Physical Properties of Polymers

Scattering function of semi-rigid cyclic polymers analyzed in terms of worm-like rings: cyclic amylose tris(phenylcarbamate) and cyclic amylose tris(n-butylcarbamate)

Abstract

Recently reported data of the particle scattering function P(q) with the magnitude q of the scattering vector for rigid cyclic amylose tris(phenylcarbamate) (cATPC) and cyclic amylose tris(n-butylcarbamate) (cATBC) in different solvents were analyzed in terms of a novel simulation method based on the Kratky–Porod worm-like chain model. Although similar worm-like chain parameters were evaluated for both relatively flexible cyclic chains and the corresponding linear polymers, an appreciable decrease in the chain stiffness and slight extension of the local helical structure were found for cyclic chains with a higher chain stiffness. The difference in the worm-like chain parameters between the cyclic and linear chains cannot be realized in the previously reported molar mass dependence of the radius of gyration. This suggests that analyses of P(q) are decisively important to understand the conformational properties of rigid and/or semi-flexible cyclic chains in solution if the molar mass range of the cyclic polymer samples is limited.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1
Figure 2
Figure 3

References

  1. 1

    Kratky, O. & Porod, G. Rontgenuntersuchung geloster fadenmolekule. Recl. Trav. Chim. Pays-Bas 68, 1106–1122 (1949).

    CAS  Article  Google Scholar 

  2. 2

    Vologodskii, A. V. & Cozzarelli, N. R. Conformational and thermodynamic properties of supercoiled DNA. Annu. Rev. Biophys. Biomol. Struct. 23, 609–643 (1994).

    CAS  Article  Google Scholar 

  3. 3

    Roovers, J. & Toporowski, P. M. Synthesis of high molecular-weight ring polystyrenes. Macromolecules 16, 843–849 (1983).

    CAS  Article  Google Scholar 

  4. 4

    Ragnetti, M., Geiser, D., Hocker, H. & Oberthur, R. C. Small-angle neutron-scattering (sans) of cyclic and linear polystyrene in toluene. Macromol. Chem. Phys. 186, 1701–1709 (1985).

    CAS  Article  Google Scholar 

  5. 5

    Lutz, P., McKenna, G. B., Rempp, P. & Strazielle, C. Solution properties of ring-shaped polystyrenes. Macromol. Chem. Rapid Commun. 7, 599–605 (1986).

    CAS  Article  Google Scholar 

  6. 6

    Hadziioannou, G., Cotts, P. M., Tenbrinke, G., Han, C. C., Lutz, P., Strazielle, C., Rempp, P. & Kovacs, A. J. Thermodynamic and hydrodynamic properties of dilute-solutions of cyclic and linear polystyrenes. Macromolecules 20, 493–497 (1987).

    CAS  Article  Google Scholar 

  7. 7

    McKenna, G. B., Hostetter, B. J., Hadjichristidis, N., Fetters, L. J. & Plazek, D. J. A study of the linear viscoelastic properties of cyclic polystyrenes using creep and recovery measurements. Macromolecules 22, 1834–1852 (1989).

    CAS  Article  Google Scholar 

  8. 8

    Takano, A., Ohta, Y., Masuoka, K., Matsubara, K., Nakano, T., Hieno, A., Itakura, M., Takahashi, K., Kinugasa, S., Kawaguchi, D., Takahashi, Y. & Matsushita, Y. Radii of gyration of ring-shaped polystyrenes with high purity in dilute solutions. Macromolecules 45, 369–373 (2012).

    CAS  Article  Google Scholar 

  9. 9

    Gooßen, S., Brás, A. R., Pyckhout-Hintzen, W., Wischnewski, A., Richter, D., Rubinstein, M., Roovers, J., Lutz, P. J., Jeong, Y., Chang, T. & Vlassopoulos, D. Influence of the solvent quality on ring polymer dimensions. Macromolecules 48, 1598–1605 (2015).

    Article  Google Scholar 

  10. 10

    Dodgson, K., Sympson, D. & Semlyen, J. A. Studies of cyclic and linear poly(dimethyl siloxanes): 2. Preparative gel-permeation chromatography. Polymer 19, 1285–1289 (1978).

    CAS  Article  Google Scholar 

  11. 11

    Higgins, J. S., Dodgson, K. & Semlyen, J. A. Studies of cyclic and linear poly(dimethyl siloxanes). 3. Neutron-scattering measurements of the dimensions of ring and chain polymers. Polymer 20, 553–558 (1979).

    CAS  Article  Google Scholar 

  12. 12

    Kitamura, S., Isuda, H., Shimada, J., Takada, T., Takaha, T., Okada, S., Mimura, M. & Kajiwara, K. Conformation of cyclomaltooligosaccharide (‘cycloamylose’) of dp21 in aqueous solution. Carbohydr. Res. 304, 303–314 (1997).

    CAS  Article  Google Scholar 

  13. 13

    Shimada, J., Kaneko, H., Takada, T., Kitamura, S. & Kajiwara, K. Conformation of amylose in aqueous solution: small-angle x-ray scattering measurements and simulations. J. Phys. Chem. B 104, 2136–2147 (2000).

    CAS  Article  Google Scholar 

  14. 14

    Nakata, Y., Amitani, K., Norisuye, T. & Kitamura, S. Translational diffusion coefficient of cycloamylose in aqueous sodium hydroxide. Biopolymers 69, 508–516 (2003).

    CAS  Article  Google Scholar 

  15. 15

    Suzuki, S., Yukiyama, T., Ishikawa, A., Yuguchi, Y., Funane, K. & Kitamura, S. Conformation and physical properties of cycloisomaltooligosaccharides in aqueous solution. Carbohydr. Polym. 99, 432–437 (2014).

    CAS  Article  Google Scholar 

  16. 16

    Deffieux, A., & Schappacher, M. in Polymer Science: A Comprehensive Reference, (eds Matyjaszewski, K. & Möller, M.), 5–28 (Elsevier, Amsterdam, Netherlands, 2012).

  17. 17

    Pangilinan, K. & Advincula, R. Cyclic polymers and catenanes by atom transfer radical polymerization (atrp). Polym. Int. 63, 803–813 (2014).

    CAS  Article  Google Scholar 

  18. 18

    Williams, R. J., Dove, A. P. & O'Reilly, R. K. Self-assembly of cyclic polymers. Polym. Chem. 6, 2998–3008 (2015).

    CAS  Article  Google Scholar 

  19. 19

    Yamamoto, T. & Tezuka, Y. Cyclic polymers revealing topology effects upon self-assemblies, dynamics and responses. Soft Matter 11, 7458–7468 (2015).

    CAS  Article  Google Scholar 

  20. 20

    Schappacher, M. & Deffieux, A. Synthesis of macrocyclic copolymer brushes and their self-assembly into supramolecular tubes. Science 319, 1512–1515 (2008).

    CAS  Article  Google Scholar 

  21. 21

    Terao, K., Asano, N., Kitamura, S. & Sato, T. Rigid cyclic polymer in solution: cycloamylose tris(phenylcarbamate) in 1,4-dioxane and 2-ethoxyethanol. ACS Macro Lett. 1, 1291–1294 (2012).

    CAS  Article  Google Scholar 

  22. 22

    Terao, K., Shigeuchi, K., Oyamada, K., Kitamura, S. & Sato, T. Solution properties of a cyclic chain having tunable chain stiffness: cyclic amylose tris(n-butylcarbamate) in θ and good solvents. Macromolecules 46, 5355–5362 (2013).

    CAS  Article  Google Scholar 

  23. 23

    Takaha, T., Yanase, M., Takata, H., Okada, S. & Smith, S. M. Potato d-enzyme catalyzes the cyclization of amylose to produce cycloamylose, a novel cyclic glucan. J. Biol. Chem. 271, 2902–2908 (1996).

    CAS  Article  Google Scholar 

  24. 24

    Shimada, J. & Yamakawa, H. Moments for DNA topoisomers: the helical wormlike chain. Biopolymers 27, 657–673 (1988).

    CAS  Article  Google Scholar 

  25. 25

    Asano, N., Kitamura, S. & Terao, K. Local conformation and intermolecular interaction of rigid ring polymers are not always the same as the linear analogue: cyclic amylose tris(phenylcarbamate) in theta solvents. J. Phys. Chem. B 117, 9576–9583 (2013).

    CAS  Article  Google Scholar 

  26. 26

    Tsubouchi, R., Ida, D., Yoshizaki, T. & Yamakawa, H. Scattering function of wormlike rings. Macromolecules 47, 1449–1454 (2014).

    CAS  Article  Google Scholar 

  27. 27

    Ida, D. Dilute solution properties of semiflexible star and ring polymers. Polym. J. 46, 399–404 (2014).

    CAS  Article  Google Scholar 

  28. 28

    Ida, D., Nakatomi, D. & Yoshizaki, T. A monte carlo study of the second virial coefficient of semiflexible ring polymers. Polym. J. 42, 735–744 (2010).

    CAS  Article  Google Scholar 

  29. 29

    Frank-Kamenetskii, M. D., Lukashin, A. V., Anshelevich, V. V. & Vologodskii, A. V. Torsional and bending rigidity of the double helix from data on small DNA rings. J. Biomol. Struct. Dyn. 2, 1005–1012 (1985).

    CAS  Article  Google Scholar 

  30. 30

    Burchard, W. & Kajiwara, K. The statistics of stiff chain molecules. I. The particle scattering factor. Proc. R. Soc. Lond. Ser. A 316, 185–199 (1970).

    CAS  Article  Google Scholar 

  31. 31

    Nagasaka, K., Yoshizaki, T., Shimada, J. & Yamakawa, H. More on the scattering function of helical wormlike chains. Macromolecules 24, 924–931 (1991).

    CAS  Article  Google Scholar 

  32. 32

    Terao, K., Fujii, T., Tsuda, M., Kitamura, S. & Norisuye, T. Solution properties of amylose tris(phenylcarbamate): local conformation and chain stiffness in 1,4-dioxane and 2-ethoxyethanol. Polym. J. 41, 201–207 (2009).

    CAS  Article  Google Scholar 

  33. 33

    Fujii, T., Terao, K., Tsuda, M., Kitamura, S. & Norisuye, T. Solvent-dependent conformation of amylose tris(phenylcarbamate) as deduced from scattering and viscosity data. Biopolymers 91, 729–736 (2009).

    CAS  Article  Google Scholar 

  34. 34

    Terao, K., Murashima, M., Sano, Y., Arakawa, S., Kitamura, S. & Norisuye, T. Conformational, dimensional, and hydrodynamic properties of amylose tris(n-butylcarbamate) in tetrahydrofuran, methanol, and their mixtures. Macromolecules 43, 1061–1068 (2010).

    CAS  Article  Google Scholar 

  35. 35

    Sano, Y., Terao, K., Arakawa, S., Ohtoh, M., Kitamura, S. & Norisuye, T. Solution properties of amylose tris(n-butylcarbamate). Helical and global conformation in alcohols. Polymer 51, 4243–4248 (2010).

    CAS  Article  Google Scholar 

  36. 36

    Nakamura, Y. & Norisuye, T. Scattering function for wormlike chains with finite thickness. J. Polym. Sci. B Polym. Phys. 42, 1398–1407 (2004).

    CAS  Article  Google Scholar 

  37. 37

    Yamakawa, H. & Yoshizaki, T. Helical Wormlike Chains in Polymer Solutions 2nd edn (Springer, Heidelberg, Germany, 2016).

  38. 38

    Tsuda, M., Terao, K., Nakamura, Y., Kita, Y., Kitamura, S. & Sato, T. Solution properties of amylose tris(3,5-dimethylphenylcarbamate) and amylose tris(phenylcarbamate): side group and solvent dependent chain stiffness in methyl acetate, 2-butanone, and 4-methyl-2-pentanone. Macromolecules 43, 5779–5784 (2010).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank Professor Takenao Yoshizaki at Kyoto University and Professor Takahiro Sato at Osaka University for fruitful discussions. This work was partially supported by JSPS KAKENHI Grant nos 23750128 and 25410130. The original SAXS data were acquired at the BL40B2 beamline in SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (proposal no. 2010B1126, 2011A1049 and 2011B1068) and at the BL-10C beamline in KEK-PF under the approval of the Photon Factory Program Advisory Committee (proposal no. 2010G080 and 2011G557).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ken Terao.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Polymer Journal website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ryoki, A., Ida, D. & Terao, K. Scattering function of semi-rigid cyclic polymers analyzed in terms of worm-like rings: cyclic amylose tris(phenylcarbamate) and cyclic amylose tris(n-butylcarbamate). Polym J 49, 633–637 (2017). https://doi.org/10.1038/pj.2017.27

Download citation

Further reading

Search