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Particle scattering function of a two-dimensional
flexible macromolecule

Masukazu Hirata1

The particle scattering function (structure factor) P(q) of a two-dimensional flexible macromolecule (2D-FM), such as thin

graphite oxide and graphene oxide, was calculated. The geometrical model used for shrinking the 2D-FM particle was the

developable double corrugation surface (Miura folding) of a circular or elliptic disk. This model described a three-dimensionally

foldable and re-extendable shape and spontaneously exhibited a self-avoiding condition inside a single particle. Moreover, the

randomness of the shrinking shape and the polydispersity of the size of the disk were also added to the model. The obtained

P(q) varied greatly according to the shape of the particle, which can change from a flat extended state, like a disk, to a three-

dimensionally isotropic and dense shrunken state, like a short cylinder, by changing the degree of the shrinking. In addition,

the P(q) showed that the shrunken state is constructed from many small partial sub-planes that are three-dimensionally neither

isotropic nor dense.
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INTRODUCTION

Two-dimensional flexible macromolecule (2D-FM), which has the
ability to change their molecular shape from a flat extended state to a
small shrunken state, like a piece of paper, is expected to provide a
new point of view for polymer science.1,2

Typical, and most likely the most flexible, 2D-FM is a group of
materials consisting of layer-separated thin graphite oxide (several
layers)3–5 and graphene oxide (single layer; collectively called GO
here) and their reduced products, thin graphite and graphene
(collectively called G here). Thin GO can be synthesized from
graphite by oxidation, intercalation, hydrolysis and spontaneous
layer separation by electrostatic repulsion between neighboring
layers.6,7 Thin GO is easily reduced by reducing agents, heat, light
and changes to thin G.8 The existence of thin GO particles and their
flexibility had been recognized in the early stages of GO research.9–13

Several-layered particles (molecular assembly) and single-layered
particles (single molecule) were identified after progressive
developments in analytical methods and techniques,14–17 and the
use of the distinguished term graphene oxide started.18

The author and co-researchers also studied thin GO and thin G,
and showed a high yield synthetic method, excellent flexibility of thin
GO particles as 2D-FM and their other properties.18–25 Figure 1 shows
examples of the whole shape of many isolated thin GO particles with
a high aspect ratio. The GO particle changes the shape by changing
both the properties of the dispersion medium (mainly by dielectric

constant) and added salt (small ions). In each particle of Figure 1,
long straight part(s) correspond to large and sharp bend(s) in the
particle.
On the other hand, many theoretical and numerical studies on the

shapes, phases, phase diagrams, transitions among phases, critical
exponents, transport properties and so on of the class of 2D-FMs
named as tethered membrane or polymerized membrane have
been carried out in the field of soft matter and condensed matter
physics.1,26–51 Some predictions have been extended to more than three-
dimensional space. The 2D-FM’s several names of the shapes (or the
names of the phases similarly used) are flat, crumpled, tubular, collapsed,
folded, compact and so on. The particles in Figure 1 are in the categories
from flat phase to collapsed phase. The wavy structure in Figure 4 (GO
particle in poly(vinyl acetate) matrix) in Hirata et al.18 may show the
fixed fluctuation in the particle and the structure of the particle looks like
in the crumpled phase, which is not generally observed.
When analyzing such shapes of 2D-FM averagely, several types of

scattering measurements of numerous isolated 2D-FM particles
(dilute dispersion) were used as the basis for characterization, and
numerical and theoretical calculations of the particle scattering
function (structure factor) P(q) were carried out. In the numerical
calculations,26,27,31,33–36,38,39,44 for example, coarse-grained models
constructed by many 2D arranged and connected beads were used,
molecular dynamics calculations with appropriate potential and with
phantom condition or self-avoiding condition were executed and P(q)
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was calculated from the changed positions of the beads. In the
theoretical calculations,31,39 a circular disk with a Gaussian fluctuation
of its shape was assumed as the model, and P(q) was calculated
analytically. However, these calculations used one or a few limited
conformation(s) or limited fluctuation type(s) and were not averaged
from many random conformations or other fluctuation types or with
the appropriate polydispersity; hence, a useful P(q) did not yet exist.
In addition, because of this situation, although some scattering
measurements of thin GO have been carried out previously,15,52–54

the analysis and explanation of the measurement results were
semiquantitative and insufficient.
Thus, in this article, the author attempts to establish an easy and

useful P(q) for 2D-FM only in three-dimensional space by using a
simple model, which should express several types of 2D-FM shapes
with a self-avoiding condition. Only the geometrical shape defined
the model, and the interactions among different parts in one 2D-FM
particle, such as electrostatic interaction, were not considered in this
study, but the 2D continuity and the self-avoiding condition inside
one 2D-FM particle were implicit and very strong interactions. The
randomness of the shape was considered by generating and averaging
numerous different shrinking conformations. Polydispersity was also
considered by integrating the appropriate distribution of particle sizes.

MODEL AND FORMULATION

General formulations of the particle scattering function and the
radius of gyration
The particle scattering function P(q) is defined as follows:

PðqÞ¼ 1

N2

XN
i¼ 1

XN
j¼ 1

sinðqrijÞ
qrij

: ð1Þ

Here, q is the absolute value of the scattering vector and rij is the
distance between the ith and jth point. By introducing the pair
correlation function g(r), which is the normalized distribution of r,
the calculation time decreases because the calculation amount of
many sine functions and divisions decreases.

PðqÞ¼
Zrmax

0

gðrÞ sinðqrÞ
qr

dr ð2Þ

Here, rmax is the maximum distance.

The radius of gyration RG is defined as follows:

RG ¼ 1

2N2

XN
i¼ 1

XN
j¼ 1

r 2
ij

( )1/2

¼ 1

N

XN
i¼ 1

r 2
gi

( )1/2

: ð3Þ

In the case of direct calculation of RG from many points, the
calculation time decreases by using distance rgi from the center of
mass. The universal plots of g(r) and P(q) with RG are r/RG vs RGg(r)
and qRG vs P(q), respectively.

Model of folded surface
Developable double corrugation surface and its formulation. After
some trials using folding paper (origami), the author decided to use a
model that can easily express a three-dimensionally foldable and
re-extendable shape of a flexible disk (a circular disk of diameter D,
and also an elliptic disk, as described later) of infinitely small
thickness, as shown in Figure 2. This shape is called the developable
double corrugation surface (DDCS), and the folding method used is
called Miura folding.55,56 This method can be used to expand solar

Figure 1 Examples of the whole shape of thin GO particles (nano GRAX, Mitsubishi Gas Chemical). Scanning electron microscope images of the particles

(on average, width: 20mm, thickness: o2 nm (less than about 2 layers), molecular weight: 42.5�1011 per layer) dried from dilute aqueous dispersion or

acetone dispersion.

Figure 2 The model of 2D-FM. Examples of the DDCS of a circular disk

(example of a periodic folding; up) and an elliptic disk (example of a
random folding; down), a flat extended state (left) and a folded state (right).

Two-dimensional flexible macromolecule
M Hirata

803

Polymer Journal



cells on an artificial satellite, to expand a folded paper map and so on.
The method of Miura folding is most likely the simplest, although
other methods are also possible, to realize three-dimensional and
2D-periodic folding and shrinking. This model is suitable for 2D-FMs
because self-avoiding of the surface itself is spontaneously considered
and affine deformation of the surface does not occur. Here, a tubular
shape (scroll type) was not considered, although it was predicted40

and was also previously obtained in the case of graphene.57,58

Figure 3 shows the coordinate system and the dividing method of a
disk to describe the folded partial sub-planes of DDCS. The vectors of
uth and vth folding lines of two directions before folding, dPT,u and
dPL,v , and those after folding, dFT,u and dFL,v , are as follows:

dPT;u ¼
dT;u
0
0

0
@

1
A ð4Þ

dPL;v ¼
ð� 1Þvþ 1dL;v/ tan a

dL;v
0

0
@

1
A ð5Þ

dFT;u ¼
dFTx;u
dFTy;u
dFTz;u

0
@

1
A¼

dT;u cos a/ cosb
0

ð� 1Þuþ 1dT;uð1� cos2 a/ cos2 bÞ1/2

0
@

1
A

ð6Þ

dFL;v ¼
dFLx;v
dFLy;v
dFLz;v

0
@

1
A¼

ð� 1Þvþ 1dL;v cos b/ sin a
dL;v sinb/ sin a

0

0
@

1
A; ð7Þ

where dT,u and dL,v are gaps between neighboring folding lines, a is
the angle between the longitudinal and transversal folding lines before
folding and b is the projection of a after folding. Subscript P is a plane
state (before folding), F is a folded state (after folding), T is
transversal and L is longitudinal. The ranges of u and v are decided
as described later. The original surface of the disk is divided into sub-
planes by the folding lines.

Transfer of positions of points. The positions of the points are
transferred by the folding. The original position PP before folding is

decomposed as follows:

PP ¼
PPx
PPy
0

0
@

1
A¼

XV
v¼ 1

dPL;v þ cLdPL;V þ 1 þ
XU
u¼ 1

dPT;u þ cTdPT;U þ 1;

0 pcL o 1; 0 pcT o 1:

ð8Þ

By using the obtained values V, cL, U and cT, the transferred position
PF can be calculated as follows:

PF ¼
PFx
PFy
PFz

0
@

1
A¼

XV
v¼ 1

dFL;v þ cLdFL;V þ 1 þ
XU
u¼ 1

dFT;u þ cTdFT;U þ 1;

ð9Þ

where, to simplify the calculation, the center of the original disk
before folding is previously transferred to the position (D, D, 0).
After transferring the positions of many points according to the

method detailed above, the distance rij between two points can be
calculated by the transferred positions as follows:

rij ¼fðPFx;i � PFx;jÞ2 þðPFy;i � PFy;jÞ2 þðPFz;i � PFz;jÞ2g1/2 ð10Þ

Classifying many rij by their values provides the distribution of r, and
g(r) can be obtained after normalizing such that the integral
represents unity. P(q) can then be calculated by using g(r).

Change of particle size and its limit. Using transversal and long-
itudinal dividing numbers (against D) nT and nL (the value of which
is 1 or more, non-integer is also available), the gaps dT,u and dL,v are
defined as follows:

dT;u ¼D/nT ; u¼ 1; 2; � � �; U þ 1 ð11Þ

dL;v ¼D/nL; v¼ 1; 2; � � �; V þ 1; ð12Þ

and the DDCS can be constructed by the partial sub-planes divided
by the gaps between the neighboring folding lines. Moreover, in
the case in which the DDCS is divided equally between the transversal
and longitudinal, the relationship between nT and nL becomes

Figure 3 The coordinate system and the dividing method of a disk. Coordinate system, dividing of a disk by the DDCS and the decomposition of the

position of one point (left), angle a and vectors of folding lines before folding (right up), angle b and vectors of folding lines after folding (right down).
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nT¼ nL¼ n. Then,

dT;u ¼ dL;v ¼D/n; u¼ 1; 2; � � �;U þ 1; v¼ 1; 2; � � �;V þ 1 ; ð13Þ

and the sizes of the x, y and z directions, Lx, Ly and Lz, of the
shrunken 2D-FM approximately become as follows:

Lx/D ffi cos a/ cosb ð14Þ

Ly/D ffi sin b/ sin a ð15Þ

Lz/D ffi ð1� cos2 a/ cos2 bÞ1/2/n: ð16Þ

The coarse outline of the shape after folding is a short circular
cylinder or an elliptic cylinder (Lx and Ly are a diameter or a major
diameter and a minor diameter, Lz is a height, LxXLz and/or LyXLz).
The shrinking in the x and y directions is likely to be about the

same, that is, Lx¼ Ly (4Lz). Therefore, in the case of restriction
0obpp/4paop/2, this relationship can be satisfied by

aþ b¼ p/2; ð17Þ

and then Lx, Ly and Lz are

Lx/D¼ Ly/D¼ cos a/ cosðp/2� aÞ ð18Þ

Lz/D¼f1�ðLx/DÞ2g1/2/n¼f1� cos2 a/ cos2ðp/2� aÞg1/2/n:
ð19Þ

The coarse outline of the shape after folding becomes a short circular
cylinder.
Moreover, because the thickness (height) of the shrunken shape is

not likely to be larger than the width, the limit of shrinking can be set
as the point at which the sizes of the three directions become equal,
that is, Lx¼ Ly¼ Lz, and the limits of a and b are following:

amax ¼ p/2� bmin ¼ arctanfðn2 þ 1Þ1/2g; ð20Þ

and the limit sizes become

Lx/D¼ Ly/D¼ Lz/D¼ðn2 þ 1Þ� 1/2: ð21Þ

In the case where a and b exceed the above limit, the shape is
flattened again in the x and z directions. If the desired outcome is for
more particle shrinking, the value of n could be increased.
The ideal 2D-FM with an infinitely small thickness could shrink to

an infinitely small state. However, in reality, each 2D-FM has a finite
thickness T and has a shrinking limit. If we decide that the limit is the
state where the thickness (height) equals to the width, by using the
aspect ratio a¼D/T, the limit of shrinking would become

Lx/D¼ Ly/D4 a� 1/3: ð22Þ

However, this limit represents an ideal plastically deformed case in
which a particle shrinks without empty space inside the particle. As
the shrinking real 2D-FM particle contains the empty space, the real
limit is generated at a larger size (several times the value of a�1/3 or
more).

Change of radius of gyration. Change of RG by shrinking can be
approximated as:

RG/D ffi 2� 3/2 fðLx/DÞ
2 þðLy/DÞ2 þðLz/DÞ2g1/2

ð12 þ 12 þ 02Þ1/2

¼f1þð2n2 � 1Þ cos2 a/ cos2ðp/2� aÞg1/2/4n:
ð23Þ

Here, 2�3/2 is the ratio between RG and D of a circular disk. In the
case of a sufficiently large n, Equation 23 would become

RG/D ffi 2� 3/2 cos a/ cosðp/2� aÞ: ð24Þ

In the case of a small n and/or a large a, because the influence of the
edges of the folded shape is relatively large, the error between the
value calculated by Equation 24 and the value calculated numerically
by using many points becomes large.

Addition of randomness and polydispersity
The calculation procedure presented above relates to the fundamental
DDCS shape. In the next stage, in order that the procedure can be
also used to analyze the scattering results from a real 2D-FM, we add
randomness and polydispersity by arbitrary combination of the
following four methods: (1) smoothing the g(r), (2) randomizing
the sizes of the divided areas (partial sub-planes), (3) changing the
shape of the flat extended state to be a random ellipse and (4) adding
particle size (molecular weight) distribution.

Smoothing the g(r): method (1). In the calculations mentioned
above, plural peaks and valleys tend to form, and it is typical in the
case of a small n. This is caused by periodic folding with gaps of the
same size between the neighboring folding lines. However, real 2D-
FM particles fold more randomly, and the g(r), which we wanted to
calculate in this study, is the averaged result of a large number of such
random shapes and should not have so many (large) plural peaks and
valleys. Therefore, we reduced the peaks and valleys by smoothing the
g(r). This method corresponds to the addition of randomness to one
particle. Specifically, the g(r) curve is divided once into small ranges,
the fitting of a second-order function in each range is iteratively
carried out by using the least-squares method, and the original values
of the g(r) are replaced by the fitted values (each point on the g(r) is
replaced by the fitted value calculated from the point and many
neighboring points). Parameters that control the degree of smoothing
(the number of neighboring points and the number of the iteration
count of the smoothing process) can be changed manually, but the
parameters are defined automatically in the cases of methods (2), (3)
and (4), which contain calculations of many partial particle scattering
functions.

Randomizing the sizes of the divided areas (partial sub-planes): method
(2). The gaps between the neighboring folding lines, dT,u and dL,v,
can be randomly changed, and the sizes of the divided areas (partial
sub-planes) can be randomized. This method results in a DDCS with
low periodicity in the particle. Here, many dT,u and dL,v are randomly
generated in the following ranges by defining the maximum value of
the randomizing ratio Rn (X0) of the ranges.

0pð1�RnÞD/nTpdT;upð1þRnÞD/nT ð25Þ

0pð1�RnÞD/nLpdL;vpð1þRnÞD/nL ð26Þ

The whole particle scattering function can be calculated by averaging
many partial particle scattering functions (the total number is M and
the weights are equal to each other) obtained from the plural DDCSs
of circular disks, each of which has a different shape. As each particle,
which has different folding lines from other particles, has a different
radius of gyration RGm, each normalized partial particle scattering
function Pm(q) is shifted and added, then the averaged whole particle
scattering function �PðqÞ is calculated as follows:

�PðqÞ¼
XM
m¼ 1

PmðqRGm/ �RGÞ
( )

/M: ð27Þ
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Here, the averaged whole radius of gyration �RG is as follows:

�RG ¼ ð
XM
m¼ 1

R 2
Gm Þ/M

( )1/2

: ð28Þ

Changing the shape of the flat extended state to be a random ellipse:
method (3). Real particles of graphene oxide in a flat extended state
have various shapes and various ratios between transversal and
longitudinal sizes. Therefore, we deal with the shapes and the ratios
by various ellipses (which contain circles). The ellipses can be
randomly generated in a range 1pepE of ellipticity (the ratio of
the length between the major axis and minor axis) e by setting the
maximum ellipticity E (X1). In cases in which the areas of the ellipses
are equal to the area of the original (basal) circle (another case is
considered in method (4)), the ellipses have a major diameter e1/2D
and a minor diameter e�1/2D, where D is the diameter of the original
circle. In addition, we define that the gaps of the folding lines do not
relate to the ellipticity and relate to the diameter D of the original
circular disk. The whole particle scattering function �PðqÞ is then
calculated by averaging many partial particle scattering functions (the
total number is M and the weights are equal to each other) that are
obtained from plural DDCSs of the elliptic disks, which are different
from each other. The formulae for �PðqÞ and �RG are the same as in
method (2).

Adding particle size (molecular weight) distribution: method (4). This
method (4) is similar to ordinal polydispersity.59 Real particles of
graphene oxide in the flat extended state also have various sizes.
Therefore, if we assume an appropriate distribution, the whole
particle scattering function can be calculated. As graphene oxide is
not synthesized by polymerization at present, we simply use a normal
distribution of the size (diameter D) of the circular or elliptic disk in
the flat extended state. However, to ensure that the degree of partial
shrinking is equivalent for all the various disks, we define the dividing
number n as proportional to the size (diameter D) of the basal
circular disk. By denoting the normalized partial scattering function
and the related radius of gyration of dividing number n as P(q;n) and
RG(n), and by integrating them with a shift, the whole particle
scattering function �PðqÞ and the whole radius of gyration �RG of this
polydisperse case can be calculated as follows:

�PðqÞ¼
R
Pðqð1þ swÞRGðn0ð1þ swÞÞ/ �RG; n0ð1þswÞÞNðwÞWðwÞdwR

NðwÞWðwÞdw ð29Þ

�RG ¼
R
fð1þ swÞRGðn0ð1þ swÞÞg2NðwÞWðwÞdwR

NðwÞWðwÞdw

" #1/2

: ð30Þ

Here, n0 is the basic dividing number (inputted n), s is the relative
standard deviation (ratio of the standard deviation of the diameter to
the diameter), N(w) is the normalized normal distribution function
and W(w) is the weight, which corresponds to the molecular weight.

NðwÞ¼ ð2pÞ� 1/2 expð�w2/2Þ ð31Þ

WðwÞ¼ pðD/2Þ2ð1þ swÞ2 ð32Þ

The N(w) can be changed to other distribution functions or a
measured distribution.

�PðqÞ and �RG can be approximated by the following polynomials:

�PðqÞ ffi

Pð70Þ
k¼ð� 70Þ

Pðqð1þ 0:1ksÞRGðn0ð1þ 0:1ksÞÞ/ �RG ; n0ð1þ 0:1ksÞÞNð0:1kÞWð0:1kÞ

Pð70Þ
k¼ð� 70Þ

Nð0:1kÞWð0:1kÞ
ð33Þ

�RG ffi

Pð70Þ
k¼ð� 70Þ

fð1þ 0:1ksÞRGðn0ð1þ 0:1ksÞÞg2Nð0:1kÞWð0:1kÞ

Pð70Þ
k¼ð� 70Þ

Nð0:1kÞWð0:1kÞ

2
66664

3
77775

1/2

;

ð34Þ

where the terms only in the conditions n0ð1þ 0:1ksÞ4 0 and
NðwÞWðwÞX10� 6 are selected and used.
In the case in which method (2) and/or method (3) are combined

with method (4), by denoting the partial particle scattering functions
as Pm(q;n) and the related partial radius of gyrations as RGm(n), �PðqÞ
and �RG can be calculated as follows:

�PðqÞ ffi

Pð70Þ
k¼ð� 70Þ

PM
m¼ 1

Pmðqð1þ 0:1ksÞRGmðn0ð1þ 0:1ksÞÞ/ �RG ; n0ð1þ 0:1ksÞÞ
� �

Nð0:1kÞWð0:1kÞ

M
Pð70Þ

k¼ ð� 70Þ
Nð0:1kÞWð0:1kÞ

ð35Þ

�RG ffi

Pð70Þ
k¼ð� 70Þ

PM
m¼ 1

fð1þ 0:1ksÞRGmðn0ð1þ 0:1ksÞÞg2
� �

Nð0:1kÞWð0:1kÞ

M
Pð70Þ

k¼ð� 70Þ
Nð0:1kÞWð0:1kÞ

0
BBBB@

1
CCCCA

1/2

ð36Þ

The number of the partial particle scattering functions used isB60 or
more in the case of method (4) and is B60M or more in the
case in which method (2) and/or method (3) are combined with
method (4).
We hereafter refer to the above mentioned model that combines the

randomness with the polydispersity in any combination as the
randomized DDCS of circular or elliptic disk (RDD) model. This
model enables the calculation of the particle scattering function and
the radius of gyration of a general 2D-FM.

Numerical calculations
Numerical calculations using the RDD model were executed with a
Monte Carlo procedure, because the complete analytical calculations
of Equations 2 and 3 require many multiple integrations of variables
x, y and z in the set of many partial sub-planes, and then it is
complicated. Therefore, this procedure is not a simplification of the
model itself. Many points are generated at random positions in
the circular or elliptic disk before folding, and the original positions of
the points are transferred to new positions after folding by Equations
8 and 9. Here, we used relative values: diameter 1 of a circle, or major
diameter e1/2 and minor diameter e�1/2 of an ellipse, and the center of
disk (1, 1, 0). Then, g(r), P(q) and RG are calculated by using the
positions of the points after folding. In the case in which the
randomness of the shape and the polydispersity of the size are added,
each partial result is calculated repeatedly, then averaged together, and
�PðqÞ and �RG are obtained.
In this calculation, if the number of the points N is too small, the

2D continuity among the points will not be reflected. The continuity
also depends on nT and nL, which define the degree of dividing of the
disk. Therefore, in this study, after some trials concerning the
convergence of the calculated results, the conditions NX5000 and/
or NZ2nTnL were used. The interval for classifying many rij for g(r)
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calculations was automatically changed to a value of 0.001 or less.
Simpson’s 1/3 rule was used for each numerical integration.
The computer program (see Supplementary information: (1) the

instruction of the calculation program (usage and source list) and
tables of values of Figures 7, 9 and 10; (2) the executable file of the
calculation program) used for the above calculation for Microsoft
Windows was made using F-BASIC (native code compiler, Fujitsu
Middleware, Yokohama, Japan).

Pair correlation functions and particle scattering functions of
circular disk and circular cylinder
As mentioned above, in the case of folding the circular disk with a
similar degree of shrinking in the x and y directions, the coarse
outline of the shape after folding is expected to be a short circular
cylinder. Therefore, we also used the g(r) and P(q) of the circular disk
and the short circular cylinder for comparison.

Circular disk. The g(r) of a rigid thin circular disk (D¼ 1, RG¼ 2�3/2)
can be calculated by Porod60

gðrÞ¼ 16

p
rfarccos r� rð1� r2Þ1/2g; 0 pr p1: ð37Þ

This g(r) coincides with the g(r) calculated by the DDCS of a circular
disk with a¼ b¼ p/4 and corresponding P(q) is as follows.60 Here, J1
is a Bessel function of the first order.

PðqÞ¼ 2f1� J1ð2xÞ/xg/x2; x¼ qD/2¼ 21/2qRG ð38Þ

The weight of polydispersity W(w), which corresponds to the
molecular weight, is as follows:

WðwÞ¼ pðD/2Þ2ð1þ swÞ2: ð39Þ

Circular cylinder. The g(r) of a short circular cylinder (where the
diameter is D and the ratio of height (length) to the diameter is e) can
be calculated numerically by generating many points in the cylinder.
The corresponding P(q) is as follows,61–63 although it is transformed
to simplify the calculation.

PðqÞ¼
Zp/2
0

sinðeAcqRG cos yÞ
eAcqRG cos y

2J1ðAcqRG sin yÞ
AcqRG sin y

� �2

sin ydy ð40Þ

Ac ¼f6/ð3þ 2e2Þg1/2 ð41Þ

RG ¼A� 1
c ðD/2Þ ð42Þ

Moreover, in the case in which the height changes proportionally to
the diameter, the weight of polydispersity W(w), which corresponds
to the molecular weight, is as follows:

WðwÞ¼ pðD/2Þ2eDð1þ swÞ3: ð43Þ

Particle size (molecular weight) distribution. The averaged whole
particle scattering functions �PðqÞ and the averaged whole radius of
gyrations �RG of a circular disk and a short circular cylinder are as
follows. Here, RG is the radius of gyration of w¼ 0.

�PðqÞ¼
R
PðqRGð1þ swÞ/ �RGÞNðwÞWðwÞdwR

NðwÞWðwÞdw ð44Þ

�RG ¼RG

R
ð1þ swÞ2NðwÞWðwÞdwR

NðwÞWðwÞdw

( )1/2

ð45Þ

Polynomials similar to those mentioned above can be used for the
corresponding numerical calculations.

RESULTS AND DISCUSSION

The case of fundamental DDCS shape
Initially, calculation of the fundamental DDCS shape with highly
periodic folding (without randomness) and with monodispersity was
carried out. Figure 4 shows examples of the changes in the shape and
size of the transforming DDCS. Figure 5 shows the changes of the
sizes in three directions.
Figure 6 shows the changes in g(r) by altering n and a. Figure 6a

includes the plots before and after smoothing. The effect of smooth-
ing was higher at small values of n, but peaks and valleys of g(r)
before smoothing were specific to DDCS, and we used the smoothing
for all calculations hereafter. Figure 6b is a universal plot of g(r) after
smoothing, and the g(r) of the circular cylinder (e¼ 1) was added. By
increasing a, the g(r) of DDCS was changed from the g(r) of the
circular disk to the g(r) of near the circular cylinder, which is a more
isotropic shape, but the g(r) of DDCS had a larger tail in the large
r/RG region. This tailing was caused by the existence of the sharp
part(s) in the shape of DDCS, as shown in Figure 4. The real shrunken
2D-FM particles also had the sharp part(s), as shown in Figure 1.
Figure 7a shows the changes in P(q) by altering n and a. The P(q) of

a¼ p/4 was the same as the P(q) of a circular disk. By increasing a, the
P(q) of DDCS becomes a wavy curve with many peaks and valleys.
This oscillating behavior was directly coursed by the sine function of
Equation 2 and moreover by using only one shape of DDCS with high
periodicity in the particle. Such behavior was also obtained in previous
numerical and theoretical studies of 2D-FM.26,27,31,33–36,38,39,44

However, because the P(q) of both a short circular cylinder and an
ellipsoid of revolution (which contains a sphere) with a low aspect
ratio and narrow dispersity also has a similar behavior (an example of
P(q) of the short circular cylinder (e¼ 1) is shown in Figure 7a), the
behavior is not unique to 2D-FM.
Figure 7b shows the changes of RG by altering n and a. By

increasing n and a, RG decreased monotonically. Moreover, RG was

Figure 4 Examples of the changes in the shape and size resulting from the transformation of the DDCS of a circular disk (E¼1). n¼10; a¼45, 55, 65,

75 and 83 (deg), from left to right; b¼90�a (deg), Rn¼0.
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larger than Equation 23 at a large a and became equal to Equation 23
at large n and equal to Equation 24.
Figures 7a and b indicate that, in the case in which a was near p/4

and especially when n was large, the coarse outline of a particle with a
low degree of shrinking was similar to a circular disk; therefore, we
could not judge the difference between a DDCS and a disk by using
only P(q). This difficulty will be discussed again later.

Influence of randomizing shape and polydispersity of size
In the next stage, the P(q) of more diversified RDDs was calculated.
Hereafter, instead of �PðqÞ and �RG, P(q) and RG denote the whole
particle scattering function and the whole radius of gyration,
respectively. Figure 8 shows examples of the influence of the cases
in which the randomness of the shape and polydispersity of sizes
changed. In these cases, randomizing the sizes of divided areas (partial
sub-planes) gave the simplest curves, which had fewer peaks and
valleys.
Figures 9a and b show examples of P(q) and RG in which the

randomizing of the sizes of the divided areas was applied using
Rn¼ 0.5. The P(q) obtained was a simple curve. This result shows the
general behavior of monodisperse 2D-FM with random shapes, and
this behavior had not been obtained until now. The monotonic curve
was the result of averaging and canceling many peaks and valleys of
many partial particle scattering functions, which are different from
each other. This canceling could not be realized by the averaging of
many (partial) pair correlation functions.
Moreover, Figures 10a and b show examples of P(q) and RG under

the conditions in which the randomizing of the sizes of the divided
area was applied using Rn¼ 0.5, the shape of the flat extended state
was a random ellipse with E¼ 3 and the distribution of particle size
was added with s¼ 0.5. The P(q) obtained was more of a simple
curve than P(q) in Figure 9a. This result shows the general behavior of
polydisperse 2D-FM with random shapes, and this behavior had not
been obtained until now.
The above results are some examples using limited values for

parameters; calculations with wider ranges of parameters are possible
by using the computer program included in the Supplementary

Figure 5 The changes of the sizes. The lengths Lx, Ly and Lz of x, y and z

directions of the DDCS of a circular disk (E¼1), Rn¼0. Open circles

denote the calculated points in Figure 6 or in the table in the

Supplementary information.

Figure 6 Pair correlation function g(r) of RDD model. The fundamental DDCS shape with b¼90�a (deg), Rn¼0, E¼1, N¼3 00 000, M¼1 and s¼0.

(a) Before and after smoothing. (b) After universalizing. Each broken curve in b is g(r) of the circular cylinder with e¼1, s¼0.
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information. See Supplementary information: (1) the instruction of
the calculation program (usage and source list) and tables of values of
Figures 7, 9 and 10; (2) the executable file of the calculation program.

Change of q dependence
Figure 11 shows the P(q) of some examples of the RDD model and
the short circular cylinder with polydispersity using a double
logarithmic plot. As expected, the index of q dependence changed
from about �2 to �4 in the small qRG region because the whole
structure of RDD changed from the 2D flat type, like a disk, to the
three-dimensionally isotropic and dense type, like a short cylinder.
However, the index was near �2 in the large qRG region because the
local structure of RDD contained many small partial sub-planes and
was three-dimensionally neither isotropic nor dense. This q depen-
dence predicted by the RDD model is likely to be the characteristics of
the general 2D-FM. In contrast, a short circular cylinder, as shown in
Figure 11, and an ellipsoid of revolution with a low aspect ratio and
polydispersity did not show such q dependence because they also had
a local structure that was three-dimensionally isotropic and dense.
Such behavior, caused by partial structures that locally extend, had

been shown for the P(q) of a linear FM.64

Fitting procedure of particle scattering function and fitting
examples
Fitting procedures for the P(q) of the RDD model for analyzing the
results of scattering measurements of 2D-FM are detailed below. As
mentioned above, in the case in which a was near p/4, and especially
when n was large, it is difficult to judge the shape of a rigid thin disk
or a weakly shrunken 2D-FM by only the measurement result.
Moreover, the calculated curves of P(q) became more similar to each
other with the addition of randomness and polydispersity. Therefore,
it is reasonable to use the information of the most flat extended state,
that is, the averaged diameter D, which is the value approximated by a
circular disk. In particular, two methods are used. One is based on
both the observation of many extended flat particles by microscopy
and statistical calculation of the sizes. The other is based on the

Figure 7 (a) Particle scattering function P(q) and (b) radius of gyration RG

of RDD model. The fundamental DDCS shape with b¼90�a (deg), Rn¼0,
E¼1, N¼3 00000, M¼1 and s¼0. Broken curve in a is P(q) of the

circular cylinder with e¼1, s¼0. Broken curves in b are RG calculated by

Equation 23.

Figure 8 Particle scattering function P(q) of RDD model. Examples of the

influence of shape randomness and size polydispersity. b¼90�a (deg).
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calculation of the average size of the flat extended state by using both
the molecular weight from the scattering measurement and the
information from the repeating unit of the particle. By using the D
obtained from these methods and the RG obtained from a small q
region of the scattering measurement, it is possible to narrow the

range of n and a in a plot of a vs RG/D or Equation 23. After that, the
detailed fitting of P(q), with changing n, a, Rn, E and s, is carried out.
Here, we should pay attention to two additional possibilities:

(1) the rigid disk with finite thickness (very short cylinder) also may
have a similar P(q) and (2) the P(q) of a 2D-FM particle with

Figure 9 (a) Particle scattering function P(q) and (b) radius of gyration RG

of RDD model. Examples of the monodisperse system with b¼90�a (deg),

Rn¼0.5, E¼1, N¼20 000, M¼50 and s¼0.

Figure 10 (a) Particle scattering function P(q) and (b) radius of gyration RG

of RDD model. Examples of the polydisperse system with b¼90�a (deg),

Rn¼0.5, E¼3, N¼20 000, M¼10 and s¼0.5. Broken curve in a is P(q)

of the circular cylinder with e¼1, s¼0.5.
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multiple layers may have peaks and valleys derived from the multi-
layered structure in the large q region.
By using the fitted result, the averaged image of the measured

2D-FM particles becomes the shape specified by the value of the
parameters: n obtained, a obtained, Rn¼ 0, e¼ (1þ E)/2 using E
obtained and s¼ 0.
The P(q) obtained by the RDD model contains various curves,

which varied widely, and the curves could explain the results of all the
previous scattering measurements of thin GO.15,52–54 Figure 12 shows
two fitting examples of such thin GOs, which are weakly folded53 and
intermediately folded,52 and the images of fitted models. Although the
detailed information of the most flat extended state was not provided
in each reference, the RDD model explained the measurement results
more successfully than the other models.

CONCLUSIONS AND PERSPECTIVES

The particle scattering function P(q) of 2D-FM was calculated. The
DDCS of a circular or elliptic disk was used as the shrinking model,
which contained the self-avoiding condition of the surface itself inside
the single particle. Moreover, the randomness of the shrinking shape
and the polydispersity of the size of the disk were also added to the
model. The obtained P(q) varied greatly according to the shape of the
particle, which can change from a flat extended state, like a disk, to a
three-dimensionally isotropic and dense shrunken state, like a short
cylinder, by changing the degree of shrinking. In addition, the P(q)
also showed that the shrunken state is constructed from many small
partial sub-planes that are three-dimensionally neither isotropic nor
dense.
In the future, it is expected that (1) the calculation result obtained

will be used for analyzing the shape of many kinds of 2D-FMs, (2) the
more detailed physical model, which contains the interactions among
different parts in the 2D-FM particle, such as stiffness or contour area
(this corresponds to the contour length of the ionic linear FM) by
electrostatic interaction, will be constructed, (3) the shape of the 2D-
FM will be extended to more complicated shapes, such as a planate
branch, a planate ring or a planate block, and (4) the shape and the
interaction will be considered for many 2D-FM particles in a
concentrated system.

Figure 11 Particle scattering function P(q) of some examples of the

polydisperse systems. RDD model (n¼10, b¼90�a (deg), Rn¼0.5, E¼3,

N¼20000, M¼10 and s¼0.5) and circular cylinder (s¼0.5).

Figure 12 Fitting examples of light scattering measurement results of thin

GOs. (a) The case of weakly folded particle: J, measurement result53

(aqueous dispersion of GO) shifted with RG¼730 nm; R1, RDD model

(n¼10, a¼53 deg, b¼37 deg, Rn¼0.5, E¼2, N¼20 000, M¼10 and

s¼0.2). (b) The case of intermediately folded particle: J, measurement

result52 (water 50% and acetone 50% dispersion of GO; the q values in

this reference were used with shifting 1 order of magnitude larger, because

they were strange as a light scattering measurement) shifted with

RG¼710nm; R2, RDD model (n¼30, a¼74 deg, b¼16 deg, Rn¼0.5,

E¼2, N¼20000, M¼10 and s¼0.2); D, circular disk (s¼0.2); C1,
circular cylinder (e¼0.05, s¼0.2); C2, circular cylinder (e¼0.1, s¼0.2);

C3, circular cylinder (e¼1, s¼0.2). (c) The averaged image of each shape

of the models, R1 (n¼10, a¼53 deg, b¼37 deg, Rn¼0 and e¼1.5), R2

(n¼30, a¼74 deg, b¼16 deg, Rn¼0 and e¼1.5), D (–), C1 (e¼0.05),

C2 (e¼0.1) and C3 (e¼1).
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Systeme. Acta Phys. Austriaca 14, 185–211 (1961).

63 Matsuoka, H. in Jikken Kagaku Kouza (Experimental Chemistry Course) 5th edn,
Vol. 11, 323–338 (Chemical Society of Japan: Maruzen, Tokyo, 2006).

64 Tsunashima, Y. & Kurata, M. The particle scattering function and the distribution
functions in the interior of fully swollen polymer molecules. J. Chem. Phys. 84,

6432–6436 (1986).

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 3.0 Unported

License. To view a copy of this license, visit http://creative
commons.org/licenses/by-nc-sa/3.0/

Supplementary Information accompanies the paper on Polymer Journal website (http://www.nature.com/pj)

Two-dimensional flexible macromolecule
M Hirata

812

Polymer Journal

http://www.nature.com/pj

	Particle scattering function of a two-dimensional flexible macromolecule
	Introduction
	Model and formulation
	General formulations of the particle scattering function and the radius of gyration
	Model of folded surface
	Developable double corrugation surface and its formulation
	Transfer of positions of points
	Change of particle size and its limit
	Change of radius of gyration

	Addition of randomness and polydispersity
	Smoothing the g(r): method (1)
	Randomizing the sizes of the divided areas (partial sub-planes): method (2)
	Changing the shape of the flat extended state to be a random ellipse: method (3)
	Adding particle size (molecular weight) distribution: method (4)

	Numerical calculations
	Pair correlation functions and particle scattering functions of circular disk and circular cylinder
	Circular disk
	Circular cylinder
	Particle size (molecular weight) distribution


	Results and discussion
	The case of fundamental DDCS shape
	Influence of randomizing shape and polydispersity of size
	Change of q dependence
	Fitting procedure of particle scattering function and fitting examples

	Conclusions and perspectives
	Acknowledgements
	Note
	References




