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INTRODUCTION

Heavy metal pollution represents an important environmental
problem due to the toxic effects of metals. The accumulation of
heavy metals throughout the food chain leads to serious ecological and
health problems.1 Mercury is universally recognized as one of the most
toxic and dangerous non-biodegradable inorganic pollutants present
in aquatic systems.2–8 Mercury is present in many products and
processes in common use (for example, chloro-alkali production,
pharmaceutical and cosmetic preparations, combustion of fossil fuels,
electrical and electronics manufacturing plants, metal processing,
metal plating, metal finishing, and pulp and paper industries),
resulting in the contamination of aquatic systems.2–5,7,8

Conventional methods for the recovery of metals from water and
wastewater include reduction,9,10 oxidation,11 solvent extraction,12,13

precipitation14,15 and adsorption.16–19 Of these, adsorption seems to
be the most suitable method for recovery of metals due to its low cost,
safety and high efficiency.20,21 Metal adsorption by polymers has been
extensively studied;16–21 however, because nearly all polymers are
insoluble in aqueous solutions of metal ions, adsorption must proceed
heterogeneously, resulting in two important problems (low recovery
and low adsorption rate), which represent a hurdle to practical use.
Previously, we proposed an efficient recovery and facile process
for metal recovery based on a water-soluble polyallylamine with
side-chain thiourea groups for metal-complexation groups.22 Since the
polymer is soluble in aqueous metal ion solutions, complexation
proceeds homogeneously and efficiently. As complexation progresses,
cross-linking takes place between the metal-complexation groups and
the metal ions, precipitating the polymer complex, which can be easily
separated by filtration.
For further development of a metal-recovery process utilizing a

water-soluble polymer, we herein report a new facile and efficient
recovery system based on a polymer-bearing metal-complexation and
acidic aqueous solution-soluble groups. Figure 1 shows a schematic
representation of our design: a polymer containing tertiary amine
groups that are soluble in acidic aqueous solution on their protonation

and that interact with metal ions. The polymer achieves homogeneous
complexation with high-recovery efficiency and at a high rate.
As complexation progresses, cross-linking takes place between the
tertiary amine groups and the metal ions, precipitating the polymer
complex, which can be easily separated by filtration. Because metal ion
wastes are often produced under acidic conditions, effective recovery
of metals in acidic aqueous solution is desirable.23 Because diamine
and diacrylate are available abundantly, the selection of the poly
(amine-ester) suitable to a target metal can result in the construction
of a number of recovery systems.

MATERIALS AND METHODS

Materials
1,3-Di-4-piperidylpropane (Tokyo Kasei Kogyo, Tokyo, Japan, 497.0%) was
purified by recrystallization from hexane and dried under vacuum. 1,6-
hexanediol diacrylate (Alfa Aesar, Lamcashire, UK) was commercially available
and used as received. Tetrahydrofuran (Wako Pure Chemical, Osaka, Japan,
499.5%) was distilled and used. Mercury (II) chloride (HgCl2, Wako Pure
Chemical, 499.5%), manganese (II) chloride tetrahydrate (Kanto Chemical,
Tokyo, Japan, 499.0%), iron (III) chloride hexahydrate (Wako Pure Chemical,
499.0%), cobalt (II) chloride hexahydrate (Kanto Chemical, 499.0%), nickel
(II) chloride hexahydrate (Kanto Chemical, 498.0%), copper (II) chloride
(Wako Pure Chemical, 495.0%), ruthenium (III) chloride trihydrate (Kanto
Chemical, 498.0%), rhodium (III) chloride hydrate (Aldrich, St Louis, MO,
USA, 499.9%), sodium tetrachloropalladate (II) (Na2PdCl4, Tokyo Kasei
Kogyo, 498.0%), silver (I) nitrate (Kanto Chemical, 499.8%), osmium (III)
chloride hydrate (Alfa Aesar, 99.99%), iridium (III) chloride trihydrate,
(Aldrich, 499.9%), hydrogen hexachloroplatinate (IV) (Wako Pure Chemical,
498.5%) and sodium tetrachloroaurate (III) dihydrate (Wako Pure Chemical,
495.0%) were commercially available and used as received. Sodium
chloride (Wako Pure Chemical, 499.5%), sodium bromide (Wako Pure
Chemical, 99.9%), and sodium iodide (Wako Pure Chemical, 499.9%) were
used as received.

Methods
1H nuclear magnetic resonance (NMR) spectra were recorded with JEOL
JNM-λ500 (Tokyo, Japan) using tetramethylsilane as an internal standard; the δ
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values are given in p.p.m. Number-average (Mn) and weight-average (Mw)

molecular weights were estimated by size-exclusion chromatography using a

system consisting of a Hitachi L-7100 pump (Hitachi Ltd., Tokyo, Japan),

Hitachi L-7490 refractive index detector (Hitachi Ltd) and polystyrene gel

columns (Tosoh TSK gels α2500 and α3000 (TOSOH CORPORATION,

Tokyo, Japan), whose limitations of size-exclusion are 1 × 104 and 1×105,

respectively). Ultraviolet (UV)/visible (VIS) absorption spectra were recorded

with a Hitachi U-3000 UV-Vis spectrometer (Hitachi Ltd).

Synthesis of poly(amine-ester)—typical procedure
Poly(amine-ester) was synthesized according to the reported procedure.24

To a solution of 1,3-di-4-piperidylpropane (1.90mmol, 400mg) in

tetrahydrofuran (5.00ml), 1,6-hexanediol diacrylate (1.90mmol, 430mg) was

added at 50 °C and stirred at the same temperature for 48 h in air. The

resulting mixture was poured into hexane (200ml). The resulting precipitate

was collected by filtration with suction and dried in vacuo to obtain poly

(amine-ester) (315mg, 38%).
Mn= 8000, Mw/Mn= 3.08. 1H NMR (500MHz, CDCl3, δ, p.p.m., at rt):

1.13–1.77 (2H+2H+2H+4H+2H+4H+4H, br, m, −CH(CHHCH2)2NCH2

CH2− , −CH(CH2CH2)2NCH2CH2− , −CH(CHHCH2)2NCH2CH2− , −CH

(CH2CH2)2NCH2CH2− , −CH(CH2CH2)2NCH2CH2− , −CH(CH2CH2)

2NCH2CH2OCOCH2CH2CH2− , −CH(CH2CH2)2NCH2CH2OCOCH2CH2

CH2− ), 1.93 (2H, br, −CH(CH2CHH)2NCH2CH2− ), 2.51 (4H, br, −CH

(CH2CH2)2NCH2CH2OCOCH2CH2− ), 2.64 (4H, br, −CH(CH2CH2)2NCH2

CH2OCOCH2CH2− ), 2.87 (2H, br, −CH(CH2CHH)2NCH2CH2− ), 4.06

(4H, t, J= 7.00, −CH(CH2CH2)2NCH2CH2OCOCH2CH2− ).

Metal recovery—typical procedure
An aqueous solution of poly(amine-ester) (pH 1, 5.00ml, 0.3 wt%) was added

into an aqueous solution of HgCl2 (pH 1, 5.00ml, 4 mM), and the mixture

was stirred at ambient temperature for 2 h. The resulting precipitate was

separated by filtration (pore size of filter; 0.45 μm), and aliquot (0.250ml) of

the filtrate was removed for sampling. After appropriate dilution, the metal

concentration in the solution was determined by UV/VIS spectrometer. The

recovery amount was calculated based on the following equation. pH was

adjusted by HCl aq.

Recovery amount gmetal=gpoly:

� �
¼ Mof metal´ recovery amount ðmmolÞ=weight of polymer used ðgÞ:

RESULTS AND DISCUSSION

Poly(amine-ester)s were synthesized by polyaddition of 1,3-di-
4-piperidylpropane with 1,6-hexanediol diacrylate in tetrahydrofuran
at 50 °C (Scheme 1). The polymer was soluble in water at pHo2 but
insoluble at pH43, because protonation of the nitrogen atoms led to
hydrophilicity.
We investigated the recovery of HgII using poly(amine-ester). An

aqueous solution of poly(amine-ester) (pH 1, 5.00ml, 0.3 wt%) was
added to a 1.0 M aqueous solution of HgCl2 (pH 1, 5.00ml, HgII

concentration: 4.00mM), resulting in instant precipitation (Figure 2)
(dissolution of poly(amine-ester) to an aqueous solution (pH 1, 0.3 wt
%) decreased to pH 3. Addition of HgCl2 to an aqueous solution
of pH 3 (4mM) resulted in the dissolution of HgCl2. Therefore, HgCl2
is not spontaneously precipitated by pH change due to polymer
addition). The precipitate was separated by filtration, and the
concentration of HgII in the filtrate was measured by UV/vis
spectroscopy, yielding a recovery efficiency of 96%. Thus, poly
(amine-ester) was effective for HgII recovery, and the polymer
complex could easily be separated by filtration.
The effect of pH on the recovery of HgII by poly(amine-ester) was

examined (Figure 3). Interestingly, the recovery behavior was quite
consistent with the solubility of the polymers in HgII aqueous solution,
i.e., the recovery efficiency increased significantly at pH 2. No HgII

ions were precipitated at any pH. This demonstrated that
homogeneous complexation significantly enhanced recovery.
Figure 4 shows 1H NMR spectra of the polymers with different

recovery amounts. As the recovery amount increased, the proton
signals adjacent to the nitrogen atom (a, b and h) shifted to
lower field, indicating that the nitrogen atoms contributed to the
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Figure 1 Schematic representation of facile and high-recovery system of mercury by a polymer containing metal-complexation groups and soluble groups in
acidic aqueous solution. A full color version of this figure is available at Polymer Journal online.

Scheme 1 Synthesis of poly(amine-ester) by polycondensation of 1,3-di-4-piperidylpropane and 1,6-hexanediol diacrylate.
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complexation. In 0.1 M Cl− aqueous solution (= pH 1), the
species present are HgCl2, HgCl3− and HgCl4.

25 Three probable
interactions were considered (Scheme 2): (a) cross-linking by
coordination of the free nitrogen atom to HgCl2; (b) ion exchange
between Cl− and HgCl3− ; and (c) cross-linking by ion exchange
between Cl− and HgCl4

2− .
Because the homogeneous recovery process using poly(amine-ester)

is expected to result in a fast recovery rate, the kinetics was studied.
The recovery of HgII by poly(amine-ester) was very fast, finishing
within 10min, because the homogeneous adsorption took place
(Figure 5). The experimental kinetic data were fitted with a pseudo-

first-order kinetic equation:

log Qe � Qtð Þ ¼ logQe � kt=2:303 ð1Þ
where Qe is the equilibrium recovery amount of HgII (gHg/gpoly.), Qt is
the recovery amount (gHg/gpoly.) at time t, and k is the rate constant
(min− 1). For the recovery of HgII by poly(amine-ester), k was
estimated to be 0.338min− 1 (correlation coefficient, R2= 0.9657).
These results demonstrated that improved polymer solubility accel-
erates the recovery of HgII.
The effect of the initial concentration of HgII on the amount of

mercury recovered by the poly(amine-ester) was examined (Figure 6).

Figure 2 Photographs of poly(amine-ester) before and after HgII recovery.
Conditions: aqueous solution of HgII: 5 ml (pH 1; HgII concentration:
4.0mM); that of poly(amine-ester): 5ml (pH 1; 0.3 wt%); ambient
temperature.
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Figure 3 Effects of pH on the HgII recovery by poly(amine-ester). Conditions:
aqueous solution of HgII: 5ml (4.0mM); that of poly(amine-ester): 5ml (0.3
wt%); ambient temperature for 1 h.
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Figure 4 1H NMR spectra (DMSO, rt) of poly(amine-ester)s with different recovery amounts (upper: 126mgHg/gpoly.; lower: 487mgHg/gpoly.). NMR, nuclear
magnetic resonance.
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The recovery amount increased with increasing HgII concentration
and tended to approach the plateau region ~ 45mM. Based on the
plateau region, the maximum recovery by the poly(amine-ester) was
evaluated as 487mgHg/poly. Table 1 compares the maximum recovery
amounts of different types of adsorbent. Our polymer had a
satisfactory recovery ability, and because a wide variety of diamine
and diacrylate are available the proportion of adsorption sites in
polymer structure can increase, resulting in a larger recovery amount.
The recovery of various metals by poly(amine-ester) was examined

using a metal ion concentration of 45mM, which was the optimum
concentration for HgII recovery. As summarized in Table 2, metals
with large atomic radii tended to instantly give rise to cross-linking
precipitates. This selectivity is ascribed to the high affinity of the
tertiary amine groups for soft metal ions. It is noteworthy that the
recovery amounts for all of the metals were very high (123–520
mgmetal/gpoly.).
Some industrial wastewaters contain, in addition to toxic heavy

metal ions, large quantities of other salts such as sodium chloride.
Generally, the sole effect of this presence is a high ionic strength that
slightly modifies the values of the equilibrium constants, without
introducing new reactions in the system. This is not the case for
solutions containing HgII ions, which are known to form very stable
complexes with halide ions.26 The formation of such strong complexes
can result in a masking effect that significantly affects the performance
of an adsorbent. In this study, sodium halides (NaCl, NaBr and NaI)
were chosen as model salts to investigate the effect of halide ions on
the recovery of HgII ions by the poly(amine-ester). The effect was
studied by carrying out a series of recovery experiments in solutions of
HgII containing various NaX concentrations. Table 3 shows effect of
NaX concentrations on the recovery of HgII by the poly(amine-ester).
It is noteworthy that the recovery efficiency of HgII did not decrease
in every case, indicating that HgII recovery by the poly(amine-ester)
was not affected by the presence of halide ions because of its
high-recovery ability.
In summary, we have successfully developed a facile and efficient

recovery process for metals based on a poly(amine-ester) consisting

Figure 5 Changes of recovery of HgII by poly(amine-ester). Conditions:
aqueous solution of HgII: 5 ml (pH 1; HgII concentration: 4.0mM); that of
poly(amine-ester): 5ml (pH 1; 0.3 wt%); ambient temperature.
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Figure 6 Recovery amounts of poly(amine-ester) as function of initial
concentration of HgII. Conditions: aqueous solution of HgII: 5 ml (pH 1); that
of poly(amine-ester): 5ml (pH 1; 0.3 wt%); ambient temperature for 1 h.
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of metal-complexation and acidic aqueous solution-soluble groups.
Since the polymer is soluble in acidic aqueous solutions,
the metal-complexation proceeds homogeneously and efficiently. As
metal-complexation progresses, cross-linking takes place between
the metal-complexation groups and the metal ions, precipitating the
polymer complex, which can be easily separated by filtration. HgII

recovery was completed within 10min, and the maximum amount of
mercury recovered by the poly(amine-ester) (487mgHg/gpoly.) was
satisfactory. The polymer was also capable of recovering other metals
such as RhIII, PdII, OsIII, IrIII, PtIV and AuIII in large amounts.
This polymer, bearing metal-complexation and acidic aqueous
solution-soluble groups, is expected to be applicable as an efficient

recovery material for metals. We are now currently examining the
selectivity of HgII ion from a mixture of other metal ions.
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