
ORIGINAL ARTICLE

Synthesis and fluorescent properties of conjugated
co-oligomers containing maleimide and carbazole
units at the main chain

Munetoshi Nakamura, Kazuhiro Yamabuki, Tsutomu Oishi and Kenjiro Onimura

Yamamoto coupling polymerizations of 2,3-diiodo-N-cyclohexylmaleimide (DICHMI) with dihalide carbazole derivatives (DXRCz)

(3,6-dibromo-N-methylcarbazole (3,6-DBrMCz), 3,6-diiodo-N-hexylcarbazole (3,6-DIHCz) and 2,7-dibromo-N-hexylcarbazole

(2,7-DBrHCz)) were performed using a nickel complex. The number-average molecular weights (Mn) of poly(N-

cyclohexylmaleimide-co-N-substituted carbazole)s (poly(CHMI-co-RCz)) were in the range of 600–7300, as determined by gel

permeation chromatography analyses. The fluorescence emissions of the poly(CHMI-co-RCz) solution showed two emission

maxima in the 417–426 and 581–595nm regions. The fluorescence peaks of co-oligomers at long wavelengths (581–595nm)

were attributable to the conjugated neighboring CHMI-RCz units of polymer main chains. The intensities of fluorescence

emissions were significantly affected by the polarity of organic solvents such as tetrahydrofuran and N,N-dimethylformamide.

The solvatochromic fluorescence phenomenon may be attributable to the twisting of CHMI-RCz bonds in an excited state in

polar solvents.
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INTRODUCTION

p-Conjugated polymers may be applied to new organic electronic
materials such as organic light-emitting diodes,1–10 organic field-effect
transistors,11,12 photovoltaic cells13–16 and biosensors.17–21 The
molecular design of monomeric units is very important because the
efficiency of devices is generally affected by the purity, structure and
molecular arrangement of the conjugated polymer. In various types of
conjugated polymers, carbazole derivatives are known for a conjugate
unit that has interesting photo and electric properties, such
as photoconductivity and photorefractivity, which show good
workability and high emission ability in the solid state.22,23

Recently, conjugated polymers containing carbazolene units in the
main chain have been widely investigated; the properties of such
polymers are changed by the substitution positions of a carbazolene
unit. Poly(3,6-carbazole) and poly(2,7-carbazole) derivatives can
easily form homogeneous layers. Poly(2,7-carbazole) derivatives
with 2,7-substituted carbazole have decreased bandgap energy
because of their rod-like structure. Thus, poly(2,7-carbazole) is
expected to be useful for hole transportation materials.24–27

In addition, the copolymerization of carbazole derivatives with
good acceptor molecules such as quinoxaline and benzothiadiazole

was reported.28,29 These conjugated copolymers have a donor–
acceptor unit and exhibit very interesting electronic and emission
properties because the bandgap was adjustable by different types of
molecules. Furthermore, carbazole copolymers are designed by
alternative or random polymerization. In contrast with alternative
copolymers, random copolymers can induce various feed ratios of an
acceptor unit over a wide range. Therefore, the design of the random
copolymer is able to change the bandgap of the copolymer.30,31 In
addition, the introduction of an acceptor unit can improve the charge
transport properties of the random copolymer, and this copolymer is
suitable for applications in multilayer polymer light-emitting diodes,
as reported previously.32 However, these acceptor molecules have
some problems, such as the high cost of the starting materials and the
multistep composition process.

However, maleimide is an imide ring compound that can be
obtained from affordable maleic anhydride and easily introduce
various functional groups to the N-position.33–35 Maleimide, a
cyclic olefin monomer, is considered to be cis-olefin and consists of
a repetition unit of the cis-configuration, similar to polyacetylene,
which is common in organic electronic device materials. Maleimide
derivatives show properties of n-type organic semiconductor
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materials such as phthalimide, naphthylimide and pyreneimide for an
electron-deficient heterocyclic ring.36–39 For example, Chen and
co-workers40 reported alternating copolymers obtained from
N-substituted 2,3-diphenylmaleimides and the boronate of fluorene
or bithiophene derivatives. The copolymer containing maleimide
units showed electroluminescence emission of orange to red in a thin
film. In addition, Cola and co-workers41 report the ability of
fluorescence sensing a zinc ion by the maleimide derivative. The
results were the first report that maleimide copolymers exhibited
photoluminescence (PL) and electroluminescence spectra at long
wavelengths and that the maleimide comonomer had an important
role as an acceptor molecule such as benzoselenadiazole and
naphthoselenadiazole. Some articles relevant to the polymer of N-
substituted-2,3-diarylmaleimide are reported, but there are few reports
of copolymers in which maleimide is connected directly.42–44 Using
maleimide as an acceptor molecule, a low-bandgap-conjugated
polymer for an organic semiconductor may be inexpensively and
easily obtained. Copolymers or homopolymers of maleimide and its
model compounds using various functional groups on the side chain of
the maleimide moiety were reported previously.45–47 A series of 1,4-
phenylene- or 2,5-thienylene-based copolymers containing N-
substituted maleimide derivatives fluoresced in a yellow to blue color
in a tetrahydrofuran (THF) solution when exposed to ultraviolet light
of wavelength 352 nm. It was found that the PL and electronic state of
maleimide copolymers were controlled by donor molecules and N-
substituents. The authors thought that synthesis of maleimide
copolymers with donor molecules other than phenylene and
thienylene groups was necessary to investigate the acceptor effects of
maleimide.

In this paper, we report the Yamamoto coupling polymerization of
2,3-diiodo-N-cyclohexylmaleimide (DICHMI) as an acceptor moiety
and dihalide carbazole consisting of 3,6 and 2,7 linking as a donor
moiety and their polymerizabilities in Scheme 1. The fluorescence
properties of the obtained co-oligomers are investigated. Furthermore,
the authors prepare 2,3-bis(N-hexylcarbazol-3-yl)-N-cyclohexylmalei-
mide from DICHMI and N-hexylcarbazol-3-ylboronic acid as model-
conjugated co-oligomers containing CHMI and RCz units. The
relationship between the fluorescence and structure of a conjugated
co-oligomer is investigated by a detailed comparison of model
compounds.

EXPERIMENTAL PROCEDURE

Measurements
1H (500 MHz) and 13C (125 MHz) nuclear magnetic resonance (NMR) spectra

were recorded on a JNM-LA500 (JEOL, Tokyo, Japan) using tetramethylsilane

(TMS) (1H NMR (proton NMR spectroscopy), d 0.00) or CDCl3 (13C NMR, d

77.0) as internal reference peaks at room temperature at the Collaborative

Center for Engineering Research Equipment, Faculty of Engineering in

Yamaguchi University (Yamaguchi, Japan). Splitting patterns are designated

as s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet) and br (broad).

Number-average molecular weights (Mn) and molecular weight distributions

(Mw/Mn) of polymers were obtained with gel permeation chromatography

(GPC) on a CROMATOPAC C-R7Ae plus (Shimadzu Corporation, Kyoto,

Japan) (LC-10AS, CTO-2A, SPD-10A, JASCO OR-990) equipped with poly-

styrene gel columns (HSG-40G, HSG-20G, HSG-15G, HSG-10G), using THF

as an eluent at a flow rate of 1.0 ml min�1, and calibrated by a polystyrene

standard at 50 1C. The ultraviolet–visible (UV–vis) spectra were recorded on a

UV-1650PC (Shimadzu Corporation). The PL spectra were recorded on a FP-

6300 (JASCO Corporation, Tokyo, Japan) spectrophotometer. High-resolution

mass spectra measurements (time of flight-mass spectrometry, LCT Premier

XE; Waters Corporation, Milford, MA, USA) on a UPLC:ACQUITY Ultra-

Performance LC (Waters Corporation) were conducted at the Collaborative

Center for Engineering Research Equipment, Faculty of Engineering, Yama-

guchi University.

Materials
All chemicals were used without any further purification. Carbazole, 1,4-

dibromo-2-nitrobenzene, triisopropyl borate and 1,5-cyclooctadiene (1,5-

COD) were purchased from Tokyo Chemical Industry. Celite 545 was available

from Aldrich (St Louis, MO, USA). Potassium iodide, potassium iodate,

N-bromosuccinimide (NBS), pyridine and phosphoric acid (H3PO4) were

purchased from Wako Pure Chemical Industries (Osaka, Japan). Sodium

thiosulfate 5-hydrate, potassium carbonate, copper powder, tin powder and

2,20-bipyridyl were available from Kishida Reagents Chemicals (Osaka, Japan).

Bromine, sodium hydride, n-hexyl bromide, tetrakis(triphenylphosphine)pal-

ladium (0) and anhydrous magnesium sulfate were purchased from Nakalai

Tesque (Kyoto, Japan). Iodomethane, bis(1,5-COD) nickel (0), sodium sulfate

and n-butyllithium in n-hexane solution (n-BuLi) were purchased from Kanto

Chemical (Tokyo, Japan). Sodium iodide was purchased from Ishizu Seiyaku

Ltd. (Osaka, Japan). N-cyclohexylmaleimide was offered by NOF Corporation

(Tokyo, Japan). n-Hexane, ethyl acetate, tetrahydrofuran, N,N-dimethylforma-

mide, CH2Cl2 and CHCl3 were dried according to the standard procedure and

distilled under nitrogen. Analytical thin-layer chromatography (TLC) was

performed with Merck silica gel plate 60F254. Column chromatography was

performed with silica gel 60 (0.063–0.200 mm; Merck, Gibbstown, NJ, USA).

DICHMI,45,48 3,6-dibromo-N-methylcarbazole (3,6-DBrMCz),49 3,6-

diiodo-N-hexylcarbazole (3,6-DIHCz),50 2,3-bis(N-hexylcarbazol-3-yl)-N-

cyclohexylmaleimide51 and 2,7-dibromo-N-hexylcarbazole (2,7-DBrHCz)52

were prepared following procedures from the literature. Each co-oligomer

was prepared by two methods following previously reported procedures.53,54

Synthesis of DICHMI. A solution of 2,3-dibromo-N-cyclohexylmaleimide

(5.06 g, 15.0 mmol) and sodium iodide (6.75 g, 45.0 mmol) in acetic acid

(55 ml) was refluxed for 2 h. After the reaction mixture was then cooled to

ambient temperature, the solvent was removed to give the crude product. The

residue was recrystallized in ethyl acetate/n-hexane (1/10¼ v/v) to yield yellow

crystals (5.53 g, 12.8 mmol).

Yield 86%, m.p. 156–157 1C, Rf¼ 0.17 (silica gel TLC, n-hexane/

dichloromethane¼ 1/2 (v/v)). 1H NMR (CDCl3) d (p.p.m. from TMS):

1.10–1.42 (3H, m, cyclohexyl), 1.60–1.74 (3H, m, cyclohexyl), 1.76–1.92

(2H, m, cyclohexyl), 1.94–2.14 (2H, m, cyclohexyl) and 3.90–4.10 (1H, m,

4N-CH of cyclohexyl group).

Synthesis of 3,6-DBrMCz

MCz. A 200 ml flask equipped with a magnetic stirring bar was charged with

a 60% dispersion of sodium hydride in mineral oil (5.19 g, 36.0 mmol). The

mineral oil was removed by washing with three 10-ml portions of

n-hexanes, allowing the sodium hydride to settle and withdrawing the

supernatant solvent with a syringe. A solution of carbazole (5.03 g, 30.1 mmol)

in dry N,N-dimethylformamide (DMF) (15 ml) was added to the suspension

of sodium hydride in the 200-ml flask at 0 1C, and the mixture was stirred.

After evolution of hydrogen ceased, a solution of methyl iodide (2.5 ml,

NO O
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Scheme 1 Yamamoto coupling polymerization of DICHMI with carbazole

derivatives.
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40.1 mmol) in dry DMF (15 ml) was added dropwise via an addition funnel at

room temperature. After stirring for 1.5 h, the reaction mixture was quenched

by the addition of water (50 ml) and then extracted with ethyl acetate. The

combined organic layer dried over MgSO4, and the solvent evaporated. The

crude product was purified by recrystallization from ethyl acetate/n-hexane (1/

10¼ v/v) to yield colorless crystals.

Yield 72%, m.p. 78–80 1C, Rf¼ 0.20 (silica gel TLC, n-hexane/

dichloromethane¼ 10/1 (v/v)). 1H NMR (CDCl3) d (p.p.m. from TMS):

3.86 (3H, s, 4N-CH3), 7.18–7.34 (2H, m, aromatic protons), 7.35–7.60 (4H,

m, aromatic protons) and 8.10 (2H, d, aromatic protons).

3,6-DBrMCz. MCz (0.537 g, 3.00 mmol), NBS (1.33 g, 749 mmol) and

pyridine (30 ml) were placed in a 100-ml three-necked flask, and then the

mixture was refluxed at 120 1C. After 15 h, the reaction mixture was distilled to

remove pyridine. The residue was dissolved in dichloromethane (50 ml) and

washed with 3N HCl. The organic layer was dried over MgSO4, and the solvent

evaporated. The crude product was purified on a silica column using hexane/

ethyl acetate (1/10¼ v/v). A brown needle crystal product was obtained after

removal of solvent.

Yield 45%, m.p. 155–157 1C, 1H NMR (CDCl3) d (p.p.m. from TMS): 3.82

(3H, s, 4N-CH3), 7.27 (2H, d, aromatic protons), 7.54–7.61 (2H, dd,

aromatic protons) and 8.13 (2H, d, aromatic protons).

Synthesis of 3,6-DIHCz

N-Hexylcarbazole (HCz). HCz (1.33 g, 5.29 mmol) was obtained as a color-

less crystal in 88% yield from sodium hydride (60% oil) (0.326 g, 7.80 mmol)

and carbazole (1.01 g, 6.03 mmol) with n-hexyl bromide (1.21 ml, 7.32 mmol),

according to the above procedure for MCz.

Yield 88%, m.p. 59–61 1–C, Rf¼ 0.55 (silica gel TLC, n-hexane/ethyl

acetate¼ 10/1 (v/v)). 1H NMR (CDCl3) d (p.p.m. from TMS): 0.85 (3H, t,

-CH3), 1.20–1.46 (6H, m, alkyl chain protons), 1.78–1.94 (2H, m, 4N-CH2-

CH2-), 4.30 (2H, t, 4N-CH2-), 7.22 (2H, d, aromatic protons), 7.44 (4H, dd,

aromatic protons) and 8.10 (2H, d, aromatic protons).

3,6-DIHCz. N-hexylcarbazole (0.474 g, 1.88 mmol), potassium iodide

(0.665 g, 4.01 mmol) and acetic acid (50 ml) were placed in a 100-ml flask

and stirred at room temperature. After a few minutes, potassium iodate was

added. After 24 h, the reaction mixture was distilled to remove acetic acid. The

residue was dissolved in ethyl acetate and washed with water. The organic layer

was dried over MgSO4, and the solvent evaporated. The crude product

recrystallized in ethyl acetate/n-hexane (1/10¼ v/v) to yield colorless crystals

(0.494 g, 0.981 mmol).

Yield 52%, m.p. 127–129 1C, Rf¼ 0.48 (silica gel TLC, (n-hexane/ethyl

acetate¼ 10/1 (v/v)). 1H NMR (CDCl3) d (p.p.m. from TMS): 0.85 (3H, t,

-CH3), 1.20–1.40 (6H, m, alkyl chain protons), 1.73-1.91 (2H, m, 4N-CH2-

CH2-), 4.22 (2H, t, 4N-CH2-), 7.17 (2H, d, aromatic protons), 7.71 (2H, dd,

aromatic protons) and 8.33 (2H, d, aromatic protons).

Synthesis of model compound

3-Bromo-N-hexylcarbazole. In a flask covered with aluminum foil, a stirred

solution of HCz (2.01 g, 8.00 mmol) in CHCl3 (40 ml) was cooled to 0 1C. NBS

(1.42 g, 7.99 mmol) was added in small portions. The mixture was allowed to

warm to room temperature overnight. The organic solvent was evaporated,

and the residue was purified by extraction with diethyl ether and water. The

organic layer was dried over MgSO4, and the solvent evaporated. The crude

product was purified on a silica column using n-hexane/ethyl acetate (1/

10¼ v/v). From NMR, the peaks of crude materials were confirmed, but we

decided to advance to the next reaction by column chromatography in case of

boron oxidation due to the ease of separation.

Yield 92%, 1H NMR (CDCl3) d (p.p.m. from TMS): 0.85 (3H, t, -CH3),

1.20–1.44 (6H, m, alkyl chain protons), 1.77–1.91 (2H, m, 4N-CH2-CH2-),

4.24 (2H, t, 4N-CH2-), 7.19–7.28 (2H, m, aromatic protons), 7.35–7.55 (3H,

m, aromatic protons), 8.03 (1H, d, aromatic proton) and 8.19 (1H, d, aromatic

proton).

N-hexylcarbazol-3-ylboronic acid. A solution of 3-bromo-N-hexylcarbazole

(2.44 g, 7.38 mmol) in dry THF (30 ml) was cooled to �78 1C. n-Butyllithium

in n-hexane solution (1.65 mol l in n-hexane solution) (7.0 ml, 11.1 mmol) was

slowly added dropwise via a syringe over 10 min. After complete addition, the

reaction mixture was stirred for another hour. Triisopropyl borate (2.6 ml,

11.3 mmol) was then added at once. The mixture was allowed to warm to

room temperature overnight. The reaction was finally quenched with 1 N HCl

and the mixture was poured into a large amount of water. After extraction with

CH2Cl2, the organic layer was washed with water and dried over MgSO4, and

the solvent evaporated. Further purification by column chromatography (silica

gel, n-hexane/dichloromethane, 2/1, v/v) afforded the product as a white solid.

(0.976 g, 3.27 mmol).

Yield 44%, m.p. 198–202 1C.

2,3-Bis(N-hexylcarbazol-3-yl) N-cyclohexylmaleimide (model compound).

Under a nitrogen atmosphere, a mixture of DICHMI (0.173 g, 0.40 mmol),

N-hexylcarbazol-3-ylboronic acid (0.239 g, 0.80 mmol) and Pd(PPh3)4 catalyst

(0.0188 g, 0.0163 mmol) was stirred in dry toluene (6 ml). K2CO3 (0.224 g,

1.62 mmol) in water (0.8 ml) was then added via a syringe. The reaction

mixture was heated to 80 1C for 72 h. After cooling, the product was extracted

with dichloromethane, washed with water and dried over MgSO4, and the

solvent evaporated. The crude product was purified on a silica column using

n-hexane/dichloromethane (1/2¼ v/v). The solution was concentrated, dis-

solved in a very small amount of THF and precipitated into 125 ml of

methanol. The product was collected as a black powder and dried in vacuo.

The pure compound was obtained (0.200 g, 0.30 mmol).

Yield 74%, m.p. 118–120 1C, Rf¼ 0.20 (silica gel TLC, (n-hexane/

dichloromethane¼ 2/1 (v/v)). 1H NMR(CDCl3) d (p.p.m. from TMS): 0.85

(6H, t, -CH3), 1.14–1.48 (15H, m, cyclohexyl and N-CH2-CH2-(CH2)3-), 1.66–

1.79 (9H, m, cyclohexyl and 4N-CH2-CH2-), 2.15–2.35 (2H, m, cyclohexyl),

4.09–4.20 (1H, m, 4CH-), 4.26 (4H, t, 4N-CH2-), 7.16–7.32 (4H, d,

aromatic protons), 7.35–7.50 (4H, m, aromatic protons), 7.57 (2H, dd,

aromatic protons), 8.00 (2H, d, aromatic protons), 8.43 (2H, d, aromatic

protons). 13C (CDCl3) d (p.p.m. from TMS): 171.9, 140.9, 140.7, 134.5, 127.6,

125.9, 123.0, 122.7, 120.6, 119.9, 119.4, 108.9, 108.7, 51.2, 43.2, 31.5, 30.1, 28.9,

26.9, 26.2, 25.3, 22.5 and 14.0. High-resolution mass spectra (ESI MþH) m/z

found, 678.4060, calculated for C46H52N3O2: 678.4060.

Synthesis of 2,7-DBrHCz

4,40-Dibromo-2,20-dinitrobiphenyl. A mixture of 1,4-dibromo-2-nitrobenzene

(5.00 g, 17.8 mmol) and copper powder (2.51 g, 39.4 mmol) was stirred in 22 ml

of DMF for 2 h at 125 1C. After cooling to room temperature, chloroform was

added. The mixture was filtered with Celite 545. The filtrate was washed with

water and brine, the solution dried over MgSO4 and the solvent evaporated. The

crude product was recrystallized in ethyl acetate/n-hexane (1/10¼ v/v) to yield

light brown crystals (2.92 g, 7.26 mmol).

Yield 82%, m.p. 148–150 1C, Rf¼ 0.36 (silica gel TLC, (ethyl acetate/n-

hexane¼ 1/5 (v/v)). 1H NMR (CDCl3) d (p.p.m. from TMS): 7.16 (d, 2H,

aromatic protons), 7.82 (dd, 2H, aromatic protons) and 8.38 (d, 2H, aromatic

protons).

4,40-Dibromo-2,20-diaminobiphenyl. While a mixture of 4,40-dibromo-2,20-
dinitrobiphenyl (2.91 g, 7.24 mmol), concentrated HCl (21 ml) and 35 ml of

ethanol was stirred, small portions of tin powder (3.55 g, 29.9 mmol) were

added to the reaction mixture. The reaction mixture was then refluxed for

2.5 h. The mixture was poured into cold water, and 2 M NaOH solution was

added to a pH of 8. The solution was extracted several times with chloroform.

The combined organic layer was washed with water and dried over Na2SO4,

and the solvent evaporated. The residue was dissolved in ethyl acetate, followed

by precipitation with n-hexane to yield a yellow solid. The solid was filtered

and washed with n-hexane to obtain the product (1.90 g, 5.56 mmol).

Yield 71%, m.p. 108–110 1C, Rf¼ 0.077 (silica gel TLC, (ethyl acetate/n-

hexane¼ 1/10 (v/v)). 1H NMR (CDCl3) d (p.p.m. from TMS): 3.74 (br, 4H,

-NH2), 6.93 (s, 6H, aromatic protons).

2,7-Dibromocarbazole. A mixture of 4,40-dibromo-2,20-diaminobiphenyl

(0.952 g, 2.78 mmol) and 19.8 ml of concentrated H3PO4 was refluxed at

190 1C for 26 h. The crude product was added to water and removed by

filtration. The residue was diluted with dichloromethane; the organic layer was
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washed with water, dried with Na2SO4 and evaporated. The residue was

dissolved in ethyl acetate, followed by precipitation with n-hexane to yield a

yellow solid. The solid was filtered and washed with n-hexane to obtain the

product (0.544 g, 1.67 mmol).

Yield 60%, m.p. 214–215 1C, 1H NMR (CDCl3) d (p.p.m. from TMS): 7.37

(dd, 2H, aromatic protons), 7.59 (d, 2H, aromatic protons), 7.89 (d, 2H,

aromatic protons) and 8.07 (br, 1H, 4NH).

2,7-DBrHCz. 2,7-DBrHCz (0.891 g, 2.18 mmol) was obtained as colorless

crystals in 88% yield from sodium hydride (60% oil) ((0.355 g, 5.92 mmol),

2,7-dibromocarbazole (0.752 g, 2.31 mmol) with n-hexyl bromide (0.460 g,

2.79 mmol) according to the above procedure for MCz.

Yield 94%, m.p. 62–63 1C, Rf¼ 0.42 (silica gel TLC, (n-hexane)). 1H NMR

(CDCl3) d (p.p.m. from TMS): 0.93 (t, 3H, -CH3), 1.40 (m, 6H, alkyl chain

protons), 1.90 (m, 2H, 4N-CH2-CH2-), 4.25 (t, 2H, 4N-CH2-), 7.40 (dd,

2H, aromatic protons), 7.59 (d, 2H, aromatic protons) and 7.95 (d, 2H,

aromatic protons).

Synthesis of polymer

Poly(CHMI). DICHMI (0.363 g, 0.842 mmol), COD (0.0978 g, 0.904 mmol),

2,20-bipyridyl (0.146 g, 0.935 mmol), Ni(COD)2 (0.347 g, 1.26 mmol), dry DMF

(3 ml) and dry toluene (3 ml) were placed in a 50-ml sealed tube. The mixture

was stirred at 60 1C for 72 h under a nitrogen atmosphere. The resultant mixture

was poured into diethyl ether (100 ml). The solid that separated was filtered. The

residue was dissolved in dichloromethane and washed with 1 N HCl and water. The

organic layer was dried over MgSO4, and the solvent evaporated. The crude

product was dissolved in a very small amount of THF and precipitated into 125 ml

of methanol. The product was collected as a black powder and dried in vacuo.

Poly(3,6-HCz). 3,6-DIHCz (0.403 g, 0.801 mmol), COD (0.104 g,

0.961 mmol), 2,20-bipyridyl (0.142 g, 0.909 mmol), Ni(COD)2 (0.332 g,

1.21 mmol), dry DMF (3 ml) and dry toluene (3 ml) were placed in a 50-ml

sealed tube. The mixture was stirred at 80 1C for 72 h under a nitrogen

atmosphere. The resultant mixture was poured into dichloromethane (100 ml)

and washed with 1 N HCl and water. The organic layer was dried over MgSO4,

and the solvent evaporated. The crude product was dissolved in a very small

amount of THF and precipitated into 125 ml of methanol. The product was

collected as a white powder and dried in vacuo.

Poly(CHMI-co-3,6-HCz). Typical procedure: DICHMI (0.174 g, 0.404 mmol),

3,6-DIHCz (0.202 g, 0.401 mmol), COD (0.0973 g, 0.899 mmol), 2,20-bipyridyl

(0.142 g, 0.909 mmol), Ni(COD)2 (0.332 g, 1.21 mmol), dry DMF (3 ml) and

dry toluene (3 ml) were placed in a 50-ml sealed tube. The mixture was stirred

at 80 1C for 72 h under a nitrogen atmosphere. The resultant mixture was

poured into diethyl ether (100 ml). The solid that separated was filtered. The

residue was dissolved in dichloromethane and washed with 1 N HCl and water.

The organic layer was dried over MgSO4, and the solvent evaporated The

crude product was dissolved in a very small amount of THF and precipitated

into 125 ml of methanol. The product was collected as a brown powder and

dried in vacuo.

Poly(CHMI-co-2,7-HCz) by another method. COD (0.133 g, 1.23 mmol),

2,20-bipyridyl (0.188 g, 1.20 mmol), Ni(COD)2 (0.332 g, 1.21 mmol) and dry

DMF (3 ml) were placed in a 50 ml sealed tube. The mixture was stirred at

80 1C for 0.5 h under a nitrogen atmosphere, and then a mixture of DICHMI

(0.174 g, 0.404 mmol) and 2,7-DBrHCz (0.164 g, 0.401 mmol) in dry DMF

(3 ml) was added. The reaction was maintained at 80 1C for 24 or 48 h The

resultant mixture was poured into CH2Cl2 (100 ml) and washed with 1 N HCl

and water. The organic layer was dried over MgSO4, and the solvent

evaporated. The crude product was dissolved in a very small amount of

THF and precipitated into 125 ml of methanol. The product was collected as a

brown powder and dried in vacuo.

RESULTS AND DISCUSSION

Synthesis and characterization
Scheme 2 illustrates the synthetic route for maleimide monomers and
N-substituted carbazole derivatives. In the synthesis of DICHMI as

the key monomer, 2,3-dibromo-N-cyclohexylmaleimide was prepared
by bromination of CHMI according to procedures from the litera-
ture.45 The iodination of 2,3-dibromo-N-cyclohexylmaleimide with
sodium iodide in acetic acid afforded DICHMI with high yield (86%).
3,6-DBrMCz and 3,6-DIHCz were synthesized by halogenation of the
corresponding N-substituted carbazole derivatives. The alkylation of
carbazole with methyl iodide and n-hexyl bromide in the presence of
sodium hydride in DMF yielded MCz and N-hexylcarbazole,
respectively. MCz was brominated by NBS in pyridine to obtain
3,6-DBrMCz. Diiodination of N-hexylcarbazole was performed in the
presence of potassium iodide and potassium iodate in acetic acid,
followed by recrystallization of the crude product to afford 3,6-
DIHCz. However, 2,7-DBrHCz, which was substituted with bromide
at the 2,7-positions, was prepared according to the procedures in the
literature52 and then obtained by alkylation under the same
conditions as HCz described above.

To reveal the relationship between the fluorescence and structure of
conjugated co-oligomers, the authors prepared 2,3-bis(N-hexylcarba-
zol-3-yl)-N-cyclohexylmaleimide as a model conjugated co-oligomer
containing CHMI and RCz units. The synthetic approach to the
model compound is shown in Scheme 3. The model compound was
synthesized in four steps from carbazole according to procedures
from the literature.51 Monobromination of N-hexylcarbazole was
performed with NBS to yield 3-bromo-N-hexylcarbazole. The
compound was used for the next step without any further
purification. N-hexylcarbazole-3-ylboronic acid was synthesized via
lithiation of 3-bromo-N-hexylcarbazole using n-butyllithium in n-
hexane solution and subsequent boronation by triisopropyl borate in
THF. Finally, a Suzuki-Miyaura coupling reaction of DICHMI with
N-hexylcarbazole-3-ylboronic acid catalyzed by Pd(PPh3)4 in toluene
produced the desired model compound.

All polymers were prepared by a Yamamoto coupling reaction
catalyzed by bis(1,5-COD) nickel (0) with 1,5-COD and 2,20-bipyridyl
in a mixture of toluene and DMF. Furthermore, copolymerizations
were performed under various feed ratios of [DICHMI]/
[DXCz]¼ 0.33–3.00. All Yamamoto coupling polymerizations pro-
ceeded homogeneously throughout. After polymerization was com-
plete, the polymerization mixtures were poured into a large amount
of dichloromethane and washed with 1 N HCl and water. The organic
phase was concentrated under vacuum. The resulting residue was
dissolved in a small amount of THF and precipitated into excess
MeOH. The results of the copolymerizations of DICHMI
with dihalide carbazole derivatives are summarized in Table 1. Poly
(CHMI) and poly(N-cyclohexylmaleimide-co-N-substituted carba-
zole)s were brown or black powders that were quite soluble in
common organic solvents such as THF, CHCl3, toluene and DMF.
The molar ratios of the CHMI unit in the co-oligomers (MIcont.) were
determined by 1H NMR and are shown in Table 1. An 1H NMR
spectrum of poly(CHMI-co-3,6-DMCz) obtained by the monomer
molar ratio DICHMI/3,6-DBrMCz¼ 0.40/0.40 (mmol mmol�1) is
shown in Figure 1. Three peaks in the aromatic region at 7.3–7.5, 7.6–
8.0 and 8.1–8.6 p.p.m. were attributed to three different protons on
the carbazole ring. The signals at 3.4–4.3 p.p.m. were assigned to a
proton at the 1-position of the cyclohexyl substituent and methyl
protons of the 3,6-carbazolene unit. The peaks at 0.8–2.4 p.p.m. were
due to methylene protons of the cyclohexyl ring. In the
same manner, the content (mol%) of CHMI units in other poly
(N-cyclohexylmaleimide-co-N-substituted carbazole)s were also deter-
mined (Supplementary Figures S1–S3).

The homopolymerization of DICHMI resulted in low yield (Run
1). In the copolymerizations of CHMI with 3,6-DBrMCz (Runs 2–5),
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MIcont. of CHMI were larger than the feed ratios of DICHMI/3,6-
DBrMCz. The resulting lower polymerizabilities of 3,6-DBrMCz
relative to DICHMI can be explained on the basis of the poor
solubility of 3,6-DBrMCz. Thus, the number-average molecular
weights (Mn) of the resulting co-oligomers decreased with increasing
feed ratios of 3,6-DBrMCz. However, co-oligomers obtained with

DICHMI and 3,6-DIHCz showed increased Mn and MIcont. of the 3,6-
HCz unit because of the improved solubility of 3,6-DIHCz bearing n-
hexyl groups (Runs 6–8). As a result of copolymerization with 3,6-
DIHCz, copolymerization with 2,7-DBrHCz was performed with a
monomer molar ratio 0.40/0.40 (mmol mmol�1) so that maleimide
and carbazole units could be introduced equally in the main chain.
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The yields of co-oligomers prepared from 2,7-DBrHCz and DICHMI
under the same conditions were higher than that from 3,6-DIHCz
(Runs 7 and 10). However, MIcont. of the co-oligomer with
2,7-DBrHCz was lower than that with 3,6-DIHCz. Torimitsu and
co-workers54 previously reported high molecular weights for poly(N-
alkyl-3,6-carbazole)s. From this report, we performed the
copolymerization of DICHMI with 2,7-DBrHCz by Torimitsu’s
method to improve the introduction of MIcont.. MIcont. of the
obtained copolymers increased relative to the MIcont. of copolymers
obtained by previous methods. Formation of a dinickel-substituted
complex with monomers that interfere with propagation of the
polymer chain could be avoided by slowly adding the monomer
solution into a hot nickel reagent solution.

Optical properties of co-oligomers
The normalized absorption (UV–vis) and PL spectra of co-oligomers
and the model compound were measured in THF solution (con-
centration based on monomeric unit: 2.5� 10�5

M) and are illu-
strated in Figures 2–4. The photophysical properties of co-oligomers
in dilute solutions are summarized in Table 2.

The UV–vis and PL spectra of co-oligomers obtained with 3,6-
DBrMCz are shown in Figure 2. These co-oligomers exhibited
absorption peaks attributed to the n–p* transition of the carbonyl
group and the p–p* transition of the aromatic ring at approximately
306–310 nm and the conjugation of the main chain at approximately
454–474 nm (Figure 2a, Runs 2–4). In the PL spectra, poly(CHMI)
showed no emission. However, co-oligomers showed two fluorescence
peaks at approximately 422–424 and 590–595 nm (Figure 2b). Fluor-
escence peaks at long wavelengths were only observed for co-
oligomers containing a large number of CHMI units (Runs 2 and 3).

The UV–vis and PL spectra of co-oligomers prepared from 3,6-
DIHCz are shown in Figure 3 and Runs 6–8 in Table 2, similar to
Runs 2–4. An absorption peak at long wavelength (Runs 7–9)
exhibited a small blue-shift of approximately 6–24 nm in compar-
ison with the peak from Run 6 because the main chains of the
polymer were twisted by sterical repulsion of bulky n-hexyl groups
with increasing HCz unit content. Thus, the coplanarity of the
main chain collapsed by a twist of the steric barrier, and the
conjugated chain length was diminished. The UV–vis spectrum of
the model compound showed two absorption peaks similar to
those of the co-oligomers. However, the absorption peak at long
wavelength showed broadening and increasing intensity (Figure 3,
Run 10). The behaviors were explained by the lack of a steric
barrier in the model compound, the coplanaric structure, com-
pared with the co-oligomers.

In the PL spectra, co-oligomers obtained from 3,6-DIHCz showed
two fluorescence peaks at approximately 425–426 and 583–590 nm
(Table 2, Runs 6–8). The intensities of co-oligomers (Runs 6 and 7)

Table 1 Yamamoto coupling copolymerization of DICHMI with DXRCza

Run DXRCz

DICHMI /DXRCz

(mmol mmol�1) Time (h) Yieldb (%) MIcont.
c (mol%) Mn

d (�10�3) Mw/Mn
d

1 0.80/— 72 11 100 1.6 1.23

2 3,6-DBrMCz 0.60/0.20 72 38 74 0.9 1.53

3 0.40/0.40 72 40 69 0.7 1.36

4 0.20/0.60 72 14 34 0.6 1.24

5 —/0.80 72 12 0 0.5 1.07

6 3,6-DIHCz 0.60/0.20 72 22 84 2.3 1.35

7 0.40/0.40 72 34 48 2.5 1.45

8 0.20/0.60 72 83 11 7.3, 2.6, 0.9 1.12, 1.10, 1.03

9 —/0.80 72 34 0 6.3, 2.4, 0.9 1.12, 1.10, 1.04

10 2,7-DBrHCz 0.40/0.40 72 51 31 2.8 1.63

11e 0.40/0.40 24 68 40 2.0 1.50

12e 0.40/0.40 48 34 48 2.4 1.60

13 —/0.80 72 78 0 1.6, 0.8 1.12, 1.02

Abbreviations: DICHMI, 2,3-diiodo-N-cyclohexylmaleimide; DMF, N,N-dimethylformamide; DXRCz, dihalide carbazole derivatives; GPC, gel permeation chromatography; 1H NMR, proton nuclear
magnetic resonance spectroscopy; Mn, number-average molecular weights; Mw, molecular weight; MIcont., molar ratios of the CHMI unit in the co-oligomers.
aNi(COD)2, 1.20 mmol; conditions: temperature, 80 1C; solvents: toluene (3ml) and DMF (3ml).
bMeOH insoluble part.
cDetermined by 1H NMR.
dBy GPC with poly(styrene) standard.
eConditions: temperature, 80 1C; solvents: DMF.
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Figure 1 Proton nuclear magnetic resonance spectroscopy (1H NMR)

spectrum of poly(CHMI-co-3,6-MCz) (Table 1, Run 3) in CDCl3.

Fluorescent properties of conjugated co-oligomers
M Nakamura et al

99

Polymer Journal



containing a large number of CHMI units (MIcont.¼ 48–84) in the
long wavelength region increased (Figure 3b). The intensities of the
peak at 583–590 nm affected the emission color. The homopolymer
obtained from 3,6-DIHCz showed one fluorescence peak at approxi-
mately 425–426 nm (Figure 3, Run 9). However, the PL spectrum of
the model compound featured a broad emission with maximum at
579 nm and emission color with very strong brightness unlike that of
the co-oligomers (Figure 3, Run 9 and Figure 5). From these results,
the fluorescence peak at approximately 425–426 nm was attributed to
the emission of the conjugated structure of the neighboring
HCz–HCz unit in co-oligomers, whereas the peak at approximately
583–590 nm was attributed to that of the CHMI-HCz unit.

Next, the UV–vis and PL spectra of the homo- and co-oligomers
containing a 2,7-HCz unit are shown in Figure 4. The homopolymer

(poly(2,7-HCz)) exhibited an absorbance peak attributed to the p–p*
transitions of the p-conjugated main chain around 341 nm (Figure 4a,
Run 14). The UV–vis spectra of co-oligomers showed shouldered
peaks approximately 295 nm due to the n–p* transitions of carbonyl
groups and the p–p* transitions of aromatic rings, and the absorption
maxima were similar to poly(2,7-HCz) approximately 355–359 nm
(Figure 4a, Runs 11–13). The UV–vis spectrum of poly(2,7-HCz),
with maximum intensity at 341 nm, was blue-shifted by approxi-
mately 14–8 nm relative to that (355–359 nm) of poly(CHMI-co-
2,7-HCz). The shouldered peaks of poly(CHMI-co-2,7-HCz)
approximately 386–414 nm were attributed to the p–p* transitions
of the p-conjugated main chain by the neighboring CHMI-HCz unit,
as there were no shouldered peaks for poly(2,7-HCz). The intensities
of shouldered peaks approximately 386–414 nm increased with
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Figure 2 Normalized absorption (a) and emission (b) spectra of poly(CHMI) (Run 1) and poly(CHMI-co-3,6-MCz) (Runs 2–5 in Table 1) in tetrahydrofuran

(THF) (concentration, 2.5�10�5 mol l�1 based on monomeric units). A full color version of this figure is available at Polymer Journal online.
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increasing MIcont.. In the PL spectra, co-oligomers exhibited two
fluorescence peaks approximately 417–419 and 581–585 nm
(Figure 4b, Runs 11–13). However, the PL spectrum of poly(2,7-
HCz) exhibited one emission. Poly(2,7-HCz) and poly(CHMI-co-2,7-
HCz) showed slightly blue-shifted maximum emission spectra
(417–419 nm) in comparison with that of poly(CHMI-co-3,6-HCz)
(424–427 nm). This result was attributable to the distinctive cross-
linking position at a carbazolene unit in the conjugated main chain.
The photograph of poly(CHMI-co-RCz) (Table 2) in THF solution
under the UV light (354 nm) is shown in Supplementary Figure S4.

Fluorescence solvatochromism of co-oligomers
Interestingly, the emission properties of poly(CHMI-co-2,7-HCz)
were significantly influenced by the nature of the solvent used, such
as THF and DMF. The UV–vis and PL spectra of poly(CHMI-co-2,7-
HCz) (Run 12) in THF and DMF are shown in Figure 5.

UV–vis spectra of poly(CHMI-co-2,7-HCz) measured in THF or
DMF exhibited similar patterns. The PL spectrum in DMF exhibited a
broad emission with a maximum at 422 nm, whereas that in THF was
observed as two emission bands at 418 and 583 nm. The spectrum in
DMF was similar to that of poly(2,7-HCz).

A photograph of poly(CHMI-co-2,7-HCz) in THF or DMF
solution under visible and UV light (354 nm) is shown in Figure 6.
The solutions of poly(CHMI-co-2,7-HCz) in THF and DMF were

Table 2 UV–vis absorption and PL emissiona maxima of poly(CHMI-

co-Ar) and the model compound

Run DXRCz

DICHMI /DXRCz

(mmol mmol�1)

MIcont.
b

(mol%)

Amax
c

(nm)

EWd

(nm)

lmax
e

(nm)

1 — 0.8/— 100 299,

496

299 NDf

2 3,6-

DBrMCz

0.6/0.2 74 315,

471

315 424,

595

3 0.4/0.4 69 316,

455

316 423,

590

4 0.2/0.6 34 316,

474

316 422

5 —/0.8 0 318 318 422

6 3,6-DIHCz 0.6/0.2 84 307,

465

307 426,

583

7 0.4/0.4 48 312,

441

312 425,

591

8 0.2/0.6 11 318,

459

318 426,

591

9 —/0.8 0 319 319 425

10 Model

compound

— — 312,

441

312 579

11 2,7-DBrHCz 0.4/0.4 31 359,

386

359 417,

581

12 0.4/0.4 40 355,

390

355 418,

583

13 0.4/0.4 48 355,

414

355 419,

585

14 —/0.8 0 341 341 419

Abbreviations: Amax, absorption maximum peak; DICHMI, 2,3-diiodo-N-cyclohexylmaleimide;
DXRCz, dihalide carbazole derivatives; EW, excitation wavelength; 1H NMR, proton nuclear
magnetic resonance spectroscopy; lmax, emission maximum peak; MIcont., molar ratios of the
CHMI unit in the co-oligomers; ND, not determined; PL, photoluminescence; THF,
tetrahydrofuran; UV–vis, ultraviolet–visible.
aIn all, 2.5�10�5 mol l�1 based on monomeric units in THF.
bDetermined by 1H NMR.
cAmax¼Absorption maximum peak.
dlmax¼Emission maximum peak.
eE.W.¼Excitation wavelength.
fnd: not determined.
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Figure 6 Photograph of poly(CHMI-co-2,7-HCz) (Run 12 in Table 2) under

visible (right) and UV light (left) in tetrahydrofuran (THF) or N,N-

dimethylformamide (DMF) (concentration, 2.5�10�5 mol l�1 based on

monomeric units). A full color version of this figure is available at Polymer

Journal online.
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both yellow. Under UV irradiation, solutions of poly(CHMI-co-2,7-
HCz) showed magenta emission in THF and blue emission in DMF,
similar to the homopolymer. The fluorescence solvatochromism
phenomenon occurred by decreasing emission bands at 583 nm only
in highly polar solvents such as DMF.

A change in the PL spectra by addition of n-hexane as a
nonpolar solvent or MeOH as a polar solvent to THF solution
was measured to investigate this phenomenon. PL spectra of Run
12 in THF/n-hexane are shown in Figure 7. An increase in the peak
intensity at 583 nm was observed by increasing the n-hexane ratio.
In addition, a change in the PL spectra by addition of MeOH as a

polar solvent to THF solution was investigated to explain this
phenomenon. The PL spectra of Run 12 in THF/MeOH are shown
in Figure 8. The peak intensity at 583 nm significantly decreased in
THF/MeOH¼ 9/1 (ml ml�1) and was completely quenched in
THF/MeOH¼ 5/5 (ml ml�1).

From the above results, the fluorescence peak intensity attributed to
CHMI-HCz in poly(CHMI-co-2,7-HCz) clearly depended on the
solvent polarity. The phenomenon presumably occurred by twisted
intramolecular charge transfer states of CHMI-HCz units in the
excited state. Twisted intramolecular charge transfer has been mainly
observed in molecules with electron donor and acceptor units and
was first acknowledged by the anomalous dual fluorescence of
p-dimethylaminobenzonitrile in polar solvents.55 Molecules forming
twisted intramolecular charge transfer show new emission bands or
quenching by twisting between donor and acceptor in polar solvents.
In the spectra for poly(CHMI-co-2,7-HCz) obtained by this work, the
fluorescence peak at 583 nm is quenched by the twist of CHMI-HCz
(Figure 9).

CONCLUSION

We prepared 3,6-DIHCz and 2,7-DBrHCz as dihalides with carbazolyl
groups and performed Yamamoto coupling polymerizations with
DICHMI. In the copolymerizations with 3,6-DBrMCz, Mn of the co-
oligomers decreased with increasing feed ratios of 3,6-DBrMCz
because of the low solubility of 3,6-DBrMCz. Yamamoto coupling
polymerizations of CHMI with 3,6-DIHCz, which has better solubi-
lity, yielded co-oligomers with higher Mn and MIcont. of the 3,6-HCz
unit. The PL spectra of the resulting co-oligomers were measured in
THF (concentration: 2.5� 10�5 M) and showed intense fluorescence
arranging from yellow to blue. The PL spectra of co-oligomers
containing HCz units showed two fluorescence peaks approximately
425–426 and 583–590 nm. The intensities of fluorescence emissions
were significantly affected by the polarity of organic solvents such as
THF and DMF. It seems that the solvatochromic fluorescence
phenomenon occurred by CHMI-HCz units in the excited state
forming a twisted intramolecular charge transfer state in polar
solvents such as DMF and MeOH. In this work, we have successfully
and easily synthesized co-oligomers containing a maleimide moiety
by Yamamoto coupling polymerizations with a dihalide aromatic
compound. N-substituted maleimide acts as the electron acceptor,
and control of the fluorescence wavelength of polymers is achieved by
varying the feed ratio of [DICHMI]/[DXCz] and the solvent.
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Figure 7 Emission spectra of poly(CHMI-co-2,7-HCz) (Run 12 in Table 2)

in a mixture of tetrahydrofuran (THF) and n-hexane (concentration,

2.5�10�5 mol l�1 based on monomeric units). A full color version of this

figure is available at Polymer Journal online.
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