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Phenolic film engineering for template-mediated
microcapsule preparation

Hirotaka Ejima1,2, Joseph J Richardson2 and Frank Caruso2

Microcapsules are of scientific and technological interest because of their ability to encapsulate cargo inside their hollow

interiors, thereby separating and protecting the cargo from the external environment. Both template-free and -mediated

strategies have been exploited to prepare microcapsules. For the latter strategy, coating sacrificial particulate templates with

robust films is a key step towards obtaining mechanically-stable hollow architectures following template removal. In this review,

we focus on phenolic-based film engineering techniques utilizing dopamine (DA) and tannic acid (TA), which have recently

emerged as new platforms for template-mediated capsule preparation. The first part of the review describes the self-

polymerization of DA, which preferentially occurs at interfaces. The second part of the review describes TA capsules. Particular

emphasis is placed on the coordination-triggered rapid deposition of TA on different substrates. These examples highlight the

versatility and simplicity of phenolic film engineering strategies for microcapsule preparation. Phenolics are abundant bio-based

materials, and thus form an attractive field of research for the future development of microcapsules.
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INTRODUCTION

Polymer microcapsules have drawn considerable interest for various
applications, especially drug delivery, as they can encapsulate cargo
(for example, therapeutics), and release them in a controllable
manner. There exist two major strategies for preparing polymer
microcapsules, namely template-free assembly and template-mediated
assembly.1 Representative template-free methods are the self-assembly
of polymersomes2 and polyion complex vesicles3 from block
copolymers. In the template-mediated assembly method, which is
the focus of this review, polymeric shells can be assembled via the
sequential deposition of complementary polymers (layer-by-layer,
LbL4–11) around sacrificial template particles.12 Hollow polymer
microcapsules can be obtained by selectively removing the template
cores without disrupting the LbL-assembled polymeric shells. Despite
the significant progresses in the field of LbL-engineered microcapsules,
the manufacturing process inherently involves multiple alternating
deposition steps of complementary polymers, rendering it time-
consuming and labor intensive. To circumvent this limitation, we
recently developed electrophoretic13 and immersive14 LbL techniques
for simplifying and automating the capsule preparation processes.
Recently, the one-step deposition of phenolic-based thin films has
emerged as a rapid, simple and cheap alternative technology for
template-mediated microcapsule preparation. This technique has
opened up practical processing methods that researchers can readily
access and explore to prepare a diverse range of functional materials.

Phenolic compounds are naturally occurring materials widely
found in living organisms.15 The significant interest in phenolic
compounds in recent years is attributed to their broad spectrum
of chemical and biological properties. For instance, plant-
derived phenolic compounds in tea and wine are major flavor
determinants and are believed to have a number of pharmaco-
logical benefits on human health.16 Animals also take advantage
of phenolics, as phenolic (L-3,4-dihydroxyphenylalanine)-containing
proteins have a crucial role in the adhesive functions of mussel
feet.17 From the engineering point of view, the stickiness, bio-based
nature and metal-coordination capabilities, as well as anti-
oxidant, anticarcinogenic and antibacterial properties of phenolic
compounds, are attractive for developing biofunctional ‘green’
materials.18

In 2007, Lee et al.19 reported the formation of mussel-inspired
multifunctional coatings on a wide range of substrates. The
deposition of polydopamine (PDA) films takes place in one step on
virtually any surface by simply dipping the object of interest into an
aqueous solution of dopamine (DA). Although the molecular-level
mechanism is still being elucidated,20 recent research suggests that
non-covalent self-assembly and covalent polymerization both
contribute to the PDA film formation.21 Recently, we reported the
coordination-triggered deposition of tannic acid (TA)-metal films on
a wide range of substrates.22 This deposition process is more rapid
than that of PDA, and the obtained films can be disassembled at low
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pH. By depositing these phenolics on sacrificial particulate templates,
hollow microcapsules with advanced functions can be assembled.

PDA CAPSULES

Postma et al.23 first reported the template-mediated preparation of
PDA capsules in 2009 (Figure 1). Sacrificial particulate templates
(SiO2) were incubated in DA solution (10 mM tris(hydroxymethyl)-
aminomethane (Tris)-HCl at pH 8.5), and the sacrificial SiO2 particles
were subsequently removed by hydrofluoric acid. The diameter of the
sacrificial templates (0.5–5mm were used) directly translated to the
size of the assembled PDA capsules. The thickness of the PDA shells
varied with changing incubation time (ca. 10–20 nm). By simply
repeating the deposition step, the thickness could be further increased
in set increments. In 2009, Yu et al.24 also reported the preparation of
PDA capsules, and examined their loading and release properties.
Rhodamine 6G and methyl orange were used as model cargo and the
effect of several parameters (pH, capsule size, shell thickness and
solvent) on the loading and release kinetics were investigated.24,25 DA-
modified poly(L-glutamic acid) has also been self-polymerized and
deposited on sacrificial particulate templates in a similar way to pure
DA (Figure 2).26 The protease-triggered degradation of poly(L-
glutamic acid)–PDA films was achieved and quantified by quartz
crystal microgravimetry.

Liu et al.27 demonstrated the preparation of carbon capsules via the
carbonization of PDA. First, the SiO2 particles were coated with PDA,
then the PDA layer was carbonized at 800 1C and finally the SiO2

cores were removed by treatment with hydrofluoric acid (Figures 3a
and b). By starting with Au@SiO2 core-shell particles,28 instead of
SiO2 templates, carbon capsules encapsulating single Au nanoparticles
were obtained (Figure 3c). These yolk-shell carbon capsules showed
high catalytic activity and good recyclability in the reduction of 4-
nitrophenol into 4-aminophenol.

Cui et al. showed that low-molecular-weight polydimethyldiethox-
ysilane oil-in-water emulsion droplets29 are favorable sacrificial
templates for the preparation of PDA capsules,30 as these templates
can be removed with ethanol (cf. SiO2 needs to be removed with
hydrofluoric acid). Furtheremore, the diameter of these droplets can
be readily tuned from hundreds of nanometers to several micrometers
by changing either the condensation time or the concentration of the
precursor dimethyldiethoxysilane. In conventional LbL assembly, the
template particles need to be spun down after each deposition step to
remove excess polymer; however, the polydimethyldiethoxysilane
templates have a density lower than water and are difficult to spin
down. Therefore, the one-step deposition process of PDA, without
any need for intermittent centrifugation steps, allows the use of
polydimethyldiethoxysilane emulsion droplets as sacrificial templates.
The advantage of oil-in-water emulsion droplets is that hydrophobic
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Figure 1 PDA film engineering for template-mediated capsule preparation. (a) Schematic illustration of the preparation process. (b, c) Differential

interference contrast microscopy (b) and transmission electron microscopy (c) images of the PDA capsules. Reprinted with permission from Postma et al.23

Copyright 2009 American Chemical Society. A full color version of this figure is available at Polymer Journal online.
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Figure 3 Carbon capsules prepared from the PDA precursor. (a) Schematic illustration of the preparation process. (b, c) Scanning TEM images of carbon

capsules (b) and Au@C yolk-shell composites (c). Reprinted with permission from Liu et al.27 Copyright 2011 WILEY-VCH Verlag GmbH & Co. KGaA,

Weinheim. PDA, polydopamine; TEM, transmission electron microscopy. A full color version of this figure is available at Polymer Journal online.
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cargo, such as magnetic Fe3O4 nanoparticles, fluorescent quantum
dots (CdSe/CdS) or an anticancer drug (thiocoraline), can easily
be preloaded into the emulsion before PDA coating (Figure 4).30

Wang et al. utilized alkane-in-water emulsions as templates for
the preparation of PDA capsules,31 and it was found that the
interfacial basicity of the droplets promoted the self-polymerization
of DA.

PDA films can be used as the basis for surface-initiated atom
transfer radical polymerization.32,33 Kohri et al.32 demonstrated the
co-deposition of DA and atom transfer radical polymerization
initiator-bearing DA onto polystyrene particles. 2-Hydroxyethyl
methacrylate (HEMA) was polymerized to give a polyHEMA
brush-functionalized PDA layer. The transparency of the films
increased as the initiator-bearing DA fraction was increased.
Colorless phenolic coatings are desired in some cases, as the
characteristic black color of PDA can hinder some practical
applications.18 The further functionalization of the polyHEMA-PDA
capsules with fluorescent dansyl group was carried out in acetone in
the presence of triethylamine. Ma et al.33 prepared dual-responsive
capsules sensitive to pH and temperature changes using the surface-
initiated atom transfer radical polymerization of 2-(2-
methoxyethoxy)ethyl methacrylate (MEO2MA) and oligo(ethylene
glycol) methacrylate (OEGMA) on the PDA base layer (Figure 5).
The charge of PDA is dependent on the pH, while the poly(-
MEO2MA-co-OEGMA) has a lower critical solution temperature,
which can be tuned by changing the molar fraction of OEGMA. Thus,
the copolymer-functionalized PDA capsules exhibited dual-responsive

loading and release of dye molecules (Rhodamine 6G and methyl
orange).

Organic–inorganic hybrid capsules were prepared using PDA as a
bioadhesive layer.34 First, the CaCO3 template particles were coated
with protamine, which induced the hydrolysis and condensation of
titania or silica precursor to form the second inorganic layer.
These particles were finally capped with the third layer, PDA and
the CaCO3 cores were removed with EDTA treatment. The PDA/
titania capsules exhibited superior mechanical stability than the
PDA/silica due to the strong coordination interactions between TiIV

and the catecholic groups in PDA. DA-modified alginate was also
used to construct LbL capsules based on the coordination with TiIV.35

PDA capsules were also used as a vehicle for drug delivery into
living cells (Figure 6).36 The anticancer drug doxorubicin (Dox) was
conjugated to a thiolated poly(methacrylic acid) through acid-
cleavable hydrazone bonds. The thiol functionalities on thiolated
poly(methacrylic acid) were used to immobilize this drug–polymer
conjugate on the PDA shells based on the Michael addition
(Figure 6a). The Dox release from PDA capsules was investigated at
pH 7.4, 6.0 and 5.0, simulating the physiological pH in the
extracellular space, subcellular endosomes and lysosomes, respectively.
Although 85% and 40% of the encapsulated Dox were released at pH
5.0 and 6.0 over 12 h, respectively, less than 20% was released at pH
7.4. Cell viability assays using a cervical cancer cell line (HeLa)
showed enhanced cytotoxicity of Dox-loaded PDA capsules, com-
pared with free Dox under the same conditions, demonstrating the
effectiveness of PDA capsules for drug delivery in living cells.
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Figure 4 Schematic illustration of the PDA capsules prepared from an emulsion template and the loading of hydrophobic cargo. Reprinted with permission

from Cui et al.30 Copyright 2011 WILEY-VCH Verlag KGaA, Weinheim. PDA, polydopamine. A full color version of this figure is available at Polymer Journal

online.
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TA CAPSULES

TA is a biodegradable phenolic compound of natural origin, which
has a central glucose core connected with gallic acids through
ester bonds at the hydroxyl groups of glucose (Figures 7 and 8).
TA has a high spectrum of bioactivities such as antioxidant,37

antibacterial,38 anticarcinogenic,39 antimutagenic40 and antiviral41

properties. Through electrostatic or hydrogen bonding inter-
actions, TA has been assembled via the LbL assembly method
with poly(dimethyldiallylamide),42 poly(allylamine),42–44 poly(N-
vinylcaprolactam),45,46 poly(N-vinylpyrrolidone),45–47 poly(ethylene
oxide),45 poly(N-isopropylacrylamide),45,46 poly(2-n-propyl-2-
oxazoline),48 FeIII ions49,50 and proteins51 to form thin films. The
first microcapsules based on TA were prepared by Shutava et al.42 via
multistep LbL assembly in 2005.

Lomas et al.52 used TA to construct polymersome-loaded
multicompartment capsules (Figure 7). Polymersomes formed from
poly(oligo(ethylene glycol) methacrylate)-block-poly(2-(diisopropyla-
mino)-ethyl methacrylate) were incorporated into multilayers of TA
and poly(N-vinylpyrrolidone). TA acts as an efficient hydrogen-bond
donor for both poly(N-vinylpyrrolidone) and the POEGMA corona
of the polymersomes. The polymersomes disassembled at low
endocytic pH due to the pH-dependent nature of the PDPA block
(that is, deprotonated at physiological pH and protonated at
endocytic pH), hence the polymersomes could release a therapeutic
cargo in a pH-dependent manner. The polymersome-loaded capsules
showed the release of a plasmid DNA encapsulated within the

polymersome subcompartments in response to the lowering pH from
physiological to endocytic conditions.

Recently, we found that the instantaneous film deposition of TA
occurred on a wide range of substrates, including inorganic, organic
and biological substrates, triggered by TA complexation with FeIII ions
(Figure 8).22 The formation of FeIII–TA films on particulate
polystyrene templates was readily confirmed by the negative shift of
the surface zeta potential relating to TA and the color change from
white to dark blue relating to the complexation of Fe. After removing
the polystyrene templates, highly uniform microcapsules were
obtained (Figures 8b–d). The shell thickness was about 10 nm, as
determined by atomic force microscopy height analysis. Analogous to
LbL assembly, the thickness could be further increased by simply
repeating the coating procedure. The mechanical properties of the
FeIII–TA capsules were examined by atomic force microscopy force
measurements. Young’s modulus (EY) of the D¼ 3.6mm capsules was
1.0±0.2 GPa, which is at the high end of the range observed for LbL
polyelectrolyte capsules (0.01 to 1 GPa).53 The FeIII–TA capsules
disassembled in a pH-sensitive manner, as coordination between
FeIII and TA is pH dependent. The competitive chelation of FeIII

(using EDTA) markedly accelerated the disassembly of the FeIII–TA
capsules even at neutral pH, suggesting the main interaction between
FeIII and TA is coordination bonding. It is noteworthy that the metal
species chelated by TA are not limited to FeIII, as was demonstrated
for other metals such as VIII, AlIII and GdIII.22,54 Solutions of TA
capsules prepared with various metals exhibited a wide spectrum of
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colors that depend on the metal species chelated;54 thus, where color
matters, a judicious choice of metal can be made depending on the
specific application. For metal–phenolic network films, the simple
preparation, negligible cytotoxicity, pH-responsive disassembly profile
and extendibility to various metals all provide a platform for the
engineering and assembly of promising architectures useful for
biomedical applications.

SUMMARY

Recent advances in the preparation of microcapsules using phenolics
have been reviewed herein. Phenolic microcapsules can be assembled
via the multistep LbL assembly method or via one-step deposition
methods. The sacrificial particles necessary for templating the
phenolic films into microcapsules can be of varying composition
(solid or liquid) allowing for the facile encapsulation of hydrophobic
or hydrophilic cargo depending on the template particles used. By
controlling the reaction conditions and by reapplying the films, the
shell thickness of the microcapsules can be tuned between 10 nm to
over 100 nm. Importantly, depending on the phenolic compound
used, non-degradable or degradable capsules can be prepared,

allowing for the release profiles of cargo to be specifically tuned.
Similarly, the phenolic compound used also determines what further
chemistries or modifications can be used to functionalize the capsules.
The technical advancement of moving towards rapid, robust film
deposition methods that phenolic compounds allow for is an
important step toward realizing easy-to-prepare nanoengineered drug
delivery vehicles with enhanced mechanical properties and stimuli-
responsive abilities. As mussels use reversible metal–phenolic coordi-
nation for the self-healing of their feet, capsule shells with self-healing
abilities could be developed in the near future for smart and adaptive
systems, capable of releasing and encapsulating cargo in situ depend-
ing on concentrations of trace ions. Films prepared from phenolics
other than DA and TA are expected to expand the functionality and
applicability of phenolic-based microcapsules in the biomedical field.
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