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Effects of three-segment interactions on the second
virial coefficient of ring polymers in the Θ state

Daichi Ida and Takenao Yoshizaki

The first-order perturbation calculation is carried out of the second virial coefficient A2 of the phantom Gaussian and Kratky–

Porod (KP) wormlike rings without inter- and intramolecular topological constraints with consideration of the ternary-cluster

integral β3 in addition to the binary-cluster integral β2. The behavior of the residual contribution of β3 to A2 of the KP rings is

examined as a function of the reduced total contour length λL as defined as the total contour length L divided by the stiffness

parameter λ−1. From a comparison of the present theoretical result with experimental data, it is found that the residual

contribution of β3 to A2 is negligibly small for ring atactic polystyrene in cyclohexane at Θ in the range of the molecular weight

from 1×104 to 6×105.
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INTRODUCTION

In a previous study,1 effects of chain stiffness on the second virial
coefficient A2 for ideal ring polymers without excluded volume were
investigated by Monte Carlo (MC) simulation using a discrete version
of the Kratky–Porod (KP) wormlike chain.2,3 The topological inter-
action between a pair of ideal rings to keep their linking number
Lk zero causes an effective volume VE excluded to one ring by the
presence of another, and therefore makes A2 (proportional to VE)
positive. The behavior of A2 was examined as a function of the
reduced total contour length λL as defined as the total contour length
L of the KP ring divided by the stiffness parameter3 λ− 1. A
comparison was also made of the MC results with available literature
data4–6 for ring atactic polystyrene (a-PS) in cyclohexane at Θ (34.5 or
35 °C) in the range of the weight-average molecular weight Mw from
1×104 to 6× 105. Although agreement between the MC and experi-
mental data is fairly well, the former is somewhat (order 10− 5

cm3 mol g−2) larger than the latter. As the MC values are exact for
the ideal KP ring, this minor discrepancy may be regarded as arising
from the fact that real unperturbed ring polymers in the Θ state
cannot fully be described by the ideal KP ring. The purpose of the
present study is to consider a possible source of the discrepancy, that
is, effects of three-segment interactions on A2 for the real unperturbed
ring polymers.
If the ternary-cluster integral β3 representing the three-segment

interaction is taken into account in addition to the binary-cluster
integral β2 representing the two-segment interaction7–9 in the pertur-
bation theory10 of the mean-square end-to-end distance 〈R2〉 and A2,
then the first-order perturbation terms in 〈R2〉 and A2 are propor-
tional to the effective binary-cluster integral β= β2+const. × β3 in the
limit of infinitely large molecular weight M, and the Θ temperature is
defined as the temperature at which β but not β2 vanishes. Note that

β3 is usually positive, so that β2 is negative at Θ. Strictly, the first-order
perturbation term in A2 has the residual contribution proportional
to − β3M

− 1/2, so that at finite M, A2 remains small negative (order
10− 5 cm3 mol g−2) for small M even at Θ. It means that the three-
segment contact probability between a pair of linear polymers
decreases faster than the two-segment contact probability as M
(or λL) is decreased and then the attractive effect due to β2 (o0)
exceeds the repulsive effect due to β3 (40). The two effects balance
out in the limit ofM→∞. If the situation is also the case with the real
unperturbed ring polymer, then the residual contribution seems to
make its A2 smaller than that for the ideal ring.
In practice, we carry out the first-order perturbation calculation of

A2 for the Gaussian and KP rings with consideration of the three-
segment interactions in addition to the two-segment ones. In the
calculation, we must evaluate an integration of the series expansion of
A2 in terms of the χ function defined by Equation (13.2) of Ref. 10,
which corresponds to the Mayer f-function,11 to the first order over
the configuration space of a pair of rings under the topological
constraint of Lk= 0. Unfortunately, however, the necessary integrals of
the χ function and its triple product for a pair of rings cannot simply
be related to β2 and β3, respectively, defined for linear chains because
of the topological constraint, as explained later in some detail. We
then resort to a calculation using a pair of phantom rings without the
topological constraint in order to utilize β2 and β3 also for the ring
chains.

MATERIALS AND METHODS
In the first-order perturbation calculation of A2 for a pair of rings, we take into
account the two- and three-segment interactions, the former arising from the
contact between two segments (two-body contact) on each of the pair and the
latter from that among three segments (three-body contact), two of them on

Department of Polymer Chemistry, Kyoto University, Kyoto, Japan
Correspondence: Dr D Ida, Department of Polymer Chemistry, Kyoto University, Katsura, Kyoto 615-8510, Japan.
E-mail: ida@molsci.polym.kyoto-u.ac.jp
Received 18 February 2016; revised 13 March 2016; accepted 15 March 2016; published online 18 May 2016

Polymer Journal (2016) 48, 883–887
& 2016 The Society of Polymer Science, Japan (SPSJ) All rights reserved 0032-3896/16
www.nature.com/pj

http://dx.doi.org/10.1038/pj.2016.48
mailto:ida@molsci.polym.kyoto-u.ac.jp
http://www.nature.com/pj


either of the pair and the rest on the other. As easily seen from Figure 1, where
the two-body (a) and three-body (b) contacts between a pair of rings with
Lk= 0 and 1 are schematically depicted as examples, the values of the binary-
and ternary-cluster integrals resulting from the integrations of the χ function
and its triple product, respectively, over the configuration space for the pair of
rings with Lk= 0 are naturally different from those for a pair of linear chains,
the latter being obtained by integrations over the full configuration space.
Strictly speaking, we must further take account of possible effects of knots. Note
that all the rings depicted in Figure 1 are of the trivial knot.
Unfortunately, however, analytical treatment of the inter-12–15 and intramo-

lecular topological constraints may seem to be impossible even in the case of
the Gaussian ring. We therefore adopt phantom rings without the constraints in
the evaluation of the residual contribution of the ternary-cluster integral to A2,
for convenience, as mentioned above. As a result, we use β2 and β3 introduced
for the linear chains also for the binary- and ternary-cluster integrals,
respectively, for the rings.

Gaussian ring
For the (phantom) Gaussian ring composed of n identical beads with the
binary- and ternary-cluster integrals β2 and β3 connected by the Gaussian
bonds with root-mean-square length a, the first-order perturbation theory of
A2 may be given by (see Appendix)

A2 ¼ NAn2

2M2 b� 6
3

2pa2

� �3=2

b3n
�1 þ?

" #
ðGaussian ringÞ; ð1Þ

where NA is the Avogadro constant and β is the effective binary-cluster integral
defined by

b ¼ b2 þ 4
3

2pa2

� �3=2

b3: ð2Þ

It is important to note that the definition of β for the Gaussian ring is identical
to that for the linear Gaussian chain,7 and further that the residual contribu-
tion, the second term in the square brackets on the right-hand side of Equation
(1), is proportional to n− 1β3 in contrast to the case of the linear Gaussian chain
for which the residual contribution is proportional to n− 1/2β3.

9 The implication
is that the relative contributions (or probabilities) of the two- and three-body
contacts to A2 for the Gaussian ring are identical with those for the linear
Gaussian chain in the limit of n→∞ but the residual contributions are
different from each other.

Wormlike ring
For the (phantom) KP ring of contour length L on which n identical beads with
the binary- and ternary-cluster integrals β2 and β3 are placed with interval a
(L=na), the first-order perturbation theory of A2 may be given by
(see Appendix)

A2 ¼ NAL2

2M2a2
b� 2

3

2p

� �3=2

ðlaÞ2 b3
a3

� �
½IðNÞ � IðlLÞ� þ?

( )
ðKP ringÞ

ð3Þ
with λ− 1 the stiffness parameter and β the effective binary-cluster integral
redefined by

b ¼ b2 þ 2
3

2p

� �3=2

ðlaÞ2 b3
a3

� �
IðNÞ: ð4Þ

The result so obtained for the KP ring is apparently equivalent to that obtained
for the linear KP (or HW) chain given by Equation (34) with Equation (35) of
Ref. 16 with c∞= 1 except for the expression for the dimensionless function
I(L) of (reduced) L which may be given by

IðLÞ ¼ expð�16:25L�1 þ 6:358� 0:7712LÞ for Lr3:075

¼ 1:067� 2:433L�1 þ 0:01L�1ð23:64D2 � 5:915D3

þ 0:0009054D4 � 0:01054D5Þ for 3:075oLo7:075

¼ 1:465� 3L�1 � 30:17L�2 þ 263:2L�3 � 770:1L�4 for 7:075rL

ð5Þ
with Δ= L− 3.075. The function I(λL) approaches 0 and 1.465 in the limits of
λL→ 0 and ∞, respectively, as in the case of the linear KP chain,16 and
therefore β defined by Equation (4) becomes identical to that for the linear KP
chain. As a result, the factor I(∞)− I(λL) on the right-hand side of Equation (3)
approaches 1.465 and 0 in the limits of λL→ 0 and ∞, respectively, as in the
case of the linear KP chain, although the asymptotic form 3(λL)− 1 in the limit
of λL→∞ is very different from 4(λL)− 1/2 for the linear KP chain,16 the
situation being consistent with the above-mentioned difference between the
linear Gaussian chain and Gaussian ring.

RESULTS AND DISCUSSION

Figure 2 shows plots of I(λL)− I(∞) against log λL. The heavy solid
and dashed curves represent the theoretical values calculated from
Equation (5) for the KP ring and from Equation (36) of Ref. 16 for the
linear KP chain, respectively. For comparison, in the figure are also
plotted values of the asymptotic forms I(λL)− I(∞) =− 3(λL)− 1 for
the KP ring and I(λL)− I(∞) =− 4(λL)− 1/2 for the linear KP chain,
represented by the light solid and dashed curves, respectively, which in
principle correspond to the values for the Gaussian ring and linear
chain, respectively. It is seen that I(λL)− I(∞) for the KP ring vanishes
with increasing λL more rapidly than that for the linear KP chain
because of the above-mentioned difference in the asymptotic form,
that is, the former is proportional to (λL)− 1 while the latter to
(λL)− 1/2.
Now we proceed to we make a comparison of the present

theoretical results with the experimental data for ring a-PS in
cyclohexane at Θ obtained by Roovers and and Toporowski4 and by
Takano et al.6 For this purpose, we simply assume that A2 for the KP
ring at Θ (β= 0) may be written as a sum of the contribution of the
intermolecular topological interaction (Lk= 0) given by Equation (29)
with Equations (25) and (26) in Ref. 1 and the residual contribution of
β3 given by Equation (3) with β= 0 along with Equation (5). On this
assumption, the values of A2 are calculated as a function of Mw, λL
being converted to Mw by log Mw= log(λL)+log(λ− 1ML) with ML the
shift factor3 defined as the molecular weight per unit contour length of
the KP ring. In the calculation, we use the relation a=M0/ML, where
M0 is the molecular weight of repeat units and set equal to 104 for
a-PS, and the values of the necessary parameters determined for linear

Lk = 0 Lk = 1
Two-body contact

Lk = 0 Lk = 1
Three-body contact

Figure 1 Illustrations of the two-body (a) and three-body (b) contacts
between a pair of rings with Lk=0 and 1.
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a-PS in cyclohexane at 34.5 °C (Θ): λ− 1= 16.8 Å,16 ML= 35.8 Å− 1,16

and β3= 4.5× 10− 45 cm6.17 We note that although the ring a-PS
samples used in the literatures4,6 might be of the trivial knot, the
difference in A2 between the ring of the trivial knot and the phantom
ring is negligibly small in the range of M where the experimental data
exist as shown in figure 6 of Ref. 1.
Figure 3 shows double-logarithmic plots of A2 (in cm3 mol g− 2)

against Mw for ring a-PS in cyclohexane at 34.5 °C (Θ). The open
circles and triangles represent the experimental values by Roovers and
Toporowski4 with the correction for residual linear a-PS1 and by
Takano et al.,6 respectively. The solid and dashed curves represent the

theoretical values of A2 at Θ for the KP ring with and without the
residual contribution of β3 to A2 so calculated. The theoretical values
of A2 with the residual contribution of β3 deviate downward very
slowly from those without the contribution with decreasing Mw, and
the deviation is very small in the range of Mw where the experimental
data exist. For comparison, there are also plotted the theoretical values
for the KP ring with the residual contribution for the linear KP chain,
the contribution being calculated from the right-hand side of Equation
(34) with β= 0 along with Equation (36) in Ref. 16 and with the
above-mentioned values of λ− 1, ML and β3 (and M0), represented by
the dot-dashed curve. Although the downward deviation of the values
of A2 with the residual contribution for the linear KP chain from those
without the contribution is larger than that in the case of A2 with the
contribution for the KP ring, the theoretical values are still appreciably
larger than the experimental ones. It may then be concluded that the
consideration of the residual contribution of β3 cannot compromise
the difference between theory and experiment.

CONCLUSION

We have carried out the first-order perturbation calculation of the
second virial coefficient A2 of the phantom Gaussian and KP rings
without the intra- and intermolecular topological constraints with
consideration of the ternary-cluster integral β3 in addition to the
binary-cluster one β2. It has been shown that the residual
contribution of β3 to A2 of the KP rings as a function of the
reduced contour length λL increases rapidly from a negative
constant and vanishes in the limit of λL→∞ following the
asymptotic relation A2 ∝− (λL)− 1 in this limit. From a comparison
between the present theoretical results and literature experimental
data, it has been found that the residual contribution of β3 to A2 is
negligibly small for ring a-PS in cyclohexane at Θ in the range of
1 × 104≲Mw≲6 × 105.
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APPENDIX

FIRST-ORDER PERTURBATION THEORY
In this appendix, we derive the first-order perturbation theories of A2 for
the Gaussian and KP rings with consideration of β3 in addition to β2.

Gaussian ring
In the same manner as in the case of the first-order perturbation
theory of A2 for the linear Gaussian chain,7 A2 for the Gaussian ring
under consideration may be expanded in the form

A2 ¼ NAn2

2M2 b2 þ 2b3n
�2
Xn�1

i1¼1

Xn
i2¼i1þ1

Xn
i3¼1

Pð0i1 i2Þ þ?

" #
; ðA1Þ

where the n beads composing the Gaussian ring are serially numbered
1, 2, ⋯, n from an arbitrary bead and P(0i1i2) represents the
probability of the contact between the ith and jth beads with P(Rij)
being the unperturbed distribution function of the vector distance Rij

between them. The function P(Rij) may be given by10

PðRijÞ ¼ 3

2pmija2

 !3=2
exp � 3R2

ij

2mija2

 !
ðA2Þ

with Rij= |Rij| and μij= (j− i)[1− (j− i)/n]. Substitution of Equation
(A2) into Equation (A1) and conversion of the sums to integrals leads
to

A2 ¼ NAn2

2M2 b2 þ 4
3

2pa2

� �3=2
b3 1� 3

2
n�1 þOðn�2Þ

� �
þ?

( )
;

ðA3Þ
where the additional cutoff parameter9 appearing in the integrations
has been set equal to unity as in the case of the linear Gaussian
chain.16 The result may then be rewritten in Equation (1) with
Equation (2).

Wormlike ring
In the same manner as in the case of the first-order perturbation
theory of A2 for the linear KP (or HW) chain,16 A2 for the KP ring of
total contour length L under consideration may be expanded in the
form

A2 ¼ NAL2

2M2a2
b2 þ 2

b3
a3

� �
a

L

� �2 Z L

0
ds1

Z L

s1

ds2

Z L

0
ds3P 0; s2 � s1; Lð Þ þ?

� �

ðA4Þ
with P(0; s2− s1, L) the probability of the contact between the contour
points s1 and s2 (0≤ s1os2oL) on the KP ring separated by the
contour distance s2− s1 (or L− s2+s1). In what follows, for simplicity,
all lengths are measured in units of λ− 1 unless otherwise noted, so
that, for instance, λL is replaced by (reduced) L. Carrying out the
integration in the second term in the square brackets on the

right-hand side of Equation (A4) over s1, s2 and s3 with t= s2− s1 fixed,
we obtain

A2 ¼ NAL2

2M2a2
b2 þ 2

3

2p

� �3=2

a2
b3
a3

� �
IðLÞ þ?

" #
ðA5Þ

with I(L) the dimensionless factor as a function of (reduced) L defined
by

IðLÞ ¼ 2p
3

� �3=2 Z L

0
1� t

L

� �
Pð0; t; LÞdt: ðA6Þ

Using the relation P(0;L− t, L)=P(0;t, L) which naturally holds for the
KP ring, Equation (A6) reduces to

IðLÞ ¼ 2p
3

� �3=2 Z L=2

0
Pð0; t; LÞdt: ðA7Þ

The conditional distribution function P(R, u|u0; t,L) of both the
vector distance R between the points s1 and s2 and the unit tangent
vector u at s2 with the unit tangent vector u0 at s1 fixed may be given
by3,18

PðR; u u0; t; LÞ ¼ ½Gð0; u0 u0; LÞ��1GðR; u u0; tÞGðR;�u �u0; L� tÞ;jj����
ðA8Þ

where G(R, u|u0; L) is the conditional distribution function of the end-
to-end vector R of the linear KP chain of contour length L and the
unit tangent vector u at its terminal end with the unit tangent vector
u0 at its initial end fixed3 and G(0, u0|u0; L) represents the probability
that the linear KP chain forms a ring. Integration of both sides of
Equation (A8) over u and u0 leads to

P 0; t; Lð Þ ¼ 1

4pGð0; u0ju0; LÞ
Z

G 0; u u0; tj ÞG 0; u0 u; L� tj Þdudu0;ðð

ðA9Þ
using the relation G(R,−u|−u0; L)=G(R,u0|u; L) and the fact that
G(0,u0|u0; L) is independent of u0.
The conditional (or angle-dependent) ring-closure probability3

G(0, u|u0; t) for the linear KP chain appearing in Equation (A9)
may be expanded in terms of the normalized spherical harmonics3 Yl

m

as follows,19

Gð0; u u0; tj Þ ¼
XN
l¼0

hlðtÞ
Xl
m¼�l

Ym
l ðy;fÞYm�

l ðy0;f0Þ; ðA10Þ

where hl(t) is the expansion coefficient and u= (1,θ,ϕ) and
u0= (1,θ0,ϕ0) in spherical polar coordinates. We note that hl(t) is
identical to (3/2π)3/2gl(t)/(2l+1) with gl(t) defined in Ref. 19 and also
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to hl
00(t) given by Equation (8.13) of Ref. 3. For l= 0 and 1,

interpolation formulas for hl(t) are given by20

h0ðtÞ ¼ 28:01t�5exp �7:027

t
þ 0:492t

� �
for 0rtr3:075

¼ 0:01ð4:706� 1:844Dþ 0:4185D2

� 0:03791D3Þ for 3:075oto7:075

¼ 3

2pt

� �3=2

1� 5

8t

� �
for 7:075rt;

h1ðtÞ ¼ cos ð1:720þ 0:06104tÞexpð�0:5077tÞh0ðtÞ for 0rtr3:075

¼ 0:01ð�6:950þ 2:322D� 0:7346D2

þ 0:08655D3Þh0ðtÞ for 3:075oto7:075

¼ 3

2pt

� �3=2

� 1

4t

� �
for 7:075rt

ðA11Þ
with Δ= t− 3.075, which have been constructed from the Daniels
approximation for large t and a solution for small t with consideration
of small thermal fluctuations in the configuration of the KP ring
around its most probable one.21 As for lZ 2, the relation
hl tð Þ ¼ Oðt�l�3=2Þ for large t can be obtained from Equation (8.13)
with Equation (4.177) of Ref. 3 in the Daniels approximation.
Substituting Equation (A10) into Equation (A9) and carrying out

the integrations over u0 and u, we obtain

Pð0; t; LÞ ¼ 1

4pGð0; u0ju0; LÞ
XN
l¼0

ð2l þ 1ÞhlðtÞhlðL� tÞ: ðA12Þ

Substitution of Equation (A12) into Equation (A7) leads to

IðLÞ ¼
XN
l¼0

Il Lð Þ ðA13Þ

with

IlðLÞ ¼ ð2p=3Þ3=2ð2l þ 1Þ
4pGð0; u0ju0; LÞ

Z L=2

0
hlðtÞhlðL� tÞdt: ðA14Þ

In the same manner as in the cases of h0(t) and h1(t), an
interpolation formula has been constructed for G(L)=G(0,u0 |u0;
L),21 which is given by

GðLÞ ¼ p2L�6exp �p2

L
þ 0:514L

� �
for Lo1:9

¼ ð4pÞ�1ð0:03882þ 0:003494D1 � 0:01618D2
1

þ 0:008601D3
1Þ for 1:9oLo2:7

¼ ð4pÞ�1L�3=2ð0:3346� 0:4810L�1 � 0:04212L�2

þ 0:1495L�3Þ for 2:8t Lt4

¼ ð4pÞ�1 3

2pL

� �3=2
1� 11

8L
þ 103

1920L2

� �
for 4t L

ðA15Þ
with Δ1= L− 1.9.

From the asymptotic behavior of hl(t)hl(L− t) (in the range of
0r t r L/2) and G(L) in the limit of L→∞, it can be shown that
Il Lð Þ ¼ OðL�lÞ in the limit. We then have

IðNÞ ¼ I0ðNÞ ¼ 2p
3

� �3=2 Z N

0
h0 tð Þdt; ðA16Þ

where we have used the asymptotic form, h0(L− t)/4πG(L)= 1, in
the limit of L→∞. Considering the fact that the (angle-indepen-
dent) ring-closure probability3 G(0; t) is the integral of G(0, u|u0; t)
given by Equation (A10) over u and therefore identical to h0(t),
I(∞) for the KP ring is identical to that for the linear KP chain
given by Equation (A4) of Ref. 16 with c∞= 1, so that
I(∞)= 1.465. Although I(L) for the KP ring becomes identical to
I(L) for the linear KP chain in the limits of L→ 0 and ∞, the
behavior of the former as a function of L is different from that of
the latter.
Figure 4 shows plots of I0(L) and I1(L) against the logarithm of L. It

is seen that I0(L) increases monotonically from 0 to 1.465 with
increasing L, while I1(L) first increases from 0 then decreases to 0 after
passing through a very small maximum with increasing L. Since the
relative magnitude of I1(L) to I0(L) is 2.5% at most, the contributions
of Il(L) with lZ 2 to I(L) may be considered to be very small if any.
We therefore put I(L)CI0(L)+I1(L) with omission of Il(L) with lZ 2
in Equation (A13) and construct an interpolation formula for I(L) on
the basis of the values of I0(L) and I1(L) obtained by numerical
integration of the right-hand side of Equation (A14), the formula
being given by Equation (5).
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Figure 4 Plots of Il(L) against log L for l=0 and 1. The solid curves
represent the theoretical values obtained by numerical integrations of
Equation (A14).
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