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Analysis of the end-segment distribution of a polymer
at the interface of filler-filled material

Hiroshi Morita1, Masatoshi Toda1 and Takashi Honda2

The distribution of ends of polymers in a filler-filled material is simulated using self-consistent field method. In our simulation

results, segregation of the ends of a polymer can be found at the interface of filler, although the depletion region of the ends

also exists within a distance of gyration radius (Rg) from the filler. The sizes and shapes of the filler are affected by the

segregation of the ends of a polymer. In the case of small or spherical fillers, the density of the ends of the polymer near the

interface of filler increases. These results can be explained by the entropic effect of polymer chain ends. The segregation of ends

contributes to the stabilization at the interface of the filler, thus adding the entropic part of the free energy.
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INTRODUCTION

Filler-filled materials are now considered to be fundamental materials,
and many researchers have studied their processing and functions. The
physical properties and the functions of composite materials are
closely related to those of the dispersed structures of fillers, and the
dispersion of the filler must be controlled in the fabrication process.1,2

For this reason, many researchers have studied the techniques for the
dispersion of fillers. The research areas addressing those techniques
are extensive. For example, from the point of view of a material,
to make the interaction between polymer and filler an attractive one,
the surface of the filler or the polymer are chemically modified in
some cases.3

A typical example of a filler-dispersed material is the rubber
material used for tires. In highly functional rubber for tire, the
end-functional (or modified) polymer is used to control the dispersion
of silica or carbon black fillers in rubbers.4 In these polymers, the end
groups of polymer are modified to the attractively interacted sub-
stituent group to filler, and it is believed that the ends of the polymers
will be trapped at the interface of fillers. It is also known that this
modification of polymer ends affects the loss energy, and this situation
contributes to the fuel efficiency of automobiles. Therefore, the design
and the control of the ends of polymers are very important for the
development of composite materials.
Analysis of the distribution of end groups is important within

regions of confined geometry, and this distribution is commonly
studied using simulations. One of the more typical methods for
studying the ends of polymer chains is the use of the self-consistent
field (SCF) method.5–7 The details of the SCF method will be
described later. In short, the distribution of each segment in a polymer
chain can be estimated, and the density profile of the ends in a system

can also be obtained. Furthermore, using coarse-grained molecular
dynamics simulation8 or molecular Monte Carlo (MC) simulation,9

the distribution of the end particles can also be simulated. In the case
of an interface between a polymer and a solid plate, the segregation of
polymer chain ends can be estimated using MC10–12 and MD13

simulations. In the case of the surface of a polymer thin film, by
using SCF and coarse-grained molecular dynamics simulations, the
end-segment segregation and its dynamics at the surface can be
simulated.14 The results of this analysis have already been obtained by
some experiments.
The statistics and the dynamics of each part in a polymer chain are

not uniform. From the point of view of a single polymer chain, the
generation and annihilation of entanglement occur owing to the
fluctuating motion of the polymer ends.15 Because the end parts of a
polymer can adopt many conformations, those parts become the high
entropy parts of polymer chains. At the surface of a polymer thin film,
the segregation of the end parts of a polymer occurs owing to
stabilization by the entropic effect.14 Similarly, the end parts are also
segregated at the interface between a polymer and a substrate.16

Therefore, inhomogeneous distribution of the polymer ends is
expected in a filler-filled polymer system.
In this study, the end-segment distribution of a polymer in a

filler-filled material is studied using an SCF simulation. In Model and
Simulation, details of the modeling of the filler-filled system on the
basis of coarse-graining techniques with the SCF theory are described.
In Results and Discussions, the simulation results are discussed. The
end-segment distribution near both fiber-type and spherical fillers is
calculated, and the dependences of the interactions between end
segments and a filler (e.g., molecular weight of the polymer and
particle size of the filler) are examined.
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MODEL AND SIMULATION

Self-consistent field method
Equations for the SCF method were solved using the ordinal
technique.5–7

In this study, to minimize the free energy of the system, the segment
density distributions ϕ(r,s) are adjusted with changing potential field
and path integrals, where r is the mesh position and s is the index of
the segment along a polymer chain. The statistical weight of the chain
conformation in a potential field V(r), the path integral Q±(r,s), is
calculated by the following equation

∂
∂s
Qþ r; sð Þ ¼ b2

6
∇ 2 þ V rð Þ

� �
Qþ r; sð Þ; from s ¼ 0 to s ¼ Nð Þ

ð1aÞ

∂
∂s
Q� r; sð Þ ¼ b2

6
∇ 2 þ V rð Þ

� �
Q� r; sð Þ; from s ¼ N to s ¼ 0ð Þ

ð1bÞ
with the initial condition

Qþ r; 0ð Þ ¼ 1;Q� r; 0ð Þ ¼ 1; ð2aÞ
where b is the Kuhn segment size, and N is the length of the polymer
chain. The signs + and − specify the directions of the calculation where
the + sign indicates the forward direction (Equation (1a)), and the −

sign indicates the backward (Equation (1b)) direction along the chain.

At a wall boundary, the following initial condition is used,

Qþ r0; 0ð Þ ¼ 1=y r0ð Þ;Q� r; 0ð Þ ¼ 1=y r0ð Þ; ð2bÞ
where y(r′) is the Jacobian for the filler at the mesh point. To calculate
y(r′), one mesh point is divided into sub-mesh points, and the
number of interfacial points of the filler is counted. The fraction of
interfacial points within the
sub-mesh space is applied to y(r′).
In Equations 1a and 1b, the segment density ϕ(r,s) is obtained using

the path integral as

f r; sð Þ ¼ n

R
dsQþ r; sð ÞQ� r;N � sð ÞR

dr
R
dsQþ r; sð ÞQ� r;N � sð Þ; ð3Þ

where n is the total number of chains in the system. Equations (1) and
(3) are mutually coupled through the following definition of V(r),

V rð Þ ¼ wf rð Þ þ g rð Þ; ð4Þ
where χ is the Flory–Huggins interaction parameter, and γ(r) is the
Lagrange multiplier for the local incompressible condition,

X
s

f r; sð Þ ¼ constant: ð5Þ

When Equations (1a)–(5) are solved self consistently, the set of the
SCF V, the density ϕ, and the path integral Q can be obtained, and the
segment densities of ϕ(r,s) are also calculated. Convergence is checked
using the criteria for the SCF V, the density ϕ, and the total free
energy. The threshold value is 1.0 × 10− 5. All of the SCF simulations
were conducted using SUSHI simulator (version 10.0, 2015.03.10) in
OCTA system.17

Model of the filler
In the simulations of filler-filled material, the filler must be modeled
on the basis of the coarse-grained technique of SCF method. In the
SCF simulation, because the polymer is described as the density profile
on each mesh, the filler is modeled as filler-shaped mesh points where
all polymers are excluded. The density of the polymer at the mesh
point inside the filler becomes zero. Furthermore, the interfacial
interaction must be included to represent the interaction between the
polymer and the filler under the condition that the surface of the filler
is not always on the mesh points.
In the SCF simulation using the SUSHI simulator of OCTA, the

function of ‘obstacle’ can be used to represent the filler. Using the
SUSHI simulator, to include a short-range interaction between the
polymer and the filler, the surface χ parameter of the filler (χFP) is
introduced. At each mesh point near r from the filler interface, SCF V
(r) is calculated using the following equation instead of Equation (4),

V rð Þ ¼ wf rð Þ þ wFPf r0ð Þy r0ð Þ þ g rð Þ; ð6Þ
where r′ is the mesh position at the nearest neighbor from the filler
interface, and y(r′) is the Jacobian for the filler at the mesh point
written in
Equation (2b). In this study, the width of the sub-mesh points is set
to b/100.

Simulation conditions
The SCF simulations were performed using a three-dimensional mesh
system with a three-dimensional shape for the filler. In the case of a
fiber-type filler, the radius R of a fiber is 4.0b or 8.0b, and the length of
a fiber is 20b. The filler is placed at the center of the simulation box,
and the axial direction of the filler is set to the z direction. The
distances between the surface of a fiber and the boundary in the x and

Figure 1 Model structures of the fillers. (a, b) The models for fiber-type and
spherical fillers, respectively.
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y directions are set to 6.0b and in the z direction is set to 0.0.
Therefore, in the cases of the fibers of R= 4.0b and R= 8.0b, the
system sizes become 20× 20× 20 and 28× 28× 20, respectively.
Because all mesh widths are set to 0.5 on the regular mesh system,
the total mesh sizes for R= 4.0b and R= 8.0b are 40× 40× 40 and
56× 56× 40, respectively. Periodic boundary conditions are used in all
directions.
In the simulated system, only the polymer and a single filler are

included. The structures for the cases of fiber type and spherical fillers
are shown in Figures 1a and b, respectively. The χ parameter between
the polymers is set to 0.0. Polymers with lengths of N= 100, 200 and
500 were studied. In the SCF simulation, N is the same as the total
number of segments that have a size of b, and ϕ(r,0) is defined as the
end-segment density at mesh position r. Where polymers interacted
with fillers, χFP was set to 0.0. Thus, interactions between polymers
and between the polymer and filler were the same. Furthermore, to
calculate the end-functional polymer, χFP for the end χFPE was
introduced, and χFPE was set to 0.0, − 0.05, − 0.1.

RESULTS AND DISCUSSIONS

Figure 2 shows the density profile of the polymer along the axis across
the center of a fiber. This simulation result is obtained using
simulation conditions of χ= 0.0, χFP= 0.0 and N= 100. In Figure 2,
the density profiles of both one-sided end and middle 98 segments are
plotted. Because periodic boundary conditions were applied in this
simulation, the position of x= 20.0 is equivalent to the position
x= 0.0. At x= 0.0 and 20.0, the end-segment density becomes ~ 0.01.
This value is the same as the bulk value for end segments. At x= 0.0
and 20.0, bulk structure unperturbed by filler is represented, even
though the system size of 20.0 is not large. Therefore, this simulation
will produce a qualitatively correct result.
In Figure 2, at the central part along the horizontal axis, the density

of the polymer is zero, and this region is occupied by the filler. At both
the left and right sides of the filler, the density of the end segments
increases. This result indicates that end-segment segregation occurs at
the interface of the filler. On the other hand, around x= 5.0 and 15.0,
a depletion of the end segments can be found. Therefore, it can be

found that many end segments of polymers within the distance of Rg
from filler are shifted to the fillers.
This result can be explained with consideration for the free energy.

Free energy comprises distinct entropy and enthalpy parts, and these
two parts are always balanced to stabilize the system. At the interface
between a solid flat wall and a polymer, if the end parts with a high
entropic energy are segregated at the interface, as shown in Figure 3
(1), this interface becomes stabilized by the entropic effect of the
polymer. On the other hand, if a polymer has an attractive interaction
with a solid wall as shown in Figure 3 (2), the polymer adopts a tail-
loop-train conformation,7,18 and this interface becomes stabilized by
the enthalpy effect of attractive interactions between the polymer
segment and the wall. In the SCF simulation presented here, an
attractive interaction owing to the χ parameter between the polymer
and the filler is not imposed. Therefore, the origin of the segregation
of the end parts can be explained by the entropic effect. The SCF
simulation results are mapped to the cartoon shown in Figure 3 (3), in
which segregation and depletion of the end parts near the filler are
presented.

Figure 2 Density profiles of middle and end segments along the x axis.

Figure 3 Typical chain conformations driven by (1) enthalpy and (2) entropy
energies, and (3) a cartoon representing the conformation of a polymer chain
near a filler.

Figure 4 End segment distributions with different χFPE parameters (χFPE is
the χ parameter between the end of the polymer and the filler).
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Next, simulations for the polymer ends were performed, and the
effect of attractive interaction between end segments and the filler was
examined. Because the interaction between the polymer and the filler
is described by χFP, χFP for the end segment χFPE was introduced. As
the χ parameter becomes smaller, the targeted materials can be mixed,
and they interact in an attractive manner. Figure 4 shows the end-
segment distribution of the filler using χFPE= 0.0, − 0.05, and − 0.1. As
χFPE becomes smaller, the density of the end segment at the interface
of the filler increases, and the depletion of density is enhanced. From
these simulation results, it is evident that the functional ends of the
polymer effectively segregate at the interface of filler.
It is important to note the effect of molecular weight on the

segregation of polymer end segments at the interface of filler. If the
molecular weight increases, the fraction of end segments decreases and
the total number of end segments per unit also decreases. This affects
the balance of free energy between entropy and enthalpy, and the
amount of segregation of end segments at the interface is changed.
Figure 5 shows the end-segment distribution at the interface for
various polymer lengths. Here the lengths of polymers of 100, 200 and
500 are calculated. As described before, if the length of a polymer is
changed, the fraction of the end segments is also changed. For this
reason, the density of end segments shown in the vertical axis of
Figure 5 is normalized by the bulk density of end segments. On the
basis of the simulation results, as the length of the polymer increases,
the end-segment density at the interface increases. Note that the
end-segment density at x= 0.0 and 20.0 is not equal to 1.0, especially

in the case of N= 500. This indicates that at x= 0.0 and 20.0, the
end-segment density does not converge to the bulk value. This result
can be derived from the effect of the system size. If the length of a
polymer increases, then the Rg of that polymer also increases. In this
calculation, the distance from the filler interface to the boundary,
which is fixed at 6.0, is not sufficient to converge the end-segment
density at the boundary for the case of N= 500. Therefore, the result
of N= 500 must be taken into the boundary effect carefully.
The SCF simulation of a spherical filler system was also performed.

In the case of a fiber-type filler, the local shape in the radial direction is
curved, but the shape in the axial direction is flat. In contrast, the
surface of a spherical filler has a curvature everywhere. This is the
primary difference between spherical and fiber-type fillers. Figure 6
shows the end-segment densities in the systems of both spherical and
fiber-type fillers. In the case of a spherical filler, the density profile
along the x axis across the center of a sphere is plotted. At the interface
of filler, the end-segment densities of spherical and fiber-type fillers are
approximately 0.015 and 0.04, respectively, and the density of a
spherical filler is ~ 2.5 times larger than that of a fiber-type filler.
An explanation for these results is closely related to the curvature of

Figure 5 End segment distributions with different molecular lengths of the
polymer.

Figure 6 Comparison between end-segment distributions for spherical and
fiber-type fillers.

Figure 7 Comparison between end-segment distributions for the radius of
filler values of R=4.0 and R=8.0.

Figure 8 A cartoon to aid in explaining the effects of the curvature of fillers
on the conformation of interacting polymer chains. (1), (2), and (3) show the
polymer chain attached to flat, curved and more curved surfaces,
respectively.
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the filler. This is discussed later, combined with the results for
changing the radius of the filler shown in Figure 7.
If the radius R of a fiber is changed, then the curvature at the

interface of the filler changes along 1/R, and the conformation of the
polymer chain is impacted. To examine the effect of the radius of the
fiber, simulations using radii of R= 4.0 and 8.0 were performed.
Figure 7 shows the results of the end-segment distribution for R= 4.0
and 8.0. The end-segment density at the interface in the case of R= 4.0
is ~ 0.15, and that in the case of R= 8.0 is ~ 0.135. The end-segment
density of the thin fiber is ~ 1.1 times larger than that of the
thick fiber.
The effects due to the radius of the fiber and the structure of the

filler are explained by the curvature of the interface of filler. At the
interface, the polymers are attached to the filler. Although it is well
known that a single polymer chain adopts a string-like conformation,
its conformation is deformed at the interface of fillers. In addition, the
position of the end segments are adjusted to stabilize the free energy.
As shown in Figure 3, to stabilize the free energy, the segregation of
the end segment at the interface of filler contributes to minimizing the
free energy at the interface. It is expected that this stabilization is
changed in the case of a curved interface of filler. In Figure 8, cartoons
illustrating flat and curved interfaces are shown. In the case of the flat
interface shown in Figure 8 (1), the stabilization is maintained by both
the enthalpy effect derived from the interaction of the middle region
of the polymer and the entropy effect by the segregation of end
segments at the interface. In contrast, for the curved interface shown
in Figure 8 (2), the contact area is limited, and it is brought out of the
empty space shown by the shaded area before the deformation of the
polymer. If the string-like spherical shape of a polymer chain
approaches the curved filler, then it is difficult to fill the shaded area
with the spherical-shaped polymer. To fill that area, the polymer chain
must be deformed. Therefore, the end segments are gathered in the
interfacial region, and the interface is stabilized mainly by the
entropy effect.
Along this discussion, the difference of filler type and that of radius

of fillers can be explained. In the case of spherical and fiber-type fillers,
a spherical filler has a large curvature, and all the surface area of filler
has the same curvature. On the other hand, in the case of fiber-type
filler, the interfacial structure along the axial direction is flat, but the
interface along the radial direction has a curvature. Therefore, the
effect due to curvature becomes smaller for the fiber-type filler, and
the segregation of end segments becomes less than that of a spherical
filler. As the radius of a filler decreases, the curvature at the surface of
the filler increases, and the shaded region shown in Figure 8 (3)
becomes larger. To fill this region, more end segments will be moved
to this region. Note that a radius of filler smaller than the Rg of the
polymer is not discussed here. If the radius becomes much smaller
than Rg, then the filler will migrate into the space between the
polymer chains, disrupting the stabilization mechanism and changing
the results.

CONCLUSIONS

In this paper, the end-segment distribution of a polymer near a filler is
discussed with results from SCF simulations. End segments can be
segregated around a filler, and those results can be found using SCF
simulations under conditions in which the interaction between the

filler and the polymer is the same as that between polymers. The
functionalized end of a polymer affects the segregation of the end at
the interface of filler. The segregation of end segments can be
explained using the entropy effect. The trends of the segregation of
end segments with changes to the radius of the filler and the shape of
the filler are explained by the entropy effect due to the curvature of
the filler. Because this simulation method is the general simulation
method used to study the distribution of polymers in a filler-filled
system, this method can also be applied to other filler-filled systems,
such as plate-type fillers, rectangular hexahedrons and so on. Further
SCF simulations will derive interesting results for the distribution of
end segments in a filler-filled system. Furthermore, this method can be
used to study the density profile of a polymer in an aggregated
filler system. In the near future, we will study these systems using
this simulation technique, and interesting results concerning the
inhomogeneous distribution of polymers in these filler-filled systems
will be discussed.
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