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Acyclic artificial nucleic acids with phosphodiester
bonds exhibit unique functions

Hiromu Kashida1,2, Keiji Murayama1 and Hiroyuki Asanuma1

Artificial nucleic acids (XNAs) have potential as therapeutic agents and fluorescent probes. These acyclic nucleic acid mimics

have several advantages, including facile chemical synthesis and resistance to nuclease-mediated cleavage. Here we review

our recent progress on the preparation of acyclic XNAs. Acyclic D-threoninol nucleic acid (D-aTNA) forms an extremely stable

homo-duplex with complementary D-aTNA, but D-aTNA does not form a stable duplex with either DNA or RNA. Serinol nucleic

acid (SNA), which has nucleobases on a serinol backbone, forms stable hybrid helices with both DNA and RNA and has unique

chiroptical properties. Both chirality and helicity of an SNA duplex depend on its sequence. L-aTNA, which is an enantiomer of

D-aTNA, has the highest affinity for complementary DNA and RNA among these three XNAs. Attempts to apply these XNAs as

drugs, fluorescent probes, and nanomaterials are underway. Although chemical differences among these XNAs are small, all have

unique properties, and XNAs with different functional characteristics will be found by chemically modifying these XNAs.
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INTRODUCTION

The development of artificial nucleic acids, or xeno nucleic acids
(XNAs), that form stable duplexes with natural nucleic acids has been
challenging. A vast number of XNAs have been reported, and some
have found utility in biotechnology, medicine and nanotechnology.1–3

Among these, a major strategy for the synthesis of oligomers that
form stable duplexes with natural nucleic acids has been to use
neutral backbones. Peptide nucleic acids (PNAs) are one of the most
widely used XNAs in the first category (Figure 1).4 PNAs have a
neutral peptide backbone instead of a phosphodiester backbone and
thus have no charge. PNAs can form stable duplexes with comple-
mentary DNA and RNA without requiring cation condensation.
Chiral PNAs have been reported that differentially recognize natural
nucleic acids depending on their chirality.5–7 Morpholino nucleic
acids, which also have no charge, are also representative of the class of
nucleic acids with neutral backbones (Figure 1).8

XNAs of another type have a constrained backbone. Locked nucleic
acids (LNAs) belong to this category (Figure 1).9,10 LNAs contain a
methylene linkage between the 2′-oxygen and the 4′-carbon of
D-ribose, locking the sugar puckers into the 3′-endo conformation
adopted by RNA. Consequently, LNA has high affinity for RNA due
to a lower decrease in entropy upon duplex formation. Other XNAs
with bicyclic or tricyclic backbones, such as tricyclo-DNA, have also
been reported (Figure 1).11,12

Another strategy involves incorporation of acyclic base surrogates
onto a DNA backbone.13–17 Benner’s group first reported flexible
nucleic acids, which have nucleobases on flexible propanediol
linkers.18–20 Unlocked nucleic acids, in which there is no bond

between 2′ and 3′ carbons of the ribose sugar, were reported by
Wengel’s group.21,22 However, incorporation of these modified
nucleotides into DNA or RNA often severely lowered the stability of
the duplexes. Meggers et al. reported glycerol nucleic acids (GNAs),
which tether nucleobases through an acyclic C2 linker (Figure 1).23–26

Quite surprisingly, a GNA oligomer, which is composed of only
GNA monomers, formed a highly stable duplex with a complementary
GNA oligomer even though GNA has a relatively flexible structure and
phosphodiester bonds. The melting temperature of the GNA
homo-duplex was much higher than those of DNA and RNA
homo-duplexes of the same sequence. This high stability of the
GNA homo-duplex showed that a cyclic sugar is not necessary for
stable duplex formation. GNAs showed strong sequence dependence
in the context of hetero-duplexes; they do not form stable duplexes
with either DNA or RNA when the GC content is high.26

Inspired by these pioneering studies, several groups, including ours,
have synthesized and characterized fully modified acyclic XNAs with
phosphodiester linkages.27–29 There are several advantages of acyclic
scaffolds over other XNAs. First, the synthetic costs of acyclic XNA are
often low due to their simple structures. Second, chemical
modification is usually facile, allowing XNAs with novel structures to
be easily prepared. Third, because their chemical structures are very
different from natural nucleic acids, they are highly resistant to
nucleases. In addition, acyclic XNAs with phosphodiester bonds are
usually highly water-soluble, in contrast to neutral XNAs. Furthermore,
acyclic XNAs are candidates for genetic material in the
‘pre-RNA world’ because of their simple structures.30,31 Here we review
our recent work on acyclic XNAs. Our group has developed three
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acyclic XNAs: acyclic D-threoninol nucleic acid (D-aTNA), serinol
nucleic acid (SNA) and acyclic L-threoninol nucleic acid (L-aTNA).
Though structural differences are marginal, each of these XNAs has
unique properties.

D-aTNA IS HIGHLY ORTHOGONAL TO NATURAL NUCLEIC

ACIDS

In our previous studies, various types of molecules, including
fluorophores and photoresponsive moieties, were incorporated into
DNA via D-threoninol.32,33 Although the chemical structures of these
base surrogates are very different from those of natural nucleobases,
duplexes between natural nucleic acids and D-threoninol are stabilized
through stacking interactions. Therefore, we selected D-threoninol as a
linker for tethering natural nucleobases and developed D-aTNA.34 We
synthesized D-aTNA phosphoramidite monomers, and D-aTNA
oligomers were synthesized using a DNA/RNA synthesizer
(Figure 2). D-aTNA formed extremely stable duplexes with
complementary D-aTNA; the melting temperature (Tm) of homo-
duplexes of an 8-mer of D-aTNA was as high as 62.7 °C, much higher
than the Tm of either DNA or RNA homo-duplexes of the same
sequence (29.0 °C or 38.9 °C, respectively). The Tm of homo-duplexes
of other acyclic XNAs, including PNA, GNA and SNA, is also lower.35

Thermodynamic analyses indicated that the D-aTNA homo-duplexes
are more stable than those of natural nucleic acids due to enthalpic
contributions. The molecular mechanism may involve strong
stacking interactions between bases, allowed by the flexible backbone
and/or the hydrogen bonds between the amide group and the
phosphate backbone.

In spite of the high stability of D-aTNA homo-duplexes, D-aTNA
did not form stable duplexes with natural DNA or RNA. The
Tms of D-aTNA/DNA and D-aTNA/RNA 8-mer duplexes were
too low to measure (Table 1). D-aTNA exhibits high orthogonality
to natural nucleic acids. There may be applications in which
this is an asset: for example, D-aTNA could hybridize with
complementary D-aTNA without interference from natural nucleic
acids in cells.

DEVELOPMENT OF SNA WITH UNIQUE CHIROPTICAL

PROPERTIES

D-aTNA cannot hybridize with DNA or RNA in spite of the extremely
high stability of its homo-duplex. We hypothesized that D-aTNA is not
flexible enough to conform to the more rigid DNA or RNA.
We then synthesized a more flexible XNA, SNA, which has natural
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Figure 1 Chemical structures of representative XNAs.
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Figure 2 Chemical structure of D-aTNA and melting curves of homo-duplexes of D-aTNA, DNA and RNA of the same sequence: 5′-GCATCAGT-3′/3′-
CGTAGTCA-5′. Note that D-aTNA has a 1′ terminus rather than a 5′ terminus. In the RNA sequence, T was replaced with U. Bases of phosphoramidite
monomers are protected by acyl groups.

Table 1 Melting temperatures of XNAs and natural nucleic acids

Duplex Sequence Direction Tm (°C)a

D-aTNA/D-aTNA 1′-GCATCAGT-3′
3′-CGTAGTCA-1′

Antiparallel 62.7

SNA/SNA (S)-GCATCAGT-(R)
(R)-CGTAGTCA-(S)

Antiparallel 51.1

L-aTNA/L-aTNA 1′-GCATCAGT-3′
3′-CGTAGTCA-1′

Antiparallel 61.8

DNA/DNA 5′-GCATCAGT-3′
3′-CGTAGTCA-5′

Antiparallel 29.0

RNA/RNA 5′-GCAUCAGU-3′
3′-CGUAGUCA-5′

Antiparallel 38.9

D-aTNA/DNA 1′-GCATCAGT-3′
3′-CGTAGTCA-5′

Antiparallelb n.d.

D-aTNA/RNA 1′-GCATCAGT-3′
3′-CGUAGUCA-5′

Antiparallelb n.d.

SNA/DNA (S)-GCATCAGT-(R)
3′-CGTAGTCA-5′

Antiparallelb 23.5

SNA/RNA (S)-GCATCAGT-(R)
3′-CGUAGUCA-5′

Antiparallelb 35.0

L-aTNA/DNA 3′-GCATCAGT-1′
3′-CGTAGTCA-5′

Parallelb 28.4

L-aTNA/RNA 3′-GCATCAGT-1′
3′-CGUAGUCA-5′

Parallelb 41.0

DNA/RNA 5′-GCATCAGT-3′
3′-CGUAGUCA-5′

Antiparallelb 25.7

aConditions: 2.0 μM oligonucleotide strand, 100 mM NaCl, 10 mM phosphate buffer (pH 7.0).
n.d. indicates that Tm was too low to measure.
bDirections of hetero-duplexes are defined according to the direction of solid-phase synthesis.
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bases linked through symmetric serinols (Figure 1).36 The difference
between the D-aTNA and SNA monomer is a single methyl group;
however, SNA exhibited several unique properties. Though serinol
itself is achiral, we synthesized enantiopure oligomers from chiral
phosphoramidite monomers. The enantiopure SNA oligomer exhibits
interesting chiroptical properties, as shown in Figure 3a. The
SNA dimer T→A is the enantiomer of the A→T sequence.
Thus, the chirality of the SNA oligomer can be inverted by reversing
the sequence. In contrast, T→T is the enantiomer of itself. Therefore,
an SNA oligomer with a symmetric sequence is achiral (the
meso form).
The CD spectrum of an 8-mer SNA homo-duplex Sa/Sb is shown in

Figure 3b. Positive and negative cotton effects are observed. In
contrast, for the duplex of the reversed sequences of Sa and Sb
(Sd/Sc), the complete inverse of the CD signals are observed. Thus, the
helicity of SNA homo-duplexes can be inverted by reversing their
sequences. On the other hand, the Se/Sf duplex, which has a
symmetrical sequence, gives no CD signal, revealing that this duplex
is achiral. This unique property is due to the symmetric structure of
SNA and cannot be seen in other asymmetric XNAs.
The Tm of an 8-mer SNA homo-duplex is 51.1 °C (Table 1), much

higher than that of natural nucleic acid duplexes of the same sequence.
However, the SNA homo-duplex is less stable than the D-aTNA duplex
because of the larger entropic loss upon hybridization that is caused by
SNA’s flexibility. Interestingly, although SNA has a structure
similar to that of D-aTNA, SNA forms stable hybrid duplexes with
both DNA and RNA. The Tms of 8-mer SNA/DNA and SNA/RNA
hetero-duplexes are 23.5 °C and 35.0 °C, respectively. The Tm of a
SNA/RNA duplex is even higher than that of a DNA/RNA duplex,
clearly demonstrating that SNAs have the potential to be more
efficient than DNAs as probes and drugs that target RNA. To
the best of our knowledge, SNA is the first acyclic XNA with
phosphodiester bonds that can form stable hetero-duplexes with both
DNA and RNA. Our analyses of SNA indicate that a rigid structure or
a neutral charge is not required for hetero-duplex formation with
natural nucleic acids.

L-aTNA HAS HIGH AFFINITY FOR NATURAL NUCLEIC ACIDS

The striking differences between D-aTNA and SNA prompted us to
synthesize another acyclic XNA, L-aTNA (Figure 1), in which

nucleobases are tethered via L-threoninol.37 As expected, because
L-aTNA is an enantiomer of D-aTNA, the Tm of the 8-mer L-aTNA
homo-duplex is almost the same as that of the D-aTNA homo-duplex
(Table 1). In sharp contrast, significant differences are observed in the
stabilities of their hetero-duplexes with DNA and RNA. Unlike
D-aTNA oligomers, L-aTNA oligomers can recognize complementary
DNA and RNA. Interestingly, L-aTNA prefers to form
hetero-duplexes not in an antiparallel but in a parallel manner.
The Tm of the 8-mer L-aTNA/RNA duplex with a sequence designed
to enforce hybridization in the parallel direction is 41.0 °C, whereas
the melting profile of the L-aTNA/RNA duplex designed to hybridize
in the antiparallel direction did not show a sigmoidal curve (Figure 4
and Table 1). The Tm of the parallel hetero-duplex is even higher than
those of the corresponding SNA/RNA and RNA/RNA duplexes.
Thus, L-aTNA forms a more stable complex with complementary
RNA than SNA does. Similarly, the stability of the L-aTNA/DNA
duplex is higher than that of the SNA/DNA duplex.

L-aTNA hybridizes with DNA and RNA only in the parallel
direction. This is the complete opposite of the preference of SNA,
which forms hetero-duplexes only in the antiparallel direction. We
attribute this difference to the configuration of the 2′ carbon of these
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Figure 4 Melting curves of L-aTNA/RNA and L-aTNA/DNA duplexes. The
sequences are as follows: 3′-GCATCAGT-1′/3′-CGTAGTCA-5′ (parallel
direction) and 1′-GCATCAGT-3′/3′-CGTAGTCA-5′ (antiparallel direction). In
RNA, U was substituted for T.
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XNAs (Figure 5). As mentioned above, the chirality of the SNA
oligomer can be inverted by reversing its sequence. This means that
the configuration at the central carbon of SNA can be inverted by
reversing its sequence. The strong preference of SNA for the
antiparallel direction indicates that the configuration of the 2′ carbon
is essential for DNA/RNA recognition. In contrast, because 2′ carbon
of the L-aTNA phosphoramidite monomer has the opposite config-
uration of that of the SNA monomer, the direction of the amide group
in the parallel L-aTNA/RNA duplex corresponds to that in the
antiparallel SNA/RNA duplex. Accordingly, L-aTNA can form
hetero-duplexes only in the parallel orientation. On the other hand,
although the antiparallel D-aTNA/RNA duplex has the same config-
uration, D-aTNA does not form stable duplexes with DNA or RNA.
This result clearly demonstrates that the hybridization properties of
these XNAs are highly dependent on the position of the methyl group
and on the configuration of 2′ carbon.
The drastic difference between D-aTNA and L-aTNA is also likely

due to their helical preferences. The CD spectrum of the D-aTNA
homo-duplex is shown in Figure 6. This CD signal resembles that of
chiral PNA forming a left-handed helix,6,38,39 indicating that D-aTNA
prefers to adopt a left-handed helical structure. In contrast, L-aTNA
shows the opposite CD signal, which is similar to that of chiral PNA
forming a right-handed helix. These results strongly suggest that
L-aTNA forms a stable duplex with DNA and RNA due to its
preference for a right-handed helical structure formation. The helical
preference of L-aTNA underlies the higher affinity of L-aTNA for RNA
compared with SNA.

SUMMARY AND OUTLOOK

In summary, we have developed three acyclic XNAs with unique
properties (Figure 7). These XNAs have simple structures,
making their synthesis straightforward and each can form an
extremely stable homo-duplex. Their abilities to recognize natural
nucleic acids vary and are highly dependent on chemical structure.
D-aTNA and L-aTNA form the most stable homo-duplexes among
these acyclic XNAs. In an example of an important contrast, D-aTNA
does not form a stable hetero-duplex with DNA or RNA, whereas
L-aTNA does. This high orthogonality to natural nucleic acids could
make it possible to use D-aTNA as a nanomaterial that functions inside
a cell without interfering with cellular nucleic acids. Our group has

begun to investigate the operation of nanomachines composed of
D-aTNA.
SNA, which lacks a methyl group that is present in D-aTNA, has a

unique chiroptical property: the chirality and helicity of SNA
oligomers can be controlled in the design of the sequence. This
property stems from the symmetric structure of SNA and makes it
unique because most XNAs are asymmetric. In addition, in contrast to
D-aTNA, SNA forms stable hybrid duplexes with both DNA and RNA.
The SNA/RNA duplex was more stable than the DNA/RNA duplex,
and SNA is resistant to nuclease degradation, clearly demonstrating
the potential of SNA as a diagnostic probe and therapeutic. We have
developed molecular beacons composed of SNA and demonstrated
that these probes can be used to visualize mRNA in cells.40 We have
also incorporated SNA monomers at the termini of siRNAs; these
conjugates activate RNAi-mediated gene silencing and have excellent
enzymatic durability.41

As we reported recently, L-aTNA has the highest affinity to natural
nucleic acids among the three acyclic XNAs. The L-aTNA/RNA
duplex is even more stable than the SNA/RNA duplex. Thus, L-aTNAs
have potential for use as probes and drugs that target natural nucleic
acids. Because the three acyclic XNAs presented here have unique
properties, each should have applications as tools in biology,
biotechnology and nanotechnology. The large difference among the
properties of these XNAs was a surprise because their structural
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Figure 6 CD spectra of 8-mer L-aTNA and D-aTNA duplexes. Sequences are
as follows; 1′-TGACTACG-3′/3′-ACTGATGC-1′.
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differences are small. This suggests that additional acyclic XNAs with
novel functions can be developed by tuning the chemical structure of
the monomer.
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