Biopolymers, Bio-related Polymer Materials

Rod-like architecture and cross-sectional structure of an amyloid protofilament-like peptide supermolecule in aqueous solution


Synchrotron X-ray scattering was performed on an aqueous solution containing self-assembled aggregates of a β-sheet-forming peptide conjugated with a water-soluble moiety (polyethylene glycol, PEG or an oligo-peptide comprising a transactivator of transcription, TAT, sequence). The angular dependence of the scattering intensity in the low-q region (that is, q<2.0 nm−1, where q is the magnitude of the scattering vector) indicated that the scattering objects were rod-like and completely dispersed in water without undergoing secondary aggregation. From the scattering intensity in the range of 0.5 nm−1<q<5.0 nm−1, it was deduced that the cross-section of the scattering objects was rectangular and not circular, presumably because of the laminated structure of the β-sheets. In the wide-angle region (that is, q<5.0 nm−1), a diffraction peak was observed at q=13.4 nm−1, which could be assigned to the two neighboring α-carbons of the peptide chains of the cross-section of the β-sheet. The scattering data indicated that the β-sheet-forming peptide indeed formed stacked β-sheets in a manner similar to that observed in the case of amyloid protofilaments, and that the resultant rod-like objects could be completely dispersed in water as a result of the hydrophilic PEG or TAT moiety.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7


  1. 1

    Jiménez, J. L., Nettleton, E. J., Bouchard, M., Robinson, C. V., Dobson, C. M. & Saibil, H. R. The protofilament structure of insulin amyloid fibrils. Proc. Natl Acad. Sci. USA 99, 9196–9201 (2002).

    Article  Google Scholar 

  2. 2

    Knowles, T. P. & Buehler, M. J. Nanomechanics of functional and pathological amyloid materials. Nat. Nanotechnol. 6, 469–479 (2011).

    CAS  Article  Google Scholar 

  3. 3

    Maji, S. K., Perrin, M. H., Sawaya, M. R., Jessberger, S., Vadodaria, K., Rissman, R. A., Singru, P. S., Nilsson, K. P. R., Simon, R. & Schubert, D. Functional amyloids as natural storage of peptide hormones in pituitary secretory granules. Science 325, 328–332 (2009).

    CAS  Article  Google Scholar 

  4. 4

    Mostaert, A. S., Higgins, M. J., Fukuma, T., Rindi, F. & Jarvis, S. P. Nanoscale mechanical characterisation of amyloid fibrils discovered in a natural adhesive. J. Biol. Phys. 32, 393–401 (2006).

    CAS  Article  Google Scholar 

  5. 5

    Nelson, R., Sawaya, M. R., Balbirnie, M., Madsen, A. O., Riekel, C., Grothe, R. & Eisenberg, D. Structure of the cross-[beta] spine of amyloid-like fibrils. Nature 435, 773–778 (2005).

    CAS  Article  Google Scholar 

  6. 6

    Chiti, F., Bucciantini, M., Capanni, C., Taddei, N., Dobson, C. M. & Stefani, M. Solution conditions can promote formation of either amyloid protofilaments or mature fibrils from the HypF N-terminal domain. Protein Sci. 10, 2541–2547 (2001).

    CAS  Article  Google Scholar 

  7. 7

    Colombo, G., Soto, P. & Gazit, E. Peptide self-assembly at the nanoscale: a challenging target for computational and experimental biotechnology. Trends Biotechnol. 25, 211–218 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Cui, H., Cheetham, A. G., Pashuck, E. T. & Stupp, S. I. Amino acid sequence in constitutionally isomeric tetrapeptide amphiphiles dictates architecture of one-dimensional nanostructures. J. Am. Chem. Soc. 136, 12461–12468 (2014).

    CAS  Article  Google Scholar 

  9. 9

    Pashuck, E. T., Cui, H. & Stupp, S. I. Tuning supramolecular rigidity of peptide fibers through molecular structure. J. Am. Chem. Soc. 132, 6041–6046 (2010).

    CAS  Article  Google Scholar 

  10. 10

    Deechongkit, S., Powers, E. T., You, S.-L. & Kelly, J. W. Controlling the morphology of cross β-sheet assemblies by rational design. J. Am. Chem. Soc. 127, 8562–8570 (2005).

    CAS  Article  Google Scholar 

  11. 11

    Waku, T., Kitagawa, Y., Kawabata, K., Nishigaki, S., Kunugi, S. & Tanaka, N. Self-assembled β-sheet peptide nanofibers for efficient antigen delivery. Chem. Lett. 42, 1441–1443 (2013).

    CAS  Article  Google Scholar 

  12. 12

    Fukuhara, S., Nishigaki, T., Miyata, K., Tsuchiya, N., Waku, T. & Tanaka, N. Mechanism of the chaperone-like and antichaperone activities of amyloid fibrils of peptides from αA-crystallin. Biochemistry 51, 5394–5401 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Tanaka, N., Tanaka, R., Tokuhara, M., Kunugi, S., Lee, Y.-F. & Hamada, D. Amyloid fibril formation and chaperone-like activity of peptides from αA-crystallin. Biochemistry 47, 2961–2967 (2008).

    CAS  Article  Google Scholar 

  14. 14

    Sunde, M., Serpell, L. C., Bartlam, M., Fraser, P. E., Pepys, M. B. & Blake, C. C. Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273, 729–739 (1997).

    CAS  Article  Google Scholar 

  15. 15

    Hamley, I. W. & Krysmann, M. J. Effect of PEG crystallization on the self-assembly of PEG/peptide copolymers containing amyloid peptide fragments. Langmuir 24, 8210–8214 (2008).

    CAS  Article  Google Scholar 

  16. 16

    Avdeev, M. V., Aksenov, V. L., Gazová, Z., Almásy, L., Petrenko, V. I., Gojzewski, H., Feoktystov, A. V., Siposova, K., Antosova, A., Timko, M. & Kopcansky, P. On the determination of the helical structure parameters of amyloid protofilaments by small-angle neutron scattering and atomic force microscopy. J. Appl. Crystallogr. 46, 224–233 (2013).

    CAS  Article  Google Scholar 

  17. 17

    Akiba, I., Terada, N., Hashida, S., Sakurai, K., Sato, T., Shiraishi, K., Yokoyama, M., Masunaga, H., Ogawa, H., Ito, K. & Yagi, N. Encapsulation of a hydrophobic drug into a polymer-micelle core explored with synchrotron SAXS. Langmuir 26, 7544–7551 (2010).

    CAS  Article  Google Scholar 

  18. 18

    Roe, R.-J. Methods of X-ray and Neutron Scattering in Polymer Science, (Oxford Univ. Press on Demand, 2000).

    Google Scholar 

  19. 19

    Glatter, O. & Kratky, O. Small Angle X-ray Scattering, (Academic, 1982).

    Google Scholar 

  20. 20

    Smith, K. F., Harrison, R. A. & Perkins, S. J. Molecular modeling of the domain structure of C9 of human complement by neutron and x-ray solution scattering. Biochemistry 31, 754–764 (1992).

    CAS  Article  Google Scholar 

  21. 21

    Lashuel, H. A., LaBrenz, S. R., Woo, L., Serpell, L. C. & Kelly, J. W. Protofilaments, filaments, ribbons, and fibrils from peptidomimetic self-assembly: implications for amyloid fibril formation and materials science. J. Am. Chem. Soc. 122, 5262–5277 (2000).

    CAS  Article  Google Scholar 

  22. 22

    Circular Dichroism: Principles and Applications, 2nd edn (John Wiley & Sons Inc, 2000).

  23. 23

    Dukor, R. K. & Keiderling, T. A. Reassessment of the random coil conformation: vibrational CD study of proline oligopeptides and related polypeptides. Biopolymers 31, 1747–1761 (1991).

    CAS  Article  Google Scholar 

  24. 24

    Hilderson, J. H. & Ralston, G. B. in Subcellular Biochemistry, Vol. 23 (eds Hilderson, J. H & Ralston, G. B.) (Plenum Press, New York, NY, USA, 1994).

Download references


All the SAXS and WAXS measurements were performed at the SPring-8 facility, Japan (2013A1207, 2013B1203). This work was supported by the Photon and Quantum Basic Research Coordinated Development Program of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan and by the Photon and Quantum Basic Research Coordinated Development Program of MEXT, Japan.

Author information



Corresponding author

Correspondence to Kazuo Sakurai.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Polymer Journal website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Minami, T., Matsumoto, S., Sanada, Y. et al. Rod-like architecture and cross-sectional structure of an amyloid protofilament-like peptide supermolecule in aqueous solution. Polym J 48, 197–202 (2016).

Download citation

Further reading