were
used for complexation with amine-containing molecules to form ionic
side-chain LC polymers.90–92 LC properties were also induced for ω-
and α,ω-carboxylato and sulfonato polystyrenes by attaching
ammonium-containing mesogens.93 The design of ionic supramole-
cular LC polymers has been extended to the introduction of secondary
structures into the polymers.15,94 Müllen and co-workers synthesized
side-chain LC polymer 6 through the formation of acid-base com-
plexes composed of poly(ethylene oxide)-block-poly(L-lysine) (PEO-
PLL) and carboxylic acid-functionalized hexa-peri-hexabenzocoronene
(HBC).15 The polymeric complex shows thermotropic LC phases,
where the poly(L-lysine) backbones form helical structures surrounded
by six discotic columns of hexa-peri-hexabenzocoronene. Further-
more, supramolecular helical polyacetylenes were prepared through
ionic interactions between chiral acids and ammonium groups in the
polymers.94 The macromolecular helicity is amplified in the lyotropic
cholesteric LC phases in water.
In addition to hydrogen bonds,29–40 halogen bonds,74,75 and ionic

interactions,15,86–94 charge-transfer interactions were applied for the
preparation of supramolecular LC polymers.95,96 Ringsdorf et al.95

used charge-transfer interactions between electron-rich triphenylene
and 2,4,7-trinitrofluorenone units to produce LC discotic polymers.
Introduction of chirality into these charge-transfer polymeric com-
plexes yields LC discotic polymers with helical order of the columns.96

On the basis of the supramolecular design described above,
functional supramolecular LC polymers have been developed
(Figure 6).51,97–105 Ferroelectricity can be induced for hydrogen-
bonded LC polymer 15 exhibiting chiral smectic C phases.51 Chiral
hydrogen-bond acceptors are used to form supramolecular LC
polymers that show spontaneous polarization. Photonic materials
made from hydrogen-bond donor polymer 16 and imidazole-
containing mesogen 17 show interesting optical properties.97 Rever-
sible change of optical transmission in the visible region can be
observed as a function of temperature because refractive indices of the
LC materials change with the order parameter. Fluorescent supramo-
lecular LC polymers with rigid bis(phenylethynyl)benzene moieties
were constructed by the formation of hydrogen bonds between two
complementary nucleobase-terminated monomers 18 and 19.98 Polar-
ized emission and photoluminescent color tuning of fluorene deriva-
tives were also reported by using photoreactive hydrogen-bonded LC
polymers.99 Photo-responsive materials were developed based on
azobenzene-containing LC supramolecular polymer networks.100

Supramolecular LC polymers have been applied for ion- and
electron-conductive materials.101–105 Ikkala and co-workers described
the development of nanostructured proton-conductive polymers
combining hydrogen bonds and ionic interactions.101–103 Supramole-
cular polymer 20 is composed of diblock copolymer poly[styrene-

block-(4-vinylpyridine)] (PS-b-PVP), p-toluenesulfonic acid and
pentadecylphenol.103 They have hierarchical nanostructures with
multiple length scales, which results in anisotropic proton conduction.
Using this approach, polyaniline-based supramolecular LC materials
that show electrical conductivity were also reported.104 Percec et al.105

employed charge-transfer interactions to prepare electron donor–
acceptor LC polymeric complexes with electronic functions. One-
dimensional LC ordered structures of the electron donor–acceptor
complexes are stabilized by self-assembly of acceptor polymer 21 and
fluorine-substituted donor dendron 22. The mobilities of electron
donor–acceptor polymeric complexes are much higher than those of
related donor and acceptor molecules in the amorphous state.

DENDRITIC DESIGN FOR LC POLYMERS

The design of LC polymers has been applied for the development of
LC dendritic molecules.43,44,106–108 Dendrimers and dendrons are a
class of macromolecules with repetitive branching units, which have
attracted growing interest in polymer and materials science.109,110 LC
molecules with dendritic structures exhibit unique self-assembled
behavior and functions.43,44 Some representative dendritic LC mole-
cules are shown in Figure 7. In the early stage of LC dendrimer,
Percec et al.111 synthesized and characterized thermotropic nematic LC
dendritic polymer 23. They have extended the design of LC
dendrimers to cone-shaped and semicircular dendrons, which exhibit
micellar cubic and columnar phases, respectively.112 The LC phases
can be systematically modulated by changing the volume of dendritic
moieties.113,114

Attachment of rigid-rod mesogenic moieties on the terminal
position of the dendrimers can produce LC dendritic
molecules.41,42,115–117 Shibaev and Frey elaborated LC carbosilane
dendrimers decorated with terminal mesogenic groups.41,115 In these
molecules, the mesogenic groups are arranged only in the periphery of
the dendritic macromolecules,41,115 which is in contrast to the early
example reported by Percec.111 The type of LC phases depends on
chemical nature of the terminal mesogenic groups.116 Poly
(amidoamine)118 and poly(propyleneimine)119 dendrimers have also
been functionalized with mesogenic molecules at the periphery to
exhibit mesomorphic behavior.42,117

The dendritic design is effective to induce liquid crystallinity for
complex molecules.120–124 Silsesquioxanes have been used as scaffolds
of supermolecular liquid crystals because organic substituents can be
easily tethered to the vertices of the polyhedra.120,121 Mehl and
Goodby122 reported octasilsesquioxane dendrimers exhibiting LC
phases by introducing cyanobiphenyl mesogens on the periphery.
The mesomorphic properties can be tuned by number, density and
orientation of the attachment of rigid-rod moieties bound to the
central cores.123 In general, laterally attached mesogens induce nematic
phases, whereas terminally attached mesogens afford smectic
phases.120,121 By combining these two different types of mesogens,
‘Janus’ liquid crystal 24 has been developed.124 The type of LC phases
of the Janus molecules is dependent on the overall topology of the
molecules.
Combination of the dendritic design and functional molecules

provides dynamic self-assembled materials.125–130 Fullerenes are
representative electro-functional molecules that have been incorpo-
rated into LC dendrimers.125–127 Chuard and Deschenaux128 synthe-
sized LC fullerenes by appending the cholesterol mesogens to the core
structures. The generations, mesogenic groups and linkers of the LC
dendrimers have a key role in determining the self-assembled behavior
of the dendritic liquid crystals.125 A variety of LC fullerenes with
electro-active moieties have been reported.129,130
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Stimuli-responsive luminescent liquid crystals have been developed
based on dendritic design.131–133 Sagara and Kato reported mechan-
ochromic liquid crystals consisting of π-conjugated organic molecules
and dendritic side chains.134 Pyrene,134 naphthalene,135

oligothiophene136,137 and anthracene138–141 derivatives have been used
as the central luminescent cores of the dendritic molecules. For
example, fan-shaped dendrons have been employed to prepare
luminescent compounds 25–28. Bianthryl-based liquid crystals have
also been obtained by attaching fork-like mesogens to the luminescent
core moiety.142 The photoluminescent color change is observed for
these molecules upon shear-induced phase transition.133–139,142 Some
π-conjugated LC molecules with branched or dendritic side chains
show unique mechanochromic properties such as reversible lumines-
cent color change137 and tricolored luminescence.139 The type of LC
phase transition depends on the molecular structures of dendritic
moieties. Cubic-columnar phase transition is observed for the
luminescent molecules with fan-shaped dendrons,133–136,138,139 while

smectic-smectic phase transition is induced for those with fork-like
mesogens143 composed of rigid-rod mesogenic moieties.140,142

Metal-containing LC dendrimers show interesting functions such as
luminescent, magnetic and redox properties.144 The properties can be
modulated by the design of dendritic ligands and metal centers.
Dendritic ligands are often used to induce mesomorphic properties for
discrete metal clusters such as polyoxometalates and metallic poly-
hedral clusters.145,146 One approach for the preparation of LC clusters
is to graft organic ligands on metal clusters through ionic
interactions.146 Self-assembly of ionic clusters and oppositely charged
ligands provides dendritic and mesomorphic clusters. Another
approach is to substitute mesogenic ligands for coordinating ligands
that constitute the clusters.144,145 Recently, the ligand exchange
reaction has been utilized for the preparation of functional LC metal
clusters.147–149 Donnio reported mesomorphic dodecanuclear manga-
nese complexes exhibiting magnetic properties through ligand
exchange between dendritic benzoate ligands and acetate ligands of the
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Functional liquid-crystalline polymers
T Kato et al

154

Polymer Journal



complexes.147,148 In a similar manner, luminescent molybdenum
octahedral clusters with dendritic structures have also been formed
to exhibit LC smectic phases.149

LC dendrimers can be formed by attachment of mesogenic ligands
on nanoparticles as the central scaffolds.150 Major efforts have been
made in the preparation of LC gold nanoparticles because control of
their spatial arrangement has potential for the creation of

metamaterials.151 The self-assembled structures of LC nanoparticles
are controlled by the number, density and structures of ligands as well
as particle size.150,151 Calamitic,152 discotic,153 dendritic154,155 and
bent-core156 moieties have been utilized as surrounding ligands of LC
nanoparticles.
Introduction of dynamic and ordered states of liquid crystals into

supramolecular complexes such as catenanes and rotaxanes has

23
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26 28
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Figure 7 Representative molecular structures of dendritic liquid crystals.
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potential for the development of smart dynamic materials.80 Dendritic
structures are useful to organize such large-sized objects into LC
nanostructures.80,144,150,151 Fork-like mesogenic dendrons have been
applied for the induction of smectic LC phases for supramolecular
catenane 29 and rotaxane 30.157–160 For example, self-assembly of LC
catenane 29 with fork-like mesogens into layered nanostructures is
illustrated in Figure 8. LC rotaxane 30, on the other hand, exhibits
redox-switchable mechanical motion of a cyclobis(paraquat-p-pheny-
lene) (CBPQT4+) ring accompanied by electrochromic behavior in the
LC state.160 Another example of supramolecular dendritic systems is
formed by self-assembly of biomolecular derivatives.161–167 Some of
folic acid derivatives show ion-responsive phase transitions from
smectic to columnar phases.161 The design of these supramolecular
assemblies has been extended to ion-conductive164,166 and
luminescent167 materials.

FUNCTIONAL LC POLYMERS AND NETWORKS

LC molecules consisting of two or more incompatible parts sponta-
neously form various nanosegregated structures, such as layered,
cylindrical and globular structures.30,106 Recently, growing attention
has been paid to use of these nanosegregated liquid crystals as
transport materials because of the formation of well-organized
nanochannels structures.19,168–180 These LC low-molecular weight
molecules are easy to orient, and show one-dimensional, two-
dimensional and three-dimensional (3D) transport features. However,
they are in general soluble in organic solvents and exhibit poor
mechanical properties that compromise their robustness and stability
for being applied in devices or as functional coatings and membranes.
One strategy to overcome this problem is polymerization and cross-
linking of the self-organized LC molecules into LC networks with
preserving the periodic nanostructures.30,49,181–187 This process cer-
tainly reduces the mobility and dynamic nature of the LC arrays, but
drastically improves the mechanical properties of the samples and
their thermal stability.
There are some important processes for transforming nanosegre-

gated liquid crystals into nanostructured LC networks (Figure 9):
(1) introduction of polymerizable group into LC molecules; (2)
spontaneous self-organization of the LC monomers; (3) alignment
of LC domains in a macroscopic scale if necessary; and (4) in situ
polymerization.
When one aims to construct LC networks with 1D, 2D and 3D

nanochannels, the use of columnar, smectic and bicontinuous cubic
LC monomers are required. Remarkably, the formation of the LC
phases can be, in some extent, controlled by careful molecular
engineering to obtain these LC phases.19,168–180 The resulting phase
is crucial because it determines the nature of the transport properties
including their anisotropic properties.
Some representative LC monomers exhibiting thermotropic and

lyotropic LC phases are shown in Figure 10. Compound 31 forms a

Colh phase from 20 to 50 °C.48 Without special treatment, these
columnar liquid crystals form a polydomain state. The creation of
monodomain states with vertical and parallel alignment can be
induced by chemical modification of the substrate of the surface
and mechanical shearing, respectively. By performing photopolymer-
ization process in the aligned states, self-standing polymer films with
macroscopically oriented 1D ion channels have been successfully
obtained. The formation of cross-linking network produces a decrease
on the mobility of the component ions, which leads to the decrease of
ionic conductivities. This drawback can be overcome by using
supramolecular design of columnar liquid crystals. For example, the
equimolar mixture of compound 32 and [bmim][Br] forms a Col
phase from − 10 to 41 °C.188 The polymerization process has here a
lower impact on the ionic conductivities than the previously described
material.
For the alignment of columnar liquid crystals, various new

techniques have been produced, such as applications of electric189,190

and magnetic fields,191,192 and other methods.193–196 For compound
33a, the macroscopic alignment of columns has been achieved by
magnetic fields and the preservation of the 1D nanostructures has
been also carried out.191,192

Nanostructured LC network design was also applied to the
development of 2D ion transport polymer networks.20–22 Kato and
co-workers reported a series of rod-like mesogen bearing oligo
(ethylene oxide) chains and polymerizable acrylate groups
(compound 34). These molecules form nanosegregated lamellar
structures consisting of polar and non-polar layers. After addition of
suitable inorganic salts, the polar layers constituted by the oligo
(ethylene oxide) chains show ion transport features. The polymeriza-
tion of the materials led to self-standing films with preserving the
layered structures. These smectic phases were also aligned prior to
their polymerization and the corresponding LC network films
exhibited anisotropic ion transport. Broer and Schenning also
prepared 2D ion channels by using LC mixtures of compound 35
and compound 36.184 Mixture of these compounds (10 wt% of
compound 35) forms a smectic phase that was photopolymerized
forming thermally stable films. Interestingly, the resulting membranes
could be swelled by cations upon uptake of alkaline water (NH4OH).
More recent efforts were directed toward the development of 3D

ion channel networks based on Cubbi phases because these material
does not require any alignment of LC domains in a macroscopic scale
to optimize their transport efficiency.197–203 In this regard, Gin and
co-workers reported the wedge-shaped compound 33b bearing
acrylate polymerizable groups at the periphery of the three alkyl
chains.198 This molecule forms a lyotropic Cubbi phase (QII phase) in
the presence of lithium perchlorate and propylene carbonate. The
photopolymerization of this mixture readily leads to thermally stable
polymer films with a 3D structure exhibiting ionic conductivities in
the order of 10− 3 S cm− 1. Kato and colleagues199 also achieved the

Figure 8 Schematic illustration of self-assembled structure of LC catenane. LC, liquid crystalline. Reproduced with permission from Wiley-VCH. A full color
version of this figure is available at Polymer Journal online.
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preparation of LC networks having 3D ionic nanochannels by
designing ammonium-based thermotropic LC compound 37 that
exhibits a Cubbi phase from − 5 to 19 °C. The incorporation of LiBF4
to the 3D LC networks allowed the development of transparent
lithium-ion conductor film (Figure 11).
In the same vein, the polymerization of these nanostructured liquid

crystals was employed to develop nano- and/or subnano-porous
membranes for filtration and separation membranes.204–209 For
example, the 3D LC networks based on compound 37 have been
used for separation membranes permeating selective ions. More
recently, the application of these 3D LC networks for the rejection
of virus has been also unveiled.205 Gin and co-workers also successfully
prepared 3D LC networks based on polymerized lyotropic liquid
crystals for various applications, such as gas filtration and separation
membranes.206–209 For example, the sodium salt of acid compound
33a was used to prepare composite membranes by employing
polysulfone as support. The membrane showed selective filtration of
anionic dyes from aqueous solutions. Gemini phosphonium, ammo-
nium and imidazolium surfactants compound 38 were also applied to
develop filtration membranes after polymerization of the lyotropic LC
structures.207,209 Compounds 38a and 38b form lyotropic bicontin-
uous cubic (QI) phases (Pn3m or Ia3d), which are normal-type
lyotropic bicontinuous cubic phases, in the presence of water. These
compounds were polymerized on porous substrates. Their ion rejec-
tion properties of the composite films were evaluated upon different
aqueous solutions. Both compounds showed rejection as high as 90%
for NaCl, KCl, MgCl2 and CaCl2 salts. In the case of compound 38c,
QI phases were prepared in the presence of glycerol instead of water,
and the resulting membranes showed significant rejection properties of
salts, but also of different small organic molecules such as sucrose and
glucose.210 These membranes seem to be operated by size exclusion.
They exhibit well-defined structures of channels with homogenous size
of pores, which allows the controlled selectivity.

While the covalent cross-linking of nanosegregated liquid crystals
have been used to stabilize materials with transport functions, densely
or fully covalent cross-linking of conventional nematic, cholesteric and
smectic LC polymers have found other applications. For example,
nematic LC networks have been widely investigated (Figure 1, right,
bottom) and applied in display technologies, and in particular, in the
confection of optical compensation films.211,212 Dense cross-linked
nematic and cholesteric materials still exhibit glass transitions
(between 40 and 120 °C) that are also accompanied by shape
deformations.45,184,213 These properties have been exploited to prepare
densely cross-linked nematic or cholesteric polymer networks with
intriguing programmable stimuli-responsive properties after their
careful alignment.46,47 The orientation of the LC mixtures is typically
induced prior their polymerization by different strategies such as
patterned command surfaces or electric fields. In this regard, photo-
patterning has emerged as an efficient technique to prepare command
surfaces for the development of exotic LC actuators.214–216

Introduction of densely cross-linked structures into liquid crystals
induces stability and free-standing properties of the
materials.50,67,184,217,218 When partial cross-linked structure is intro-
duced into polymers that exhibit LC phases (Figure 1, right, bottom),
elastomeric properties emerge at ambient temperature.217–221 Seminal
studies of Finkelmann focused on the development of partially cross-
linked side-chain LC polymers.222,223 These polymers are self-standing
materials that exhibit elastic properties and memory effects. Owing its
properties, they are often described as LC elastomers.224 These
materials exhibit phase transitions that are often accompanied by
shape deformations.45,217,218,225–227 The basic principle behind the
deformation in LC elastomers is depicted in Figure 12.217 The polymer
backbones experience an anisotropic environment in the presence of
mesogenic groups. This provides certain order in the polymer chains
that prevent the isotropic conformation. However, when the material
experience a loss in the anisotropy (that is, isotropization), the

Figure 9 Design of nanostructured ion-conductive liquid-crystalline polymer films.
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polymer backbones will tend to an isotropic conformation that will
induce a shape change in the macroscopic level. When the nematic or
smectic LC elastomers are macroscopically aligned, selective shrinkage
strain along the director vector is observed during the LC-isotropic
phase transitions.45,47,219–227

Light-induced deformations have been widely explored in cross-
linked azobenzene-based LC networks.220,228 The stimuli response of
these materials rely on the light driven cis-trans/trans-cis photoisome-
rizations of azobenzene groups that act as photochromic molecules
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Figure 11 Construction of self-standing densely cross-linked polymer films
having 3D continuous ion nanochannel through polymerization of
bicontinuous cubic liquid-crystalline compound 37. Reproduced with
permission from American Chemical Society. A full color version of this
figure is available at Polymer Journal online.

Figure 12 Schematic illustration of a phase transition in LC elastomers. LC,
liquid crystalline. A full color version of this figure is available at Polymer
Journal online.

Functional liquid-crystalline polymers
T Kato et al

158

Polymer Journal



and as mesogens.229,230 Trans-azobenzene stabilizes LC phases while
the cis-form disturbs them. The photo-isomerization of azobenzene is
controlled by ultraviolet or visible light or by heating the sample.
Partially cross-linked LC networks with highly concentrated azoben-
zene moieties were prepared by using molecules 39 and 40 shown in
Figure 13a.230 When irradiated, the absorption mainly occurs in the
exposed surface of the films, which produces a gradient in the
contraction ratio between the surface and the bulk. When this gradient
is sufficiently large, macroscopic bending of the film is observed. The
reversible bending of the azobenzene-based LC polymer networks
films by 366 nm light irradiation has been reported.230 Selective
bending is achieved by irradiating monodomains films with non-
polarized light or either by irradiating linearly polarized light to
polydomain films.
Ikeda also explored the use of hydrogen-bonding interactions to

cross-link LC polymers containing azobenzene groups.100 These
materials 41 were prepared by mixing a side-chain LC polymer
containing azobenzene and benzoic acid groups with bispyridyl
derivatives (Figure 13b). Bispyridyl groups act as supramolecular
crosslinkers between the side carboxylate groups50,67 of the polymers.
The resulting blends are free-standing, and show macroscopic bending
and unbending upon irradiation due to the changes of the azobenzene
groups at the microscopic level. The advantage to use supramolecular
cross-linking is that, in contrast to covalently linked LC polymer
networks, the supramolecular materials are soluble in organic solvents,
and therefore can be recovered and recycled.
Thin films of nematic and cholesteric LC polymer networks can

exhibit various types of deformations that strongly depends on the
spatial configuration of the liquid crystal directors.47 In general,
selective contractions/elongations along the directors are observed in
planarly aligned nematic and cholesteric phases. On the other hand,

the bending of films can be induced by splayed alignments of nematic
LC films where the orientation of the local directors varies from planar
to vertical in the direction of the thickness. More complex torsional
deformations of films are induced by twist alignments along the
thickness of the films. In addition, non-uniform deformations are
achieved by creating hierarchical variations in the LC directors along
the films surface.214 Use of twisted nematic phases,214 alignment layers
with circular patterns215 and alignment control within local volume
elements (voxels)216 have led to the development of films undergoing
stimuli induced complex deformations.
Azobenzene mesogens have also been utilized to develop densely

cross-linked LC polymer networks exhibiting programmed mechanical
responses upon light irradiation.220,228 For example, Broer group
reported on photo-responsive artificial microstructured cilia that bend
upon the appropriate light stimuli.231 These cilia are composed of two
parts that have distinct response to light. Each part can be stimulated
independently and different mechanical responses can be induced by
selecting the appropriate irradiation. Further works focused on the
utilization of densely cross-linked LC polymers for the conversion of
light into mechanical work.232–238 In this regard, many researches
focused on the development of azo-cantilever oscillators based on
densely cross-linked polymer networks that work with artificial light
or even with direct sunlight.232–236

LC GELS

Two types of LC gels have been reported: LC chemical gels and LC
physical gels (Figure 14a). While LC chemical gels are composed of
conventional liquid crystals (liquid crystal solvent) and cross-linked
LC polymers,239,240 for LC physical gels, liquid crystals are mixed with
low-molecular weight gelators that form self-assembled fibrous
networks.241,242 The resulting materials exhibit elastic mechanical
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properties compared to conventional liquid crystals, but preserve the
dynamics and stimuli-responsive properties of small molecules of
liquid crystals.
In the LC chemical gels, the gelation is achieved by the in situ cross-

linking of polymerizable mesogens dissolved in a LC solvent.239,240

The presence of mesogenic groups attached to polymer networks
provides the proper miscibility with the mesogens trapped by a 3D
polymer network. Owing to their dynamic properties, LC chemical
gels have been widely investigated for their application to optical
devices.243,244 For example, Hikmet243 proposed nematic LC gels as
alternative to conventional calamitic liquid crystals as components for
informational displays. Some of these materials exhibited fast
dynamics and low-threshold electric response. On the other hand,
by utilizing cholesteric gels, more complex electro-switchable devices
such as mirrors or patterned optical components have been developed
(Figure 14b).245 The formation of LC gels has also been applied to the
preservation of exotic LC phases such as blue phases that have
intriguing photonic functions.246–249

Remarkably, LC chemical gels also show shape variations in
response to temperature and external fields.250–255 Thermal actuation
in LC chemical gels is often accompanied by volume variations.251,252

Urayama and co-workers extensively studied the polymerized mixtures
of mesogenic acrylates and diacrylates in LC solvents.250–253 These
materials exhibit temperature-induced dewelling and reswelling during
nematic-isotropic transition. Here again the orientation of the local

director also has a key role on the deformation phenomena.250

Figure 14c shows the optical micrographs of a LC gel film with
planar-vertical orientation of the local directors at different
temperatures.253 Importantly, the curvature of the films appreciably
depends on the temperature and it can be predicted on the basis of the
lineal bending theory and the anisotropic Gaussian model.253 Actua-
tion in LC physical gels have been induced not only by temperature
variations, but also by application of electric fields.254,255

LC physical gels are formed by micro-phase separation of liquid
crystal solvents and supramolecular gelators forming fibrous
aggregates.241,242 Liquid crystals exhibiting nematic, cholesteric, smec-
tic and columnar phases have been used to prepare LC gels. One of the
most representative gelators is based on long alkyl chains bearing
peptide sequences or urea groups and form long fibers via strong
hydrogen-bonding interactions.256 LC physical gels are obtained by
cooling from isotropic liquid of a mixture of the liquid crystal and the
supramolecular gelator (0.2–4%). Importantly, the nature and proper-
ties of the gels are dependent on the order of the isotropization
temperature (Tiso) of the liquid crystal and the sol-gel transition
(Tsol-gel) of the gelator.253 For example, when Tsol-gel4Tiso, LC gels
with randomly dispersed fibrous networks are formed. In contrast,
when Tiso4Tsol-gel, the gelation is templated by the LC order, and
therefore aligned fibers can be obtained by aligning the liquid crystals
with command surfaces or external fields.241,242

Figure 14 (a) Schematic illustration of LC chemical and physical gels. (b) Pattern-wise LC chemical gel with off (left) and on (right) voltage. (c) Schematic
for the bent LC gels with hybrid (splayed) alignment (top) and optical micrographs of the gel at different temperatures. (d) Schematic illustration of the OFF
and ON modes of a light-scattering electro-optical switching device. Insets show the photographs of the cells filled with the LC physical gels.
(e) Photomicrograph of an oriented LC physical gel and schematic illustration of the hierarchical structure (top). Chemical structures of an electro-active and
a magneto-active gelators utilized to develop functional LC physical gels. LC, liquid crystalline. Reproduced with permission from The Royal Society of
Chemistry, Springer Nature and American Chemical Society.
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Nematic LC physical gels showing electro-optical switching in the
light-scattering mode have been reported.257–261 As shown in
Figure 14d, LC gels composed of randomly dispersed fibers and
polydomain LC structures exhibit light scattering. However, after
application of an electric field, the LC molecules reorient in the
direction of the field forming a monodomain homeotropic alignment.
This structural configuration permits the transmittance of the light. It
should be noted that the LC gels recover their initial organization
when the electric field is removed. Moreover, these structures can be
covalently cross-linked by using gelators with polymerizable groups,
leading to more stable materials.260,261 Other functional LC physical
gels have been prepared.241,242,262–266 For example, a triphenylene
columnar LC gel have been reported to show charge carrier
transport.264 Remarkably, the gelated columnar structure exhibits
improved transport abilities compared to the pure discotic liquid
crystal due to the repression of molecular fluctuations, which increases
the columnar order and the hole mobiles. Another strategy to prepare
functional LC gels consists of mixing active gelators with a nematic or
smectic liquid crystal. By the alignment of the LC phase, the formation
of anisotropic functional fibrous aggregates can be induced.257

This approach has been applied to prepare conductive self-
assembled fibers by using a gelator bearing an electro-active moiety
such as tetrathiafulvalene (Figure 14e).265,266 Similar approach has
been used to prepare magneto-active fibers. In this case, gelators
bearing 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) groups have
been utilized.262,263 Use of photofunctional gelators bearing azoben-
zene groups leads to the photoswitching of the LC gel structures.267,268

CONCLUSIONS

An overview of the development of functional LC polymers are
described in this review. A wide variety of molecular and supramo-
lecular structures, and molecular self-assembled structures have been
introduced into the materials design of the LC polymers. These LC
polymers can exhibit ordered and anisotropic structures and proper-
ties. For further functionalization of the LC polymer materials,
molecular orientation, defect control and domain formation should
be more precisely controlled.269 For example, new techniques44,270–273

are proposed to control alignment using LC polymers. New materials
will be used for the preparation of liquid crystals.274–276 LC polymers
may be more important in the field of energy, environment and
biotechnology due to their unique nature.
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