Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Physical Properties of Polymers

High-performance SPEEK/SWCNT/fly ash polymer electrolyte nanocomposite membranes for fuel cell applications


Sulfonated poly (ether ether ketone) (SPEEK)-based polymer nanocomposite membranes containing single-walled carbon nanotubes (SWCNTs) and fly ash as inorganic fillers have been prepared using a solution casting technique. The degree of sulfonation of poly (ether ether ketone) was determined by proton nuclear magnetic resonance spectroscopy analysis and was found to be 64%. Scanning electron microscopy and X-ray diffraction analyses confirmed the incorporation of nanofillers into the polymer matrix. The physicochemical properties of the prepared membranes were studied to evaluate their suitability for fuel cell applications. The SP-CNT-FA-8 membrane exhibited the highest proton conductivity of 0.027 S cm−1 at 30 °C and 0.034 S cm−1 at 90 °C, whereas the pristine membrane exhibited conductivities of 0.019 S cm−1 at 30 °C and 0.031 S cm−1 at 90 °C. The membrane electrode assemblies were successfully fabricated for the pristine SPEEK and SP-CNT-FA-6 membranes, and their electrochemical performance was studied throughout the current density range. In addition to the favorable proton conductivity, the electrolyte membranes showed excellent thermal and mechanical stability; taken together, these results indicate that the composite membranes based on SPEEK with SWCNT and fly ash can be viable candidates for use as an electrolyte membrane in fuel cell applications.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9


  1. 1

    Vinayan, B. P., Nagar, R., Rajalakshmi, N. & Ramaprabhu, S. Novel platinum-cobalt alloy nanoparticles dispersed on nitrogen-doped grapheme as a cathode electrocatalyst for PEMFC applications. Adv. Funct. Mater. 22, 3519–3526 (2012).

    CAS  Article  Google Scholar 

  2. 2

    Manabu, T., Masaki, K., Kenji, M. & Masahiro, W. Synthesis and properties of anion conductive ionomers containing fluorenyl groups for alkaline fuel cell applications. Polym. Chem. 2, 99–106 (2011).

    Article  Google Scholar 

  3. 3

    Costamanga, P. & Srinivasan, S. Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part I. Fundamental scientific aspects. J. Power Sources 102, 242–252 (2001).

    Article  Google Scholar 

  4. 4

    Gh Park, K. T., Chun, J. W., Kim, S. G., Chun, B. H. & Kim, S. H. Synthesis and characterization of crosslinked sulfonated poly (arylene ether sulfone) membranes for high temperature PEMFC applications. Int. J. Hydrogen Energy 36, 1813–1819 (2011).

    Article  Google Scholar 

  5. 5

    Yee, R. S. L., Zhang, K. & Ladewig, B. P. The effects of sulfonated poly(ether ether ketone) ion exchange preparation conditions on membrane properties. Membranes 3, 182–195 (2013).

    CAS  Article  Google Scholar 

  6. 6

    Kreuer, K. D. On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J. Membr. Sci. 185, 29–39 (2001).

    CAS  Article  Google Scholar 

  7. 7

    Lu, D., Zou, H., Guan, R., Dai, H. & Lu, L. Sulfonation of polyethersulfone by chlorosulfonic acid. Polym. Bull. 54, 21–28 (2005).

    CAS  Article  Google Scholar 

  8. 8

    Sonpingkam, S. & Pattavarakorn, D. Mechanical properties of sulfonated poly (ether ether ketone) nanocomposite membranes. Int. J. Chem. Eng. Appl. 5, 181–185 (2014).

    CAS  Google Scholar 

  9. 9

    Liu, Y. L. Effective approaches for the preparation of organo-modified multi-walled carbon nanotubes and the corresponding MWCNT/polymer nanocomposites. Polym. J. 48, 351–358 (2016).

    CAS  Article  Google Scholar 

  10. 10

    Wang, L., Kang, J., Nam, J. D., Suhr, J., Prasad, A. K. & Advani, S. G. Composite membrane based on graphene oxide sheets and Nafion for polymer electrolyte membrane fuel cells. Electrochem. Lett. 4, F1–F4 (2015).

    CAS  Google Scholar 

  11. 11

    Maab, H. & Nunes, S. P. Modified SPEEK membranes for direct ethanol fuel cell. J. Power Sources 195, 4036–4042 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Kanakasabai, P., Vijay, P., Deshpande, A. P. & Varughese, S. Crosslinked poly(vinyl alcohol)/sulfonated poly(ether ether ketone) blend membranes for fuel cell applications—surface energy characteristics and proton conductivity. J. Power Sources 196, 946–955 (2011).

    CAS  Article  Google Scholar 

  13. 13

    Ismail, A. F., Othman, N. H. & Mustafa, A. Sulfonated polyether ether ketone composite membrane using tungstosilicic acid supported on silica-aluminium oxide for direct methanol fuel cell (DMFC). J. Membr. Sci. 329, 18–29 (2009).

    CAS  Article  Google Scholar 

  14. 14

    Nunes, S. P., Ruffmann, B., Rikowski, E., Vetter, S. & Richau, K. Inorganic modification of proton conductive polymer membranes for direct methanol fuel cells. J. Membr. Sci. 203, 215–225 (2002).

    CAS  Article  Google Scholar 

  15. 15

    DiVona, M. L., Sgreccia, E., Donnadio, A., Casciola, M., Chailan, J. F., Auer, G. & Knauth, P. Composite polymer electrolytes of sulfonated poly ether ether ketone (sPEEK) with organically functionalized TiO2 . J. Membr. Sci. 369, 536–544 (2011).

    CAS  Article  Google Scholar 

  16. 16

    Ruffmann, B., Silva, H., Schulte, B. & Nunes, S. P. Organic/inorganic composites membranes for application in DMFC. Solid State Ionics 269, 162–163 (2003).

    Google Scholar 

  17. 17

    Eroglu, I., Sengul, E., Erdener, H., Akay, R. G., Yucul, H. & Bac, N. Effects of sulfonated polyether-ether ketone (s-PEEK) and composite membranes on the proton exchange membrane fuel cell performance. Int. J. Hydrogen Energy 34, 4645–4652 (2009).

    Article  Google Scholar 

  18. 18

    Hasani-Sadrabadi, M. M., Emami, S. H., Ghaffarian, R. & Moaddel, H. Nanocomposite membranes made from sulfonated polyether-ether ketone and montmorillonite clay for fuel cells applications. Energy Fuels 22, 2539–2542 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Dogan, H., Inan, T. Y., Unveren, E. & Kaya, M. Effect of cesium salt of tungstophosphoric acid (Cs-TPA) on the properties of sulfonated polyether ether ketone (SPEEK) composite membranes for fuel cell applications. Int. J. Hydrogen Energy 35, 7784–7795 (2010).

    CAS  Article  Google Scholar 

  20. 20

    Zaidi, S. M. J. & Ahmad, M. I. Novel SPEEK/heteropolyacids loaded MCM-41 composite membranes for fuel cell applications. J. Membr. Sci. 279, 548–557 (2006).

    CAS  Article  Google Scholar 

  21. 21

    Paradesi, D., Ramanujam, R. A. & Jaisankar, S. N. Synthesis and characterization of sulfonated poly (arylene ether sulfone) (SPAES)/silicotungstic acid (STA) composite membranes for fuel-cells. Polym. J. 45, 166–172 (2013).

    Article  Google Scholar 

  22. 22

    Ismail, A. F., Mohtar, S. S. & Matsuura, T. Preparation and characterization of sPEEK/MMT-STA composite membrane for DMFC application. J. Membr. Sci. 371, 10–19 (2011).

    Article  Google Scholar 

  23. 23

    Klingele, M., Breitwieser, M., Zengerleab, R. & Thiele, S. Direct deposition of proton exchange membranes enabling high performance hydrogen fuel cells. J. Mater. Chem. A 3, 11239–11245 (2015).

    CAS  Article  Google Scholar 

  24. 24

    Wehkamp, N., Breitwieser, M., Büchler, A., Klingele, M., Zengerle, R. & Thiele, S. Directly deposited Nafion/TiO2 composite membranes for high power medium temperature fuel cells. RSC Adv. 6, 24261–24266 (2016).

    CAS  Article  Google Scholar 

  25. 25

    Meenakshi, S., Sahu, A. K., Bhat, S. D., Sridhar, P., Pitchumani, S. & Shukla, A. K. Mesostructured-aluminosilicate-Nafion hybrid membranes for direct methanol fuel cells. Electrochim. Acta 89, 35–44 (2013).

    CAS  Article  Google Scholar 

  26. 26

    Kannan, R. & Pillai, V. K. Applications of carbon nanotubes in polymer electrolyte membrane fuel cells. J. Indian Inst. Sci. 89, 425–436 (2009).

    CAS  Google Scholar 

  27. 27

    Tripathi, B. P. & Shahi, V. K. Organic–inorganic nanocomposite polymer electrolyte membranes for fuel cell applications. Prog. Polym. Sci. 36, 945–979 (2011).

    CAS  Article  Google Scholar 

  28. 28

    Ismail, A. F., Rahim, N. H., Mustafa, A., Matsuura, T., Ng, B. C., Abdullah, S. & Hashemifard, S. A. Gas separation performance of polyethersulfone/multi-walled carbon nanotubes mixed matrix membranes. Sep. Purif. Technol. 80, 20–31 (2011).

    CAS  Article  Google Scholar 

  29. 29

    Kim, D. J., Jo, M. J. & Nam, S. Y. A review of polymer–nanocomposite electrolyte membranes for fuel cell application. J. Ind. Eng. Chem. 25, 36–52 (2015).

    Article  Google Scholar 

  30. 30

    Murali, A., Senthil, A. G. T., Jaisankar, S. N. & Mandal, A. B. Augmentation of properties on sparingly loaded nanocomposites via functionalized single-walled carbon nanotubes using a covalent approach. RSC Adv. 4, 62947–62950 (2014).

    CAS  Article  Google Scholar 

  31. 31

    Anandan, S. Recent trends in fly ash utilization in polymer composites. Int. J. Waste Resour. 4, 1000149 (2014).

    Google Scholar 

  32. 32

    Blissett, R. S. & Rowson, N. A. A review of the multi-component utilization of coal fly ash. Fuel 97, 1–23 (2012).

    CAS  Article  Google Scholar 

  33. 33

    Parvaiz, M. R., Mohanty, S., Nayak, S. K. & Mahanwar, P. A. Effect of surface modification of fly ash on the mechanical, thermal, electrical and morphological properties of poly ether ether ketone composites. Mater. Sci. Eng. A 528, 4277–4286 (2011).

    Article  Google Scholar 

  34. 34

    Nath, D. C. D., Bandyopadhyay, S., Boughton, P., Yu, A., Blackburn, D. & White, C. Chemically modified fly ash for fabricating super-strong biodegradable poly(vinyl alcohol) composite films. J. Mater. Sci. 45, 2625–2632 (2010).

    CAS  Article  Google Scholar 

  35. 35

    Manoj, S. & Vikas, C. Mechanical properties of epoxy resin–fly ash composite. J. Miner. Mater. Character. Eng. 9, 199–210 (2010).

    Google Scholar 

  36. 36

    Zaidi, S. M. J., Mikhailenko, S. D., Robertson, G. P., Guiver, M. D. & Kaliaguine, S. Proton conducting composite membranes from poly ether ether ketone and heteropolyacids for fuel cell applications. J. Membr. Sci. 173, 17–34 (2000).

    CAS  Article  Google Scholar 

  37. 37

    Gil, M., Ji, X., Li, X., Na, H., Hampsey, J. E. & Lu, Y. Direct synthesis of sulfonated aromatic poly(ether ether ketone) proton exchange membranes for fuel cell applications. J. Membr. Sci. 234, 75–81 (2004).

    CAS  Article  Google Scholar 

  38. 38

    Paradesi, D. & Ramanujam, R. A. sulfonated poly(ether ether ketone) and poly(ethylene glycol) diacrylate based semi-interpenetrating network membranes for fuel cells. J. Macromol. Sci. Part A 49, 191–200 (2012).

    Article  Google Scholar 

  39. 39

    Muthu Lakshmi, R. T. S., Choudhary, V. & Varma, I. K. Sulfonated poly(ether ether ketone): synthesis and characterisation. J. Mater. Sci. 40, 629–636 (2005).

    CAS  Article  Google Scholar 

  40. 40

    Paradesi, D., Samanta, D., Mandal, A. B. & Jaisankar, S. N. A novel fuel cell membrane with high efficiency. RSC. Adv. 4, 26193–26200 (2014).

    CAS  Article  Google Scholar 

  41. 41

    Zing, P., Robertson, G. P., Guiver, M. D., Mikhailenko, S. D., Wang, K. & Kaliaguine, S. Synthesis and characterization of sulfonated poly (ether ether ketone) for proton exchange membranes. J. Membr. Sci. 229, 95–106 (2004).

    Article  Google Scholar 

  42. 42

    Robertson, G. P., Mikhailenko, S. D., Wang, K., Xing, P., Guiver, M. D. & Kaliaguine, S. Casting solvents interactions with sulfonated poly (ether ether ketone) during proton exchange membrane fabrication. J. Membr. Sci. 219, 113–121 (2003).

    CAS  Article  Google Scholar 

  43. 43

    Uma, T., Suresh, K., Akira, K. & Kunio, K. Synthesis of organic/inorganic hybrid composite membranes and their structural and conductivity properties. Mater. Lett. 72, 81–87 (2012).

    Article  Google Scholar 

  44. 44

    Klaysom, C., Ladewig, B. P., Lu, G. Q. M. & Wang, L. Preparation and characterization of sulfonated polyethersulfone for cation-exchange membranes. J. Membr. Sci. 368, 48–53 (2011).

    CAS  Article  Google Scholar 

  45. 45

    Salgado, J. R. Study of basic biopolymer as proton membrane for fuel cell systems. Electrochim. Acta 52, 3766–3778 (2007).

    Article  Google Scholar 

  46. 46

    Tripathi, B. P., Schieda, M., Shahi, V. K. & Nunes, S. P. Nanostructured membranes and electrodes with sulfonic acid functionalized carbon nanotubes. J. Power Sources 196, 911–919 (2011).

    CAS  Article  Google Scholar 

  47. 47

    Muthumeenal, A., Neelakandan, S., Kanagaraj, P. & Nagendran, A. Synthesis and properties of novel proton exchange membranes based on sulfonated polyethersulfone and N-phthaloyl chitosan blends for DMFC applications. Renewable Energy 86, 922–929 (2016).

    CAS  Article  Google Scholar 

Download references


The author S Gandhimathi sincerely thanks Dr Bhalchandra Kakade, Assistant Professor, Research Institute, SRM University, for providing lab facilities and encouragement to carry out the research work. Dr Paradesi thankfully acknowledged Gharda Chemicals Limited, Mumbai, India for providing the generous gift of Gatone PEEK.

Author information



Corresponding authors

Correspondence to Krishnan Hariharasubramanian or Paradesi Deivanayagam.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sivasubramanian, G., Hariharasubramanian, K., Deivanayagam, P. et al. High-performance SPEEK/SWCNT/fly ash polymer electrolyte nanocomposite membranes for fuel cell applications. Polym J 49, 703–709 (2017).

Download citation

Further reading


Quick links