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Controlled/living polymerization of renewable vinyl
monomers into bio-based polymers

Kotaro Satoh1,2

In this focused review, I present an overview of our recent research on bio-based polymers produced by the controlled/living

polymerization of naturally occurring or derived renewable monomers, such as terpenes, phenylpropanoids and itaconic

derivatives. The judicious choice of initiating system, which was borrowed from conventional petrochemical monomers, not only

allowed the polymerization to proceed efficiently but also produced well-defined controlled/living polymers from these renewable

monomers. We were able to find several controlled/living systems for renewable monomers that resulted in novel bio-based

polymers, including a cycloolefin polymer, an AAB alternating copolymer with an end-to-end sequence, a phenolic and high-Tg
alternating styrenic copolymer, and an acrylic thermoplastic elastomer.
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INTRODUCTION

Bio-based polymers are attractive materials from the standpoints of
being environmentally benign and sustainable. They are usually
derived from renewable bio-based feedstocks, such as starches, plant
oils and microbiota, as an alternative to traditional polymers from
fossil resources.1 Most of the bio-based polymers produced in the
1990s were polyesters prepared via condensation or ring-opening
polymerization, such as poly(lactic acid) or polyhydroxyalkanoate.
However, in response to increasing demands for the sustainable
development, since the beginning of this century, various attempts
have been made to produce novel bio-based polymers that include
new polyester or polyamide skeletons and other macromolecules.2–17

Although it remains to be determined whether the concept can achieve
profitability by lowering the cost or the total emission of carbon
dioxide through reducing the use of fossil oil, the use of bio-based
polymers is definitely beneficial as a replacement for general-purpose
petrochemical monomers for specific applications.
Various polymerization techniques have been developed for vinyl

monomers during the past century, the era of the petrochemical
industry.18 The past few decades have witnessed the development of
precision polymerization systems based on controlled/living polymer-
ization, in which traditional petrochemical-derived and commodity
vinyl monomers can be converted into high-performance polymers
with precisely controlled primary structures, such as molecular weight,
polydispersity and end-functionality.19–38 These tailor-made polymers
may also even rival natural macromolecules with their uniform
molecular weight, stereoregularity and controllable sequencing.
Among the various living polymerization systems, our group has
studied cationic and radical polymerizations: the former involves
monomers with electron-donating groups, such as vinyl ethers,

aliphatic olefins and styrenes,22,23 whereas the latter applies to most
unsaturated compounds bearing C=C bonds.24–38 Controlled/living
radical polymerization can precisely control the molecular weights and
the terminal groups of numerous monomers and has opened a new
field of precision polymer synthesis that has been applied to the
production of a wide variety of functional materials based on
controlled polymer structures. The existence of a huge range of vinyl
compounds in natural products motivated us to investigate their
addition polymerization by using controlled/living polymerization
techniques. Although most polymers produced through vinyl poly-
merization are non-biodegradable, monomers obtained or derived
from natural plants can be alternatives to traditional petrochemicals.
In addition, the specific structures originating from natural resources,
such as chirality, extremely fused rings and multifunctionality, result
in high-performance or functional bio-based polymeric materials.
This focused review describes our recent developments in the

controlled/living polymerization of naturally occurring or derived
vinyl monomers, which may lead to added-value bio-based polymers
with well-defined structures (Figure 1). To attain these polymers,
judicious initiating systems could be chosen by categorizing the
renewable plant-derived monomers according to the inherent struc-
ture of the monomers with respect to conventional petrochemical-
derived monomers. By developing a polymerization system for each
monomer, one may obtain novel bio-based polymers from less-
noticed naturally occurring or derived monomers as renewable
resources.

CONTROLLED/LIVING POLYMERIZATION

Living polymerization, defined as polymerization free from side
reactions such as termination and chain transfer, affords polymers
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with well-defined structures and architectures, that is, molecular
weight controlled by the initial ratio of the initiator to monomer,
narrow molecular weight distribution (MWD), well-defined end-
functionality and block copolymerization. Controlled/living
polymerizations have remarkably progressed in the field of polymer
synthesis, starting from the breakthrough discovery of living anionic
polymerization by Szwarc in the 1950s (Scheme 1a).19–21 In the 1980s,
living cationic polymerization was achieved by the combination of a
protonic acid as the initiator and a Lewis acid as the activator,
in which the former forms a dormant covalent linkage and the
latter reversibly and intermittently activates the dormant bond to
suppress the side reactions (Scheme 1b).22,23 The extension of
the lifetime of the growing carbocation by combination of the
initiator and activator is the key to living polymerization. Since the
mid-1990s, great progress has been made in controlled/living
radical polymerization, which enables the development of numerous
types of vinyl monomers, even with polar and functional groups
(Scheme 1c). Controlled/living radical polymerization can be
categorized into the following three main process: nitroxide-
mediated or stable free-radical polymerization,24–26 metal-catalyzed
or atom transfer radical polymerization27–34 and reversible addition–
fragmentation chain transfer polymerization (RAFT).35–38 The key to
controlled/living radical polymerization lies in the predominant
formation of the dormant species at the growing chain end, along
with a fast activation–deactivation process relative to the propagation
process.
In principle, systems for these controlled/living polymerizations

have been implemented depending on the monomer structure. We
therefore examined the polymerization of various naturally occurring
vinyl compounds by an appropriate choice of the active species as well
as the controlled/living system.

CATIONIC POLYMERIZATION OF NATURALLY OCCURRING

TERPENE FOR BIO-BASED CYCLOOLEFIN POLYMERS

Monoterpenes are naturally occurring hydrocarbons with the molecular
formula C10H16. They include a wide range of alicyclic polymerizable
olefins, such as limonene, terpinene, phellandrene and pinene, which
generally have non-polar, mono- or bicyclic and chiral structures.39,40

The cationic polymerizations of terpenes have been studied since the
1950s or earlier to produce low-molecular-weight polymers with
inefficient strength and low glass transition temperatures (Tg).

41–43

Thus, the commercial utilization of terpene oligomers was limited to
tackifiers in adhesives or polymer modifiers in molding compounds.
Cycloolefin polymers or copolymers (COPs or COCs) have attracted

attention, especially in the optoelectronic fields because of their low
dielectric constant, non-hygroscopicity, good transparency and low
density in addition to the high service temperature and mechanical
strength provided by their rigid backbone.44–47 To obtain COPs or
COCs, various approaches have been developed and even applied on an
industrial scale for the petroleum fraction monomers, such as the ring-
opening metathesis polymerization of polycyclic olefins or coordinated
polymerization of cyclic olefins.48–52 Among the several methods, the
vinyl polymerization of cyclic olefins is promising because it retains the
cyclic structures. We hypothesize that the polymerization of naturally
occurring terpenes to high-molecular-weight polymers and the sub-
sequent hydrogenation will lead to the development of bio-based COPs
with good properties for practical use.
β-Pinene is one of the main components of turpentine, which is an

abundant and cheap pine tree oil with a global production of over
several hundreds of thousands metric tons per year worldwide.53,54

The cationic polymerization of β-pinene was reported via an addition
and ring-opening mechanism through β-scission.41 In general, the
polymerization of β-pinene results in low-molecular-weight polymers.
The highest Tg value ever reported, by Keszler and Kennedy, was only

Cationic Polymerization

O

O

O

O
O

R

Terpenes Phenylpropanoids

(–)-β-Pinene

(+)-Limonene

Anethole

Isosafrole
Cinnamates

β-Myrcene

(–)−α-Phellandrene
OH

O

Isoeugenol

Itaconic Acid Derivatives  
(Fermented from Starch)   

N

O

O

RO
RO

O

OR

R

Olefins
Conjugated

Dienes Styrenes

(–)-α-Pinene

(–)−Camphene

Itaconates Itaconimides

O
R2

O

R1

(Meth)acrylates

O

O

Tulipalin A 

O

O

Levulinic Acid 

Crotonates

O
R2

O

Anionic Polymerization 
Radical (Co)polymerization 

R

R

α-Methylene Butyrolactones 
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65 °C.55 Higashimura and Deng et al.56-58 achieved the living cationic
polymerization of β-pinene in 1997 with TiCl2(OR)2 as the catalyst in
conjunction with the HCl adduct of an alkyl vinyl ether as the
initiator. Lu et al.59–62 successfully applied living polymerization to
prepare various block and graft COCs of β-pinene. The control over
the molecular weight with the Ti-based polymerization system,
however, was only for low molecular weights with Mno5000.
In 2006, we first reported that higher-molecular-weight poly(β-

pinene) could be produced by controlling the cationic polymerization,
followed by hydrogenation into the bio-based COP.63 The cationic
polymerization of β-pinene was examined by thoroughly tuning the
reaction conditions, such as the Lewis acid catalyst, monomer
concentration and solvent, which resulted in relatively high-
molecular-weight poly(β-pinene) (Mw45× 104). For further control
of the molecular weight, the living cationic polymerization of β-pinene
was investigated using EtAlCl2 as the Lewis acid and the hydrogen
chloride adduct of α-methylstyrene as the initiator (Scheme 2).64

Although the polymerization with the HCl/EtAlCl2 system was
instantaneous, upon the addition of Lewis bases such as diethyl ether
and ethyl acetate, the β-pinene polymerization was moderately
retarded to afford living polymers with relatively narrow MWDs
(Mw/Mn ~ 1.2) at − 78 °C in the solvent mixture of CH2Cl2/
cyclohexane. By using the HCl/Al-based system, a much higher
molecular weight was achieved, up to tens of thousands, with
Tg ~ 90 °C.
The high-molecular-weight poly(β-pinene) thus obtained was

hydrogenated into its saturated form (Figure 2). The hydrogenation

of unsaturated polymers generally leads to higher service temperatures
and greater thermal durability. The hydrogenation was then carried
out with p-toluenesulfonyl hydrazide in o-xylene or catalytically with
Pd (5 wt%) supported on Al2O3 or C in hexane under a 1.0-MPa
hydrogen atmosphere. The hydrogenation proceeded quantitatively
with the Pd catalyst (499.9%) to afford a saturated alicyclic
hydrocarbon polymer without significant chain scission. The poly-
merization and hydrogenation could be performed even on a relatively
large scale to produce several hundred grams of the polymer, which
can be processed through injection molding.64 The thermal properties
of the bio-based COP were evaluated by differencial scanning
calorimetry (DSC) and thermogravimetric analysis (TGA). The Tg
was further improved by hydrogenation from 90 to 130 °C, whereas
thermal degradation occurred above 400 °C (5% weight loss at
450 °C) for the saturated form. Because the Tg value is responsible
for the broad service temperature of such amorphous and transparent
polymers without reaching the melting point, the bio-based COP
polymer was confirmed to exhibit both a better thermal durability
and a higher service temperature than the unsaturated precursor,
rivaling the operating parameters of conventional common
polymeric materials. In addition to its excellent thermal properties,
the bio-based COP showed excellent optical properties as well. The
transparency after molding was almost the same as that of poly(methyl
methacrylate) (PMMA) (transmittance= 92%), and the birefringence
exhibited low values under uniaxial deformation. The bio-based COP
possesses excellent physical, thermal and optical properties, rivaling
those of conventional optical plastics, and would be applicable for
future industrialization. Therefore, we conclude that the abundant
terpenes are a promising sustainable resource for the production of
COPs not only for their availability but also for their reactivity by
cationic polymerization to form high-performance bio-based COPs.

RADICAL (CO)POLYMERIZATION OF TERPENE FOR A

SEQUENCE-REGULATED POLYMER

Most monoterpenes are unconjugated olefins and rarely undergo radical
homopolymerization. Some examples of radical copolymerization with
polar monomers have been reported, such as maleic anhydride and
acrylates, in which only a low conversion of terpenes was obtained
along with low incorporation into COCs. Attempts have been made to
copolymerize β-pinene with various vinyl monomers to produce COCs
via β-scission of the growing radical as in cationic polymerization.65–67

Lu and colleagues68–70 first reported the RAFT copolymerization of β-
pinene, which is a typical controlled/living radical polymerization using
a thioester compound as the reversible chain transfer agent. Various
homopolymerizable monomers, such as acrylonitrile, methylacrylate
and n-butyl acrylate, were used as comonomers for the combination
with β-pinene. As in the copolymerization of petrochemical α-olefins,
the copolymerization of β-pinene proceeded to afford COCs with low
β-pinene content with acrylonitrile or acrylates (~10%). We found that
the use of fluorinated alcohol solvents71 enhanced the copolymeriz-
ability, resulting in the moderate incorporation of β-pinene, up to
34mol%, in the COC with methylacrylate.72 The RAFT copolymeriza-
tion of β-pinene with N-phenylmaleimide exhibited typical features in a
controlled manner, with relatively high consumption of β-pinene at a
close to 1:2 consumption ratio of β-pinene and N-phenylmaleimide,
although severe retardation was observed in the copolymerization with
N-alkylmaleimides.73–75

Among the various terpenes, d-limonene (Lim) is one of the most
representative and abundant compounds, with an annual production
estimated to be over a hundred thousand tons per year.39,40,53

However, Lim has less copolymerizability than β-pinene and has
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rarely copolymerized with vinyl monomers such as acrylate, even in
fluoroalcohol,72 although there have been some reports on its free-
radical copolymerization.76–78 In 2010, we reported the quantitative
radical copolymerization of Lim with N-arylmaleimide or N-alkylma-
leimide derivatives, such as N-phenylmaleimide and N-cyclohexylma-
leimide, in fluoroalcohol to produce near-perfect 1:2 alternating
COCs.79 Lim could be replaced by other limonene-like terpenes such
as β-pinene (Figure 3).73,74,80,81 In PhC(CF3)2OH, the terpene and
maleimides were smoothly consumed at an almost 1:2 ratio to COCs
with moderate molecular weights irrespective of the feed ratio, and the
1:2 cross propagation was confirmed using a monomer reactivity
ratio with a penultimate model. Similar features were subsequently
reported for various combinations of vinyl monomers with
maleimides, although Lim gave the highest tendency for the 1:2
copolymerization.75,82,83 The selective propagation is assumed to be
owing to the interaction of the fluorinated alcohol solvent with
the carbonyl groups in the maleimide unit and the bulkiness of the
penultimate alicyclic structure of Lim. The COCs obtained from the
terpenes and maleimides exhibited a higher Tg (220–250 °C) and
chirality ([α]D~ 8 for d-limonene and~ 77 for β-pinene).75,79
When coupled with RAFT copolymerization using n-butyl cumyl

trithiocarbonate as the RAFT agent in PhC(CF3)2OH, not only control

over the molecular weight but also a well-defined initiating and
end-capping sequence was achieved, along with selective 1:2 alternat-
ing propagation.79 As also shown in Figure 3, the obtained COC
showed a simple matrix-assisted laser-desorption-ionization time-of-
flight (MALDI-TOF) mass spectrum with the highest series of peaks
separated by the total molecular weights of one terpene and two
maleimide units, which is totally different from the simulated
spectrum of statistical random COCs with multiple sequences.
This 1:2 sequence-regulated propagation is applicable to the specific

functionalization of the polymer main chain by using a hydroxyl-
functionalized monoterpene, such as perillyl alcohol and carveol, to
produce periodically functionalized bio-based copolymer possessing
one hydroxyl group in every three-monomer unit.80 On the other
hand, a hydroxyl-functionalized maleimide afforded two hydroxyl
groups in every three-monomer unit. The functionality was further
converted into periodic graft or comb-like polymer chains84,85 in every
three-monomer units in combination with the ruthenium-catalyzed
living radical polymerization of methyl methacrylate initiated from the
backbone COCs (Scheme 3).

NATURALLY OCCURRING CONJUGATED DIENES

Monoterpene and sesquiterpene both possess naturally occurring
conjugated 1,3-dienes (Scheme 4). Some acyclic conjugated dienes
such as β-myrcene and β-farnesene can be polymerized into living
polymers similar to isoprene or butadiene via anionic poly-
merization.86 Quirk et al.87,88 reported a poly(styrene-b-myrcene-b-
styrene) triblock copolymer, which could be used as a thermoplastic
elastomer. Hoye and Hillmyer89 reported a similar polymer combined
with bio-based styrene prepared by the dehydrogenation of limonene.
They also reported that the acyclic monoterpene of myrcene can be
converted into a cyclic diene, 3-methylenecyclopentene by ring-closing
metathesis.90 The cyclic diene monomer could be polymerized into a
COP by both anionic and cationic polymerization systems, in which
the living cationic polymerization is attained in a 1,4-regioselective
manner, although the polymers are semicrystalline even after
hydrogenation. A similar cyclic monoterpene with a conjugated diene
skeleton from plant-derived oil was also cationically polymerized into
a COP. We also examined the Lewis acid-catalyzed cationic polymer-
ization of α-phellandrene, which has a conjugated diene structure
along with an alicyclic skeleton. Although the molecular weight was
low (Mw~ 1× 104), the polymer from α-phellandrene exhibited a
relatively high Tg (4130 °C), even in the unsaturated form.63
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CATIONIC POLYMERIZATION OF NATURALLY OCCURRING

STYRENES

β-Substituted styrenes are also abundantly produced in natural plants
as phenylpropanoids, which contain a phenyl ring with a C3 side chain
derived from phenylalanine and/or tyrosine. The most abundant poly

(phenylpropanoid) in nature is lignin, which is the main constituent
of the cell walls of plants for antioxidant and sunburn protection,
and is biosynthesized via oxidative coupling rather than vinyl
polymerization.91 The naturally occurring cinnamic derivatives can
be converted into styrenic monomers via decarboxylation, which
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polymerizes easily in the same manner as petrochemical styrenes.92–94

β-Substituted styrene derivatives have rarely been used directly as
monomers to attain β-substituents because the steric effect inhibits the
propagation, although we can obtain various β-methylstyrenes from
nature, such as trans-anethole (4-methoxy derivative) from anise or
fennel oil and isoeugenol (4-hydroxy-3-methoxy derivative) or its
precursor of eugenol from clove or ylang-ylang oil, of which
thousands of tons are annually put to practical use in the flavor and
fragrance industry.18,95 Although there are reports of their conven-
tional cationic (co)polymerizations, they resulted in only ill-defined
polymers or low-molecular-weight oligomers in low yields.96–101

Among them, isoeugenol is one of the most promising monomers
as the model for the lignin components due to its coniferyl
[(4-hydroxy-3-methoxyphenyl)propenyl] structure, availability and
expected reactivity.
We investigated the controlled/living cationic polymerization

and copolymerization of isoeugenol, as well as trans-anethole

(Figure 4).102,103 For this, we used a unique system based on
borontrifluoride etherate (BF3OEt2) as the catalyst coupled with
the water adduct of the monomer as the initiator, which efficiently
induces the direct controlled/living cationic polymerization of
p-hydroxystyrene without any protection of its phenolic
group.104–106 This system requires water in an amount approximately
equal to the monomer concentration and a large excess over BF3OEt2,
in sharp contrast to the usual living cationic polymerizations in
rigorously dried reaction media.22,23 The copolymerization of iso-
eugenol or anethole with p-methoxystyrene proceeds in a controlled
fashion by the alcohol/BF3OEt2 system to afford copolymers with
controlled molecular weights and distributions (Mw/Mn= 1.2–1.4),
although the homopolymerization of isoeugenol did not proceed.102 In
addition, the copolymerization of isoeugenol proceeds in an almost
alternating fashion, in which isoeugenol is simultaneously consumed
with p-methoxystyrene at almost the same rate. The unprecedented
alternating cationic copolymerization exhibited a typical alternating
line in the composition curve, similar to that of the conventional
alternating radical copolymerization, which is also confirmed by
MALDI-TOF-MS (mass spectrometry) analysis. This alternating
propagation probably results from the highly bulky and electron-
rich IEu. Because phenol-based vinyl polymers have been applicable as
photoresists, epoxy-curing agents and antioxidants, isoeugenol-based
polymers might also be useful as an alternative to conventional
petrochemical polymers.

RADICAL COPOLYMERIZATION OF Β-METHYLSTYRENE AND

OTHER PHENYLPROPANOIDS

The 1,2-disubstituted phenylpropanoid has also been used as a
non-homopolymerizable monomer in copolymerizations with
petrochemical-derived monomers.107–109 Although radical polymer-
ization is highly tolerant of functional groups, the phenolic moiety, as
in isoeugenol, is fatal to radical polymerization due to its antioxidative
properties.
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We examined the radical copolymerization of β-methylstyrenes,
such as anethole, isosafrole, methyl isoeugenol and acetyl isoeugenol,
as electron-donating monomers in conjunction with electron-
withdrawing monomers, such as maleic anhydride, acrylonitrile

and alkyl acrylates (Scheme 5).110 The controlled/living radical
copolymerization of those monomers was examined with
2-cyanoprop-2-yl ethyl trithiocarbonate, which was used as a RAFT
agent in conjunction with α, α-azobisisobutyronitrile (AIBN) as the
radical source to afford copolymers with controlled molecular weight
and distribution (Mw/Mn ~ 1.2). Furthermore, the incorporation of β-
methylstyrenes into the COCs depends on the reaction solvents, with
fluorinated alcohol m-C6H4[C(CF3)2OH]2 giving the highest content
(~50mol%), which indicates the formation of 1:1 alternating
copolymers.71 The living nature and alternating pattern was confirmed
by MALDI-TOF-MS to determine the terminal and sequence struc-
tures of the copolymers. The alternating copolymers with relatively
narrow MWDs also exhibited a high Tg, up to ~ 130 °C due to their
rigid 1,2-substituted structure. Other phenylpropanoids, such as
cinnamic acid derivatives, were also copolymerized with petrochemical
monomers in a controlled fashion with RAFT agents or transition
metal catalysts.

NATURALLY DERIVED ACRYLIC MONOMERS

(Meth)acrylic compounds are also important monomers in the
polymer industry. α-Methylene butyrolactone is a cyclic acrylate
analog with an exo-methylene moiety adjacent to a carbonyl group,
which is a natural product found in tulips called as tulipalin A.3 This
monomer and its derivatives were homopolymerized via radical,
anionic, group transfer and coordination polymerizations in a similar
manner to methacrylates, although they were originally derived from
petrochemical products.111–114 The free-radical polymerization of
tulipalin A produced polymers with a higher service temperature
(Tg4190 °C) than those from methyl methacrylate (~110 °C) due to
the rigid lactone ring, which also provides the polymer with a good
durability and a good refractive index. The controlled radical
polymerization of tulipalin A with Cu(I)-catalyzed atom transfer
radical polymerization was first reported by Matyjaszewski and
colleagues115,116 to produce polymers with relatively narrow MWDs
(Mw/Mno1.2). The block copolymerization with butyl acrylates could
produce a thermoplastic elastomer, with the poly(tulipalin A) segment
acting as the hard binding phase. From the biomass-derived levulinic
acid, the similar α-methylene-γ-methyl-γ-butyrolactone can be
prepared,117 which was also homopolymerized via using the RAFT
system in a heterogeneous miniemulsion system to give high Tg
polymers.118 Chen and colleagues119 reported a fast and living group
transfer polymerization system for these methylene butyrolactones to
produce relatively high-molecular-weight polymers with very narrow
MWDs (Mn4500 K, Mw/Mn= 1.01). They also reported a living
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coordination polymerization system with early transition metal
catalysts.114

Itaconic acid and its derivatives are another candidate for bio-based
acrylic monomers, which are produced via the fermentation of
carbohydrates such as lactic acid or the pyrolysis of natural citric
acid. The polymerization of itaconic acid and its diester derivatives has
been reported since the 1870s via radical and anionic polymerization
to produce relatively high-molecular-weight polymers, and they have
been widely used for vinyl copolymerization even in industry.120–126

Furthermore, itaconamide and itacoimide were also polymerized via
anionic and radical intermediates, with the latter exhibiting excellent
thermal properties due to their cyclic structures (Tg4220 °C).127,128

The RAFT polymerization of alkyl itaconates, an itaconic acid
derivative, gave polymers with controlled molecular weights, although
the MWDs broadened,129,130 and Cu(I)-catalyzed atom transfer radical
polymerization was used for the block copolymerization of N-aryl
itaconimide with methyl methacrylate (MMA).131 We also examined
the controlled/living radical polymerization of itaconic acid derivatives
to produce bio-based acrylic thermoplastic elastomer (Figure 5).132

The combination of itaconic acid imides, such as N-phenylitaconimide
and N-(p-tolyl)itaconimide, and itaconic acid diesters, such as di-n-
butyl itaconate and bis(2-ethylhexyl) itaconate, succeeded in achieving
the sequential block RAFT copolymerization. The RAFT polymeriza-
tion of both itaconic derivatives proceeded to give polymers with
controlled molecular weights with relatively narrow MWDs using both
mono- and di-functional RAFT agents. The triblock copolymers were
then prepared by the sequential block copolymerization of itaconate
and itaconimide, in that order, from di-functional RAFT, which
produce chains with inner soft poly(itaconate) and outer hard
poly(itaconimide) segments. The obtained triblock copolymer exhib-
ited the characteristic properties of thermoplastic elastomers along
with the microphase-separated morphology observed by AFM.

CONCLUSIONS

New bio-based polymers can be synthesized from naturally occurring
or derived vinyl monomers by controlled/living polymerization, as has
been developed for conventional petrochemicals. To create environ-
mentally benign materials that meet social needs and to establish a
new industry, they must satisfy the market needs without losing any
performance as materials or costing more. The combination of
controlled/living polymerization and renewable vinyl monomers with
characteristic skeletons would contribute to further progress in bio-
based polymeric materials with high performance and/or functions
that will enable their commercialization in the near future.
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