Self-assembled Materials

Self-assembled artificial viral capsid decorated with gold nanoparticles

Article metrics

Subjects

Abstract

The decoration of a peptide-based artificial viral capsid with gold nanoparticles (AuNPs) is reported. β-Annulus GGGCG-bearing peptide as a binding site of AuNPs self-assembled into nanocapsules with a diameter of 50 nm. The addition of AuNPs to the peptide nanocapsules afforded relatively uncontrolled assemblies of AuNPs. In contrast, the self-assembly of AuNP–peptide conjugates afforded, after dialysis, controlled assemblies of AuNPs with sizes of 30–60 nm. ζ-Potential measurements revealed that the surface of the artificial viral capsid self-assembled from β-annulus peptide was coated with AuNPs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. 1

    Louis, C . & Pluchery, O. Gold Nanoparticles for Physics, Chemistry and Biology, (Imperial College Press: London, 2012)

  2. 2

    Daniel, M.-C . & Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104, 293–346 (2004)

  3. 3

    Sperling, R. A., Gil, P. R., Zhang, F., Zanella, M . & Parak, W. J. Biological applications of gold nanoparticles. Chem. Soc. Rev. 37, 1896–1908 (2008).

  4. 4

    Saha, K., Agasti, S. S., Kim, C., Li, X . & Rotello, V. M. Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112, 2739–2779 (2012).

  5. 5

    Gothelf, K. V . & LaBean, T. H. DNA-programmed assembly of nanostructures. Org. Biomol. Chem. 3, 4023–4037 (2005).

  6. 6

    Kuzuya, A . & Ohya, Y. DNA nanostructures as scaffolds for metal nanoparticles. Polymer J. 44, 452–460 (2012).

  7. 7

    Mirkin, C. A., Letsinger, R. L., Mucic, R. C . & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

  8. 8

    Alivisatos, A. P., Johnsson, K. P., Peng, X., Wilson, T. E., Loweth, C. J., Bruchez, M. P. Jr . & Schultz, P. G. Organization of 'nanocrystal molecules' using DNA. Nature 382, 609–611 (1996).

  9. 9

    Loweth, C. J., Caldwell, W. B., Peng, X., Alivisatos, A. P . & Schultz, P. G. DNA-based assembly of gold nanocrystals. Angew. Chem. Int. Ed. 38, 1808–1812 (1999).

  10. 10

    Le, J. D., Pinto, Y., Seeman, N. C., Musier-Forsyth, K., Taton, T. A . & Kiehl, R. A. DNA-templated self-Assembly of metallic nanocomponent arrays on a surface. Nano Lett. 4, 2343–2347 (2004).

  11. 11

    Zheng, J., Constantinou, P. E., Micheel, C., Alivisatos, A. P., Kiehl, R. A . & Seeman, N. C. Two-dimensional nanoparticle arrays show the organizational power of robust DNA motifs. Nano Lett. 6, 1502–1504 (2006).

  12. 12

    Mastroianni, A. J., Claridge, S. A . & Alivisatos, A. P. Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. J. Am. Chem. Soc. 131, 8455–8459 (2009).

  13. 13

    Tamaki, T., Miyoshi, N., Uehara, T . & Ohya, Y. Isolation of gold nanoparticle/oligo-DNA conjugates by the number of oligo-DNAs attached and their formation of self-assembly. Chem. Lett. 39, 1084–1085 (2010).

  14. 14

    Douglas, T . & Young, M. Viruses: making friends with old foes. Science 312, 873–875 (2006).

  15. 15

    Steinmetz, N. F . & Evans, D. J. Utilisation of plant viruses in bionanotechnology. Org. Biomol. Chem. 5, 2891–2902 (2007).

  16. 16

    Bronstein, L. M. Virus-based nanoparticles with inorganic cargo: what does the future hold? Small 7, 1609–1618 (2011).

  17. 17

    Witus, L. S . & Francis, M. B. Using synthetically modified proteins to make new materials. Acc. Chem. Res. 44, 774–783 (2011).

  18. 18

    Wang, Q., Lin, T., Tang, L., Johnson, J. E . & Finn, M. G. Icosahedral virus particles as addressable nanoscale building blocks. Angew. Chem. Int. Ed. 41, 459–462 (2002).

  19. 19

    Blum, A. S., Soto, C. M., Wilson, C. D., Cole, J. D., Kim, M., Gnade, B., Chatterji, A., Ochoa, W. F., Lin, T. W., Johnson, J. E . & Ratna, B. R. Cowpea mosaic virus as a scaffold for 3-D patterning of gold nanoparticles. Nano Lett. 4, 867–870 (2004).

  20. 20

    Blum, A. S., Soto, C. M., Wilson, C. D., Brower, T. L., Pollack, S. K., Schull, T. L., Chatterji, A., Lin, T., Johnson, J. E., Amsinck, C., Franzon, P., Shashidhar, R . & Ratna, B. R. An engineered virus as a scaffold for three-dimensional self-assembly on the nanoscale. Small 1, 702–706 (2005).

  21. 21

    Soto, C. M., Blum, A. S., Wilson, C. D., Lazorcik, J., Kim, M., Gnade, B . & Ratna, B. R. Separation and recovery of intact gold-virus complex by agarose electrophoresis and electroelution: application to the purification of cowpea mosaic virus and colloidal gold complex. Electrophoresis 25, 2901–2906 (2004).

  22. 22

    Niikura, K., Nagakawa, K., Ohtake, N., Suzuki, T., Matsuo, Y., Sawa, H . & Ijiro, K. Gold nanoparticle arrangement on viral particles through carbohydrate recognition: A non-cross-linking approach to optical virus detection. Bioconjugate Chem. 20, 1848–1852 (2009).

  23. 23

    Nagakawa, K., Niikura, K., Suzuki, T., Matsuo, Y., Igarashi, Y., Sawa, H . & Ijiro, K. Virus capsid coating of gold nanoparticles via cysteine-Au interactions and their effective cellular uptakes. Chem. Lett. 41, 113–115 (2012).

  24. 24

    Matsuurua, K. Rational design of self-assembled proteins and peptides for nano- and micro-sized architectures. RSC Adv. 4, 2942–2953 (2014).

  25. 25

    Ramakers, B. E. I., van Hest, J. C. M . & Lowik, D. Molecular tools for the construction of peptide-based materials. Chem. Soc. Rev. 43, 2743–2756 (2014).

  26. 26

    Boyle, A. L., Bromley, E. H. C., Bartlett, G. J., Sessions, R. B., Sharp, T. H., Williams, C. L., Curmi, P. M. G., Forde, N. R., Linke, H . & Woolfson, D. N. Squaring the circle in peptide assembly: From fibers to discrete nanostructures by de novo design. J. Am. Chem. Soc. 134, 15457–15467 (2012).

  27. 27

    Fletcher, J. M., Harniman, R. L., Barnes, Fr. R. H., Boyle, A. L., Collins, A., Mantell, J., Sharp, T. H., Antognozzi, M., Booth, P. J., Linden, N., Miles, M. J., Sessions, R. B., Verkade, P . & Woolfson, D. N. Self-assembling cages from coiled-coil peptide modules. Science 340, 595–599 (2013).

  28. 28

    Gradišar, H., Božič, S., Doles, T., Vengust, D., Hafner-Bratkovič, I., Mertelj, A., Webb, B., Šali, A., Klavžar, S . & Jerala, R. Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments. Nat. Chem. Biol. 9, 362–366 (2013).

  29. 29

    Ryadnov, M. G., Ceyhan, B., Niemeyer, C. M . & Woolfson, D. N. “Belt and braces”: a peptide-based linker system of de novo design. J. Am. Chem. Soc. 125, 9388–9394 (2003).

  30. 30

    Sawada, T., Takahashi, T . & Mihara, H. Affinity-based screening of peptides recognizing assembly states of self-assembling peptide nanomaterials. J. Am. Chem. Soc. 131, 14434–14441 (2009).

  31. 31

    Nonoyama, T., Tanaka, M., Inai, Y., Higuchi, M . & Kinoshita, T. Ordered nanopattern arrangement of gold nanoparticles on β-sheet peptide templates through nucleobase pairing. ACS Nano 5, 6174–6183 (2011).

  32. 32

    Matsuura, K., Watanabe, K., Sakurai, K., Matsuzaki, T . & Kimizuka, N. Self-assembled synthetic viral capsids from a 24-mer viral peptide fragment. Angew. Chem. Int. Ed. 49, 9662–9665 (2010).

  33. 33

    Matsuura, K. Construction of spherical virus-inspired peptide nanoassemblies. Polymer J. 44, 469–474 (2012).

  34. 34

    Matsuura, K., Watanabe, K., Matsushita, Y . & Kimizuka, N. Guest-binding behavior of peptide nanocapsules self-assembled from viral peptide fragments. Polymer J. 45, 529–534 (2013).

  35. 35

    Fujita, S . & Matsuura, K. Inclusion of zinc oxide nanoparticles into virus-like peptide nanocapsules self-assembled from viral β-annulus peptide. Nanomaterials 4, 778–791 (2014).

  36. 36

    Wan, X., Zheng, L., Gao, P., Yang, X., Li, C . & Li, Y. F. & Huang, C. Z. Real-time light scattering tracking of gold nanoparticles-bioconjugated respiratory syncytial virus infecting HEp-2 cells. Sci. Rep. 4, 4529 (2014).

Download references

Acknowledgements

This research was partially supported by a Grant-in-Aid for Scientific Research on the Innovative Areas of ‘Fusion Materials’ (No. 2206) from the Ministry of Education, Science, Sports and Culture of Japan (MEXT) and by the Asahi Glass Foundation.

Author information

Correspondence to Kazunori Matsuura.

Additional information

Supplementary Information accompanies the paper on Polymer Journal website

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matsuura, K., Ueno, G. & Fujita, S. Self-assembled artificial viral capsid decorated with gold nanoparticles. Polym J 47, 146–151 (2015) doi:10.1038/pj.2014.99

Download citation

Further reading