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In situ QCM-D study of nano-bio interfaces
with enhanced biocompatibility

Motohiro Tagaya1,2

When biomaterials are implanted into an animal body, the body fluid proteins initially adsorb and then cells recognize these

surfaces. Adherent cell functions respond differently to diverse biomaterial surfaces with different properties. Thus, an

understanding of cellular responses to biomaterials is crucial for effective control of biomaterial− cell interactions. I have

researched how to clarify interfacial phenomena via protein adsorption and subsequent cell adhesion to hydroxyapatite

nanocrystals using a quartz crystal microbalance with a dissipation technique. In this review, I focused on the current

understanding of enhanced biocompatibility by exploring the roles of protein mediation at the interface. The most promising

nano-bio interfaces are explained, and different protein adsorption and cell adhesion processes are highlighted depending on

their interfacial states. This approach will clarify several ambiguities of interfacial phenomena between biomaterials and cells

and will help in the design of novel biomaterials that can be implanted.
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INTRODUCTION

Reflecting the broad scope and rapid development of biomaterial
sciences, dozens of papers have recently been published in this field.
Although biomaterials include many types of materials such as metals,
ceramics, polymers and inorganic–organic composites, native materi-
als are widely used in the field, such as titanium for dental implants,
stainless steel for orthopedic implants, poly(tetrafluoroethylene) for
blood vessel replacement, poly(dimethylsiloxane) for internal drainage
and poly(methylmethacrylate) for intraocular lenses. Native material
surfaces are unsophisticated as compared with biomolecular architec-
ture on living tissue surfaces. To obtain a positive and selective
interaction with biomaterial surface architecture, these surfaces should
seek to match certain recognition sites on corresponding biological
surfaces to form biocompatible hybrid interfaces.
Cell adhesion is involved in various natural phenomena such as

embryogenesis, maintenance of tissue structure, wound healing,
immune responses, metastasis and tissue integration of biomaterial.
Accordingly, biocompatibility of biomaterials is very closely related to
cell behavior upon contact. For example, Figure 1 shows three possible
processes that can occur after the implantation of biomaterials into the
body.1 First, ions and molecules reach the biomaterial surfaces and
interact and bind depending on the surface properties. The hydration
layers on the surface are an important factor that influences proteins.
Second, water-soluble proteins have hydration shells, and the interac-
tions of surface water layers with the protein water shells influence the
fundamental kinetics and thermodynamics of subsequent protein
adlayer formation. These interactions determine the structures of the

protein adlayers, such as whether they are denatured, orientation and
coverage. Last, when cells arrive at the surface, they recognize the
structures of the protein adlayers for adherence, spread and form an
interface on the surface. Thus, initial cell adhesion behavior is strongly
affected by both surface properties and the structures of the protein
adlayers. Accordingly, the interface layers are the dominant factors
affecting biocompatibility.2–4

A possible interfacial phenomenon between a protein adlayer and a
cell on a biomaterial surface is shown in Figure 2. After implantation
into the animal body, multiple proteins in the body fluid immediately
and competitively adsorb on the surface. Accordingly, the behavior of
‘protein at interfaces’ is an important research area that is classified
into conformational changes and adsorbed protein structures, surface
exchange of proteins, protein-rejecting surfaces and biological inacti-
vation/activation. In particular, albumin (Ab) and immunoglobulin
(IgG) are the larger mass fractional protein components in body fluid,
whereas extracellular matrix (ECM) proteins, which determine cell
activities, are relatively minor components. In the protein adlayer, the
structure of the ECM containing the arginine-glycine-asparagine
(RGD) sequence has a role at the interface between the surface and the
cell.5–7 The conformation and denaturation of the protein adlayers
and the orientation of the RGD sequence strongly governs
biocompatibility,8,9 which is attributed to cell activities and functions,
such as adhesion, proliferation, migration, differentiation, expression
and survival. The ECM is classified into collagen, non-collagen
glycoprotein, elastin and proteoglycan groups.10–12 The non-collagen
glycoprotein group includes fibrinogen (Fgn), fibronectin (Fn),
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laminin, vitronectin, thrombospondins and tenascins, all of which
significantly affect the initial cell adhesion behavior as well as cell
functions. On the other hand, integrins in the cell membrane directly
mediate the attachment between a cell and the RGD sequence of the
protein adlayer.13,14 The cytoskeleton, which is firmly combined
with the integrin inside the cell membrane, is altered and subsequently
forms adhesion points at the interface. Along with forming these
points, signal transduction molecules through the cytoskeleton
are successively communicated to determine cell functions. Simulta-
neously, the cell produces ECM at the interface to consolidate the
interfacial junction. The interfacial region at a nanometer scale,
including ECM-integrin-cytoskeleton, significantly affects cell
activities. Thus, an in situ monitoring technique at the interface
between the material surface and cell is important for controlling cell
functions.

The chemical composition and physical structure of a biomaterial
surface have profound scientific importance; their characterization
leads to insight into cell–biomaterial interactions. For example, surface
morphology and protein structure are known to be attractive features
for controlling cell functions. Surface morphology at the nano- and
micrometer scales and subsequent protein adsorption are known to
affect later cellular activities (proliferation, survival and gene expres-
sion).15–17 The later activities are significantly affected by initial cellular
activities (adhesion, spreading). Thus, to evaluate whether the surfaces
of engineered biomaterials can induce desirable initial cell interactions,
in vitro cell culture is performed because there are no applicable
universal basic rules to predict cell behaviors on the basis of certain
material surface properties. There has been no clarification of the
relationships between physicochemical properties and initial cell
behavior;18–20 the interfacial phenomena related to the ECM proteins

Figure 1 Diagram of successive events on biomaterial surfaces after implantation; (a) formation of water and ion layer; (b) protein adsorption; (c) cell
adhesion/spreading; and (d) differentiation/tissue formation. Reprinted with permission from Tagaya et al.47
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Figure 2 Diagram of the interface between the serum protein adlayer and a cell on the biomaterial surface: an overview of the structure at the interface in
which the cell membrane containing integrin binds to the extracellular matrix-protein adlayers. Reprinted with permission from Tagaya et al.47
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have not been clarified for the initial stage. One reason for this lack of
clarification is that techniques for in situ monitoring of the interfacial
phenomena in a solution state have not been established. Therefore, it
is indispensable to clarify the phenomena between material surfaces
and cells during the initial stage with new techniques to understand
biocompatibility at the interface.
In the present focused review, the quartz crystal microbalance with

dissipation (QCM-D) technique, which can monitor the interfacial
phenomena between biomaterials and cells, is introduced, and the
importance of the interfacial phenomena is highlighted. In particular,
phenomena on hydroxyapatite (Ca10(PO4)6(OH)2; HAp) surfaces are
discussed, which is very important for the design of novel bioactive
and biocompatible composites. HAp21 has been widely investigated for
use as a bone filling material with collagen22–25 and as a drug delivery
carrier.26–30 Protein adsorption and cell adhesion on the surface are
critical issues and have been investigated.31,32 However, the detailed
features attributed to the interfaces have not been clarified. Thus,
in situ monitoring and understanding of the interfaces are of great
importance for clarifying the nature of biocompatibility. This paper
also clarifies several ambiguities of the interfacial phenomena between
biomaterials and cells.

PROTEIN ADSORPTION ON BIOMATERIALS

Mono-component
Protein adsorption behavior on a solid substrate depends on surface
properties such as wettability, free energy, charge and roughness.33,34

The mono-component protein adsorption process and any conforma-
tional changes have been investigated with the QCM-D technique.35,36

The ions in the solvent are known to adsorb on surfaces to form
hydration structures, which influence fundamental protein adsorption
kinetics. Thus, studies evaluating adsorption dependent on the solvent
have been described by the batch method to clarify Ab adsorption on
HAp in phosphate-buffered saline,37 Ab adsorption on silica–titania
hybrids in phosphate-buffered saline and 4-(2-hydroxyethyl)-1-piper-
azineethanesulfonic acid,38 and Ab, IgG, Fgn and lysozyme adsorp-
tions on germanium in phosphate-buffered saline or Tris-HCl.39 The
conformations of the Ab adlayer on gold40 and the Fn adlayer on
HAp41 involving the binding of a monoclonal antibody have also been
discussed.
In situ monitoring of conformational changes by the QCM-D

technique on biomaterials is desirable. In general, QCM-D measure-
ments are performed by monitoring frequency shifts (Δf (Hz)) and
dissipation shifts (ΔD (×10− 6)). The measured Δf is divided by a
harmonic overtone (n) at the fundamental frequency of 5MHz. Only
a few studies examining the saturated ΔD/Δf value (ΔDsat/Δfsat) from
the ΔD–Δf plot based on the measured Δf and ΔD curves have
evaluated adsorption behavior and conformation.42–46 Detailed QCM
and QCM-D applications for the adlayer have already been described
and reviewed in other journals.47 Experimental methods for the
QCM-D are described in Supplementary Experimental Method S1.
The detectable height (l) of D in the QCM-D system, which can be

applied for this discussion of nano-bio interfaces, can be represented
by Equation (1) as follows:46

l ¼
ffiffiffiffiffiffiffiffi
Z

prf

r
ð1Þ

where the η and ρ values are the viscosity and density on the sensor
surface, respectively. Thus, the viscous liquid and adlayer on the sensor
surface exhibit the higher l value. The value of Δf and ΔD can be

represented by Equations (2 and 3), respectively.46
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Here, 1/tanδ is replaced by χ, and dad and ρad are the thickness and
density of the adlayer. The f0 is the fundamental frequency, and the dq
and ρq are the thickness and density of the quartz.
Figure 3 shows the ΔD–Δf plots of different protein adsorption

behaviors and possible adsorption structures.48 From the Δf and ΔD
curves, the adsorption equilibrium time can be obtained to plot the
ΔD–Δf in the region between the injection and plateau states. The
slope of ΔD/Δf at the plateau state can be defined as ΔDsat/Δfsat. From
Equations (2 and 3), the higher and lower ΔDsat/Δfsat values
approximately denote the viscous and elastic properties of the adlayer
at the equilibrium states, respectively. Specifically, plot 1 exhibited a
higher ΔDsat/Δfsat value than plot 2, as shown in in Figure 3a,
indicating the relatively loose structure and viscous properties of plot 1
depicted in Figure 3b. This tendency can be demonstrated on the basis
of Equations (2 and 3), and the ΔD/Δf value is affected only by dad
and tanδ. Thus, the adlayer of plot 1 also indicated higher dad and/or
tanδ values as compared with plot 2. On the basis of previous reports
on hydration42 and friction,44 the possible structures of the adlayers
from plots 1 and 2 can be represented as shown in Figures 3b and c,
respectively.
The ΔDsat/Δfsat value is an excellent variable to evaluate the

viscoelasticity and structure of the adlayer, and the value has been
verified by experiments. Ozeki et al.42 revealed a significant relation-
ship between the ΔDsat/Δfsat value and the amount of hydration.
Rodahl et al.44 revealed that the ΔDsat/Δfsat value is significantly related

Figure 3 Diagrams of (a) ΔD−Δf plots (plots 1, 2) with different protein
adlayers, and (b, c) structures of the adlayers. The ΔD/Δf value at the
saturated stage (ΔDsat/Δfsat) in plot 2 is lower than that in plot 1, indicating
the possible (b) viscous and (c) elastic structures for plots 1 and 2,
respectively. Reprinted with permission from Tagaya et al.47
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to the inverse of the friction coefficient between the adlayer and the
sensor surface by defining the protein adlayer as a Newtonian liquid.
Monkawa et al.43 reported that the ΔDsat/Δfsat value of the Fgn adlayer
successfully corresponds to the conformation with an additional FT-IR
analysis. On the basis of this evaluation, Yoshioka et al.45 investigated
the conformations of various acidic and basic protein adlayers on HAp
using the ΔDsat/Δfsat values. Therefore, the ΔDsat/Δfsat value is of great
importance for evaluating the structure of the protein adlayer.
Adsorption behavior dependent on characteristic protein structure is

detected by the QCM-D technique. Fgn and Ab are often employed for
QCM experiments as model proteins. Fgn is a structural glycoprotein
in blood plasma with an isoelectric point of 5.5 and is of a moderate
molecular weight (340 kDa) and size (45 nm length).49–53 A central
hydrophobic E-domain of the Fgn molecule is connected to two
hydrophobic D-domains by a coiled-coil chain. These hydrophobic
domains are negatively charged under neutral pH conditions. The αC-
domains with Arg and Lys residues are positively charged and are
substantially more hydrophilic than the E- and D-domains. On the
other hand, the Ab molecule is globular with a pI at 4.7 and a
molecular weight of 66.5 kDa and has an asymmetric heart-like
structure in which three main domains are divided into six subunit
domains.54 The protein surface has many carboxyl groups and 19
imidazole groups. These groups affect the effective binding to calcium
ions and represent a negatively charged surface due to the dissociation
of side chains of acidic amino acids, such as glutamic acid, under
experimental pH conditions. Figure 4 shows the ΔD–Δf plots and
possible conformational changes with the Fgn and Ab adsorptions on
the HAp in phosphate-buffered saline.55 The ΔD–Δf plots in Figures
4a and c show the two-step change for Fgn and the linear change for
Ab, indicating the two-step conformational change and monomole-
cular adsorption on the surface. The ΔDsat/Δfsat value of Ab on the
HAp sensors was 1.0× 10− 8, which is much lower than that of Fgn
(34.5× 10− 8).43,55 Thus, the Ab was only slightly absorbed on the HAp
surface compared to FgnHAp. The adsorption behavior of Fgn on
HAp with its dumbbell-like structure has already been described.43,55

One of the αC domains of Fgn, which is positively charged, is bonded
to the negative sites of the HAp surface similar to phosphate and/or
hydroxyl ions in an ‘end-on’ model in Figure 4b. On the contrary, Ab
has an asymmetric heart-like structure in which three main domains
are divided into the already mentioned six subunit domains. The low
amount of Ab adsorption as compared with Fgn indicates that the
adsorption model of Ab could be ‘side-on’ at the monolayer
in Figure 4d, and the dissociated carboxyl and imidazole groups
interact with the positively charged calcium ions on the
HAp surface. Thus, the differential adsorption behaviors of Fgn and
Ab with similar pI values can be attributed to their secondary structure
and realization of different adsorption models such as ‘side-on’ and
‘end-on’.

Multi-component toward serum protein study
In the body fluid, multiple serum proteins immediately and
competitively adsorb on the surface.2–4 The protein adlayers govern
biocompatibility. Thus, investigation of interfacial protein–material
interactions is important for designing superior biocompatible materi-
als. Although the adsorption of proteins has widely been studied,56–59

their complex behavior during multiple-protein adsorption at the
interface has not yet been elucidated. The substitution of adsorbed
fibrinogen on the surface with other abundant proteins in a serum
solution is known as the ‘Vroman effect’.60 Several studies character-
ized the multiple-protein adsorption of Ab and immunoglobulin G
(IgG) labeled with radioactive 125I and 131I on poly(ethylene)

terephthalate surfaces,61,62 and Ab, fibrinogen and IgG on a poly
(styrene) surface from a plasma solution.63

The possible multi-component protein adsorption mechanism on
the surface can be divided into the three time-dependent processes.
First, the hydrated protein in the liquid interacts with the hydration
layer on the surface, and adsorption on the surface occurs with
disruption of the hydration structure.1 Second, the protein repeatedly
adsorbs and desorbs on the surface to thermodynamically stabilize the
structure.64 During the adsorption of multi-component proteins, the
adsorbed proteins simultaneously exchange with other proteins.60,65,66

Last, the adsorbed proteins change their conformation to become

Figure 4 (a, c) ΔD–Δf plots and (b, d) possible diagrams of the
conformational changes with (a, b) Fgn and (c, d) Ab adsorption on the HAp
surface. Fgn adsorbs on the HAp, changing from ‘side-on’ to ‘end-on’ vs
time, whereas Ab adsorbs on the monolayer. Reprinted with permission from
Ikoma et al.55
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stable higher-order structures on the surface, and the stabilization
indicates an equilibrium state.67 During the adsorption of multi-
component proteins, other proteins may subsequently co-adsorb on
the stabilized protein surfaces. These interfacial changes are very
important for understanding phenomena in body fluids, but only a
few studies examining adsorption behavior and conformational
changes have been published.56–59 Therefore, the QCM-D technique
is one of the suitable techniques for in situ analysis of interfacial
phenomena by multi-component protein adsorption.
The two major proteins in the serum are Ab and globulin. Ab is the

largest mass fractional protein component in the blood and is known
to eliminate cell attachment and block non-specific binding.68,69 On
the other hand, Fn, collagen (Col) and other subtle proteins
(osteopontin, laminin, vitronectin and so on) are obligate adhesive
proteins for integrin-receptor-based cell adhesion and spreading on
surfaces. Thus, the ratio of nonadhesive Ab to adhesive Fn selectively
adsorbed on the HAp surface from a multi-component solution (for
example, serum) is an important parameter for improving cell
adhesion on surfaces. Grainger et al.20 reported that fibronectin (Fn)
conformation adsorbs on a poly(tetrafluoroethylene) surface from Fn
and Ab mixtures, as determined using an anti-Fn antibody, indicating
that Ab masked the adsorbed Fn, and found that the binding of Anti-
Fn to the two-component adlayer is suppressed by the presence of Ab.
For the HAp surface, Ab and Fn adsorption in a complex fashion has
been reported by two-component adsorption.70 As judged from the
ΔD-Δf plots in Figure 5, Ab interacts with Fn due to interfacial
changes in elasticity using Voigt-based viscoelastic analysis and an
antibody-binding technique.

PROTEIN-MEDIATED CELL ADSORPTION

Formation of nano-bio interfaces
Cell adhesion behaviors depend on surface properties such as
topography, wettability and charge and on the protein adlayers.2–4

The conformational changes, denaturation and RGD sequences of the
adsorbed proteins on the surface govern biocompatibility, which is
attributed to the adhesion, proliferation, migration and differentiation

of cells.1,9 The ECM with the RGD sequence affects cell adhesion.5 The
integrin of a cell binds to the RGD sequence in the ECM,13 and
subsequent actin cytoskeleton is produced and the associated proteins
form focal adhesion points on the surface.14 When cells adhere and
spread on material surfaces, interfacial reactions and morphological
changes occur as shown in Figure 1. Thus, in situ monitoring of these
interfacial phenomena with initial cell behaviors on surfaces is of great
importance for controlling cell functions.
Protein adsorption and subsequent cell adhesion on surfaces were

reviewed by Anselme.4 The adsorption of different amounts of fetal
bovine serum (FBS) on nanobioceramics causes different cell adhesion
behaviors.71 It is known that bone is a composite material in which
collagen fibrils72,73 form a scaffold for the highly organized arrange-
ment of uniaxially oriented apatite crystals.74 The process is believed to
be directed by the highly acidic ECM proteins; however, the role of the
collagen matrix during bone mineralization remains unknown.75–78

The proliferation and mineralization of osteoblasts on a HAp sintered
body with and without pre-adsorbed type I Col were investigated. As a
result, various phenotype and gene expression patterns were found to
be different from cells on PS dishes.16,17 Cell functions are determined
not only by interfacial proteins but also by substrate surface properties.
An understanding of cell adhesion and spreading processes on
interfacial protein layers adsorbed on a substrate surface is of
significant importance.
Various physical parameters were measured to evaluate interfacial

phenomena with initial cell adhesion, such as resistance,79–85

impedance,86,87 transient decay time, maximum oscillation
amplitude88 and rheometry.89 Li et al.90 recently described the
viscoelastic properties of a fibroblast cell monolayer on gold using a
thickness shear mode quartz crystal resonator with a transfer matrix
model. They calculated the μad values of 21–39 kPa, ηad values of
0.92–1.56mPa s and tanδ values of 1.2–2.3 at a 5-MHz resonance
frequency. Fernández et al.89 investigated the viscoelastic properties of
a fibroblast cell monolayer with a rheometer and obtained G', G" and
tanδ values at 10Hz of 400, 150 and 0.3 Pa, respectively, indicating
that the cell monolayer is an elastic body. Palmer et al.91 suggested that
the elastic shear modulus dominates the viscoelastic properties of cells
because of their rigid cytoskeletons at lower frequencies, but that the
viscous modulus dominates viscoelasticity attributable to the cyto-
plasmic fluid at the higher frequencies. Actin networks at the high
frequency of 1MHz exhibit a liquid-like property and those at the low
frequency of 10Hz exhibit an elastic property. Their viscoelastic
parameters are attributed to the measured frequency or detectable
region on the surface.
The high frequency of QCM causes the viscosity behavior of the

adherent cells due to the dependence of the actin network property on
the frequency. The different viscoelastic properties attributed to the
different actin network structures close to the surface can be
characterized using QCM-D. Equation (1) indicates that a higher η
value for the adlayer can detect a higher l region. The l of a resonating
wave in culture medium at 37 °C with a ρ of 0.993 g cm−3 and an η of
0.692mPa s86 was calculated to be ~ 100 nm at 15MHz. The FBS
adlayer with measured viscoelastic values demonstrated an l of
100–200 nm at 15MHz. The l of the adherent cell layers with
measured viscoelastic values was also 100–200 nm at 15MHz. The
values of l are a great deal lower than the actual heights of the cells,
which are on the micrometer scale. This suggested that QCM-D
measures the lower portions of the cells close to the protein adlayer on
the sensor surfaces.
The interface between the material surface and cell in QCM-D

effectively causes differences in the viscoelastic properties of the
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adherent cells. The QCM-D technique focuses on the energy dissipa-
tion shift,66,92–94 allowing the monitoring of cell adhesion and
spreading behaviors on surface-oxidized poly(styrene) (PSox),95–99

tantalum (Ta),98–100 chromium (Cr),100 titanium (Ti) and steel.101

The QCM-D technique has also been used to understand the effects of
the pre-adsorption of proteins on cell adhesion;98–101 for example, on
Ta and Cr with and without the pre-adsorption of FBS100 and on Ti,
TiO2 and steel with the pre-adsorption of Fn or Fgn.101

Initial cell adhesion processes and changes in interfacial viscoelas-
ticity using the QCM-D technique have been reported.102–105 As HAp
has good biocompatibility for fibroblasts,106,107 the adhesion and
morphological changes of the fibroblasts on HAp with pre-adsorbed
FBS compared to those on PSox have also been reported.102 Adhesion
behaviors that are dependent on surface properties are attributed to
cell–surface interactions. QCM-D was also used in situ to analyze the
adhesion behavior of osteoblast-like cells on PSox and HAp as shown
in Figure 6.105 From the ΔD–Δf plots, the cell adhesion and spreading
behaviors depended on the differences between the PSox and HAp
surfaces with pre-adsorbed FBS, which are explained in detail in
Supplementary Discussion S1. The adhesion speed on PSox was faster
than on HAp, which may cause the difference in the ΔD–Δf plots,
indicating that pre-adsorbed FBS on the surfaces effectively governs
the cell adhesion process. Therefore, the recognition of cells results in
different adhesion processes and interfacial viscoelastic properties
depending on the surface, which has been successfully elucidated by
the QCM-D technique.

Effects of interfacial proteins
The investigation of interfacial phenomena between cells and surfaces
modified by various serum proteins is important for controlling cell
functions. The pre-adsorption of three proteins (Ab, Fn, collagen
(Col)) and subsequent adsorption of FBS (to form the FBS-Ab,
FBS-Fn, FBS-Col adlayers), and the adhesion of cells have been
reported.103,104,108 The ΔD–Δf plots of the osteoblast-like cells on FBS,
FBS-Ab, FBS-Fn and FBS-Col for 2 h are shown in Figure 7.108 The
FBS-Col surface showed an increase in Δf with a decrease in ΔD,
whereas the other surfaces showed a decrease in Δf with an increase in
ΔD during the initial 1 h on the FBS, 1.5 h on the FBS-Ab and 0.5 h
on the FBS-Fn and subsequent increase in the Δf with a decrease in
ΔD, indicating that cell spreading with interfacial reactions such as
dehydration and binding caused decreases in the mass and ΔD. The Δf
and ΔD values at 2 h were − 41.9± 2.1 Hz and +24.2± 3.3× 10− 6 on
the FBS, − 9.9± 1.5 Hz and +6.1± 2.1× 10− 6 on the FBS-BSA,
− 29.2± 1.5 Hz and +9.2± 1.6× 10− 6 on the FBS-Fn and
+20.9± 2.5 Hz and − 11.5± 1.1 × 10− 6 on the FBS-Col, respectively.
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The ΔD–Δf plots for the HAp surface without the pre-adsorption of
the proteins significantly indicated that the mass slightly increased and
ΔD also increased during the 2 h, taking into account the rapid
kinetics of FBS protein adsorption as compared with cell adhesion.
These results support the fact that a different adhesion process occurs
on modified surfaces, and the pre-adsorption of Col effectively induces
cell-surface reactions. The ΔD–Δf plots for the adhesion and spread-
ing behaviors correspond to the tendencies of fibroblast and hepato-
cyte adhesion behaviors.103,104 Accordingly, different cell adhesion
processes depending on surface pre-adsorbed proteins are successfully
monitored in situ by the QCM-D technique. Confocal laser scanning
microscope images of adherent cells also demonstrated different
morphologies and pseudopods on the surfaces as shown in Figure 8.
The cells that adhered on the surfaces modified by Fn and Col had
significantly uniaxially expanded shapes and fibrous pseudopods,
whereas those modified with Ab had a round shape. Therefore,
different cell–protein interactions cause the arrangement of the
extracellular matrix and changes to the cytoskeleton at interfaces,
and these phenomena can be successfully detected.

CONCLUSION AND FUTURE PERSPECTIVES

In this review, the complexity of the phenomena occurring with
cell−material interactions at nano-bio interfaces and, in particular,
the effects of proteins on cell adhesion to HAp nanocrystals, which
govern subsequent cell behavior at the interface, were highlighted. In
situ monitoring of the interfacial protein adlayers formed between
biomaterials (for example, HAp) and cells have been found to be
crucial for controlling cell functions and understanding biocompatible
phenomena.47 The analysis of interfacial interactions with protein
adsorption and initial cell adhesion was demonstrated with the QCM-
D technique.

The above points, summarized on the basis of in vitro experiments,
have revealed some of the critical events for biomaterials to stimulate
an interface in body fluid. The events that were modeled in vitro
would be likely to take place in vivo. Protein adsorption on surface-
interfaces leads to differing degrees of conformational changes at the
interface. It is worth estimating the conformational changes and
qualitative aspects of protein adsorption with suitable parameters.
Studies of qualitative characterization techniques significantly indicate
that the ‘interfacial heterogeneity effect’ does exist, which has also been
shown for hydrogel surfaces.109–112 Models that exist for interfacial
protein adlayers that define appropriate heterogeneity parameters for
subsequent cell adhesion/spreading are very important.113

Future efforts will incorporate the influence of interfacial hetero-
geneity in protein adsorption studies. Characterization of its influence
on the mediation of subsequent reactions at the interface is urgently
required, not only to provide novel physical insights into the
adsorption process but also to provide a more realistic picture of
the events occurring in body fluid. The investigation of interfacial
heterogeneity via the analysis of protein adsorption and cell adhesion
should then provide an initial and useful framework for analyzing
biointerface studies. Obviously, interfacial studies (for example, in situ
monitoring of conformational changes) can easily be applicable for
polymerization processes in a liquid state.114–116 This framework will
build up more predictive techniques to analyze not only the
quantitative but also the qualitative aspects of interfacial phenomena.
Further research can bring significant improvements to existing

experimental methods to prepare and characterize useful nanobioma-
terials and to measure their dynamics and kinetics with mesoscopic
scale materials.30,117–120 The development of surface science for in situ
measurements at interfaces will take place through interactions with
the adjacent fields of surface physics and chemistry, biology and

Figure 8 Confocal laser scanning microscope images of cells adhered on (a) FBS, (b) FBS-albumin, (c) FBS-fibronectin and (d) FBS-collagen adsorbed on
HAp, which were incubated for 120min. Reprinted with permission from Tagaya et al.108
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polymer sciences. These studies will lead to a deep understanding of
nano-bio interfaces.
To overcome existing scientific challenges, mutual interactions

should be explored by developing novel detection techniques for
interfacial interactions. Proper understanding of cell behavior during
contact with implanted biomaterial is essential for attaining adequate
health and safety. In particular, the development of tissue engineering
techniques requires greater consideration of cell adhesion properties,
whether for the improvement of the surfaces by adsorption or grafting
of specific adhesion factors,121 or for the development of hybrid
materials for autologous bone cells and materials. Therefore, interface
studies have great potential to inform the development of superior
biomaterials that are applicable for medical implants, biosensors and
biochips for diagnostics, bioelectronics and biomimetics.
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