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Statistical determination of chemical composition
and monomer sequence distribution of poly(methyl
methacrylate-co-tert-butyl methacrylate)s by
multivariate analysis of 13C NMR spectra

Hikaru Momose1,2, Tomoya Maeda1, Kosuke Hattori1, Tomohiro Hirano1 and Koichi Ute1

To evaluate chemical compositions and heterogeneity of comonomer sequences in methyl methacrylate (MMA)-tert-butyl

methacrylate (TBMA) copolymers, multivariate analysis was applied to the 13C nuclear magnetic resonance (NMR) spectra of

the carbonyl, backbone quaternary and a-methyl carbons of the copolymers. A better linear relationship was found between the

first principal component score and the chemical composition in copolymers than was found between the results from spectra

of the carbonyl and backbone quaternary carbons. The chemical compositions of 16 copolymers were successfully predicted

by partial least squares regression (PLSR). The second principal component was found to reflect the fraction of MMA-TBMA

hetero dyad sequence. Dyad sequence distributions of copolymers that were obtained at higher conversions were successfully

determined by PLSR with those of copolymers obtained at low conversions as a training set. Multivariate analysis using properly

prepared samples provided us with quantitative information of chemical compositions and comonomer sequence distributions,

without assignment of the 13C NMR resonance peaks.
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INTRODUCTION

Multivariate analysis is a powerful tool that can transform complex
information into more useful sets of information, and that can extract
vital differences from data that may look similar by other methods.
Application of multivariate analysis to metabolite evaluations,
so-called ‘metabolomics’, is well known. Principal component analysis
(PCA) and partial least squares regression (PLSR), developed by
Kowalski1,2 and Wold,3 have been successfully applied to many
applications such as the study of the impact of stress conditions on
the plant metabolome,4 the evaluation of neurological disease
progression5 and studies on toxicological mechanisms.6 An
interesting application is the quality classification of Japanese green
tea7 or curative plants8 through 1H nuclear magnetic resonance
(NMR) spectra of their extracts. Multivariate analysis has also been
applied to characterization of polymer materials. PCA and PLSR were
utilized for the discrimination of ethylene-vinyl acetate copolymers
with different compositions and the prediction of the content of vinyl
acetate in the copolymers by infrared emission,9 Raman10 or near-
infrared11 spectroscopy. PCA was also applied to analyze the Fourier
transform infrared spectroscopy and differential scanning calorimetry

data of various types of polyethylenes to classify chain-branching
types, and chain-branching content and distribution.12

Recently, we have reported the PCA and PLSR of 13C NMR spectra
of methyl methacrylate (MMA) and tert-butyl methacrylate (TBMA)
copolymers, homopolymers and different blends of two methacrylates
(poly MMA (PMMA) and poly TBMA (PTBMA)).13 The first
principal component (PC1) scores contained most of the
information of the chemical compositions of polymers, and PLSR
(without assigning resonance peaks) predicted the chemical
compositions accurately and precisely. The second principal
component (PC2) scores reflected the heterogeneity of comonomer
sequences. In that case, PCA and PLSR were performed on the
spectrum regions of the carbonyl and quaternary backbone carbons.
Maximization of the spectral information for entire spectrum regions
requires further examination.

In this paper, the shapes of PCA score plots in each spectral region
were compared to determine suitable spectral regions that maximized
the complete spectral information. The relationship between PC1
scores and the chemical compositions of the samples, as well as the
influence on the precision and accuracy of PLSR from the difference
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of the spectrum regions set, were examined. Furthermore, we focused
on quantitative analysis of the heterogeneity of comonomer sequences
of MMA-TBMA copolymers. The fractions of comonomer sequences
at dyad and triad levels for two blends of copolymers and seven
copolymers obtained at the end stage of polymerization by PLSR were
determined.

EXPERIMENTAL PROCEDURE

Materials
MMA and TBMA (supplied by Mitsubishi Rayon, Tokyo, Japan) were purified

by distillation under reduced pressure. 2,20-Azobisisobutyronitrile (Wako Pure

Chemical Industries, Osaka, Japan) was recrystallized from methanol. Ethyl

lactate and methanol (Kishida Chemical, Osaka, Japan) were used without

purification.

Polymerization
A mixture of the monomer (20 wt%) and 2,20-azobisisobutyronitrile

(0.5 mol% of the monomer mixture) were dissolved in ethyl lactate.

Polymerization was carried out at 80 1C under a nitrogen atmosphere. After

3–7 min, the polymerization mixture was cooled to room temperature and

poured into a large volume of a methanol/water mixture (3/7 vol/vol). The

polymer precipitated and was collected by filtration and dried over night at

60 1C in vacuo. Table 1 summarizes the feed ratio and chemical composition

(mol% in TBMA units), Mn, Mw/Mn and the yield of the polymer samples

together with those of the homopolymers and the copolymers obtained at

higher yields.13

Measurements and procedures
The homopolymers, copolymers and homopolymer blends were dissolved in

chloroform-d (8% wt/vol). 1H and 13C NMR spectra of the sample solutions

were measured at 55 1C on a JNM-ECX400 spectrometer (JEOL, Tokyo, Japan)

equipped with a 10 mm multinuclear probe (1H: 451 pulse (8.5ms), pulse

repetition 8.90 s, 16 scans; 13C: 451 pulse (7.5ms), pulse repetition 2.73 s, 10000

scans, with 1H broadband decoupling). Chemical composition was determined

from the integral intensities of 1H NMR signals of the ester groups of MMA

and TBMA units.

Each 13C NMR spectrum was stored into 32 768 complex data points

covering a spectral width 31250 Hz, and zero-filled to 13 1072 points before

Fourier transformation. An exponential apodization function was applied to

free induction decays, which corresponded to a line-broadening factor of

3.0 Hz. The 13C NMR chemical shift of chloroform-d was set to 77.0 p.p.m. as

an internal standard. Bucket integration at an interval of 0.25 p.p.m. was

performed with the JEOL Alice2 ver.5 for metabolome ver.1.6 software for

the following six spectral regions; 15.1–23.1 p.p.m. (a-methyl carbons),

26.0–29.0 p.p.m. (methyl carbons of tert-butyl groups in TBMA units),

44.1–48.1 p.p.m. (backbone quaternary carbons), 48.2–58.2 p.p.m. (ester

methyl carbons of MMA units and backbone methylene carbons),

79.5–83.0 p.p.m. (quaternary carbons of tert-butyl groups in TBMA units)

and 175–179 p.p.m. (carbonyl carbons). The sum of integral intensities in each

resonance region was normalized to 100. The average integral intensity was

subtracted from each integral intensity. The data set therefore consisted of

mean-centered bucket integral values. PCA and PLSR of the data sets were

conducted using the Sirius ver. 7.0 software (Pattern Recognition Systems,

Bergen, Norway).

RESULTS AND DISCUSSION

PCA
Figure 1 shows a 13C NMR spectrum of poly(MMA-co-TBMA) with
53.8 mol% in TBMA units (M-54 in Table 1). The spectra of
a-methyl, backbone quaternary and carbonyl carbons of the copoly-
mer were broad and complicated because of configurational and
comonomer sequences. Therefore, the assignment of the individual
peaks is troublesome.

The individual PCA for 27 samples (2 homopolymers, 9 blends and
16 copolymers) was performed on the six spectral regions described
above. Figure 2 shows the PC1–PC2 score plots for these regions. The
number in parentheses denotes the contribution rate of variance for
each principal component. Spectral information in each region could
mostly be explained by the PC1–PC2 score plots. The cumulative
contribution rate was over 96% in each case. As shown Figures 2a–c,
their score plots reflected on the spectral information of the carbonyl,
backbone quaternary and a-methyl carbons were the same shapes,
because their carbons were the common structures in MMA and
TBMA units.

A new data set was constructed by combining bucket integral
intensities of the three spectral regions of the carbonyl, backbone
quaternary and a-methyl carbons to improve reliability of the PCA.
Figure 3 shows the PC1–PC2 score plots for the combined data set.
The contribution rates of PC1 and PC2 were 77.1% and 20.7%,
respectively. Further investigation described below was made on this
data set.

Statistical determination of chemical composition
Figure 4 shows 13C NMR extended spectra with the carbonyl,
backbone quaternary and a-methyl carbons of PMMA, PTBMA
and poly(MMA-co-TBMA) of L-54, together with the corresponding
PCA loading histogram. The loading histograms indicate the pseudo-
signal reflecting each principal component in the bucket integral
intensities for the three resonance regions of all sample polymers.
Positive loadings of PC1 were observed at the same chemical shift
owing to the signals of PMMA, whereas negative ones were observed
from PTBMA. Their loading histograms indicated that PC1 reflected
the chemical compositions of MMA and TBMA units in polymer
samples, as described in the previous section. The relationship

Table 1 Preparation of PMMA, PTBMA and poly(MMA-co-TBMA)sa

TBMA (mol%)

Code Feed Copolymerb Mn
c (10–3) Mw/Mn

c Yield (%)

H-0 0 0 9.22 2.22 83

H-24 20.0 24.0 8.33 2.46 83

H-43 40.0 43.1 8.50 2.47 85

H-65 60.0 64.5 8.47 2.51 85

H-83 80.0 82.7 8.47 2.54 87

H-100 100 100 9.18 2.39 86

M-29 25.0 29.2 6.34 1.39 35

M-54 50.0 53.8 5.70 1.56 45

M-78 75.0 78.0 4.60 1.69 55

L-6 5.0 6.0 15.9 1.79 7

L-18 15.0 18.3 15.6 1.90 2

L-28 25.0 28.4 14.3 1.87 6

L-41 35.0 40.9 15.6 1.89 6

L-56 49.9 55.5 16.0 2.13 4

L-71 65.0 70.8 14.0 2.12 5

L-79 75.0 78.6 13.9 2.10 9

L-88 85.0 88.1 14.4 2.11 4

L-93 91.9 93.2 13.0 2.25 5

Abbreviations: AIBN, 2,20-azobisisobutyronitrile; MMA, methyl methacrylate (MMA); NMR,
nuclear magnetic resonance; PMMA, poly MMA; PTBMA, poly tert-butyl methacrylate; SEC,
size exclusion chromatography; THF, tetrahydrofuran.
a(AIBN)0¼0.5 mol% of monomer (H-100–H-0 and L-93–L-8). (AIBN)0¼20mol% of monomer
(M-78–M-29).
bDetermined by 1H NMR.
cDetermined by SEC in THF calibrated with standard PMMA samples.
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between the PC1 score (y) and the TBMA unit composition in
mol% (x) was derived as the following equation with a correlation
coefficient (R2) of 0.998:

y ¼ 21:12x þþ58:7

The R2 is slightly better than that reported in our previous paper
(R2¼ 0.997),13 where the two spectral regions due to the carbonyl and
backbone quaternary carbons were used for the PCA.

To predict TBMA unit composition in polymer samples, a PLSR
model was constructed with bucket-integral data sets of the three
spectral regions and the TBMA unit composition data of the two
homopolymers and nine their blends as a training (reference) set. The
first latent variable (LV1) was used for the regression model because
99.5% of the spectral information was explained with only LV1. The
LV1 loading histograms, shown in Figure 5, were the same shape as
the PC1 loading. Therefore, this model was reasonable to predict
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Figure 1 100 MHz 13C NMR spectrum of poly(MMA-co-TBMA) with 55.5 mol% in TBMA units (L-56),as measured in chloroform-d at 55 1C. (a) Whole,

(b) carbonyl carbon, (c) backbone quaternary carbon and (d) a-methyl carbon regions.

Figure 2 First (PC1) and second (PC2) principal component score plots for (a) the carbonyl, (b) the backbone quaternary, (c) the a-methyl, (d) the

backbone methylene and the methyl group of MMA pendant, (e) the quaternary of TBMA pendant and (f) the methyl groups of TBMA pendant 13C NMR

signals of PMMA (~), PTBMA (~), homopolymer blends (}), copolymers obtained at high conversions (’) and low conversions (&). The number in

parentheses is the contribution rate of variance for each principal component.

Figure 3 First (PC1) and second (PC2) principal component score plots for

the combined 13C NMR signals in the carbonyl, backbone quaternary and

a-methyl groups of two homopolymers and 16 copolymers. See Figure 2

for each symbol. The number in parentheses is the contribution rate of

variance for each principal component.
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chemical compositions in samples. Figure 6 shows the relationship
between the TBMA unit compositions determined by 1H NMR and
those predicted by PLSR. An excellent relationship was obtained with
an R2 of 0.999, which is also slightly better than that in the previous
paper (R2¼ 0.998).13 The accuracy of predicted TBMA unit
compositions by PLSR was evaluated with relative standard
deviation, RSD. The RSD was calculated to be 3.4%, which is
slightly worse than that of the 2.8% (this RSD of 2.8% is as same
sense as the absolute error of 3.4% indicated in our previous report)
in the previous paper.13 This is because of the two methyl groups in
the 2,20-azobisisobutyronitrile fragment,14 which were observed in the
same region as the a-methyl carbons.

Relationship between the PC2 score and the heterogeneity of
monomer sequences
The PC2-positive loadings in the PCA loading histograms, as shown
in Figure 4, appeared at 176.50–177.75 p.p.m. in the resonance region
of carbonyl carbon, at 44.60–44.85 p.p.m. and 46.35–46.85 p.p.m. in
that of backbone quaternary carbon, 16.60–17.10 17.85–18.10 and

Figure 4 13C NMR spectra of the carbonyl, backbone quaternary and a-methyl carbons of (a) PMMA (H-0), (b) poly(MMA-co-TBMA) (L-56) and (c) PTBMA

(H-100). (d) The corresponding loading histograms for the first (PC1) and second (PC2) principal component of the 13C NMR spectra.

Figure 5 The loading histograms of the PLSR model for predicting chemical compositions in samples, constructed in the 13C NMR spectra and TBMA unit

compositions with the PMMA, PTBMA and nine of their blends.

Figure 6 Correlation between predicted TBMA compositions by partial least

square regression and observed by 1 H NMR for PMMA (~), PTBMA (~),

nine homopolymer blends (}) and 16 copolymers (&, ’). The solid line

indicates the ideal correlation. Training (reference) set model: PMMA,

PTBMA and nine homopolymer blends.
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18.60–19.10 p.p.m. in that of a-methyl carbon, and corresponded to
the signals of the two homopolymers. Conversely, the characteristic
signals of copolymers, especially at 175.75–176.50, 178.00–179.00 and
44.85–46.35 p.p.m., arose on the negative side in PC2 loadings. The
prime characteristic of copolymers is the presence of different
monomeric sequences. Therefore, PC2 should reflect the heterogene-
ity of monomer sequences, as the stereoregularity of the copolymers is
not expected to vary greatly with the feed monomer ratio in this
copolymerization.15

To obtain quantitative information about the heterogeneity of
monomer sequences from PC2, the fraction of hetero dyad sequence
f12, consisting of M1 and M2 units was used as an index. The radical
copolymerization of methacrylate monomers generally proceeds
according to the terminal model. The f12 in the copolymer is
expressed as Equation (1),16

f12 ¼
2P12P21

P12 þ P21
ð1Þ

where P12 and P21 denote the probability of addition to M2 monomer
by the M1-ended radical and vice versa, respectively. P12 and P21 are
defined by Equations (2) and (3) in the case of low conversions,17

P12 ¼
2F2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðr1r2 � 1ÞF1F2

p ð2Þ

P21 ¼
2F1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðr1r2 � 1ÞF1F2

p ð3Þ

where r1 and r2 denote reactivity ratios of monomers M1 and M2,
respectively, and F1 and F2 denote chemical composition of M1 and
M2 units in the copolymer obtained at an early stage of
polymerization (F1þ F2¼ 1). Thus, the f12 in the copolymer
obtained at low conversions is calculated by Equation (4):

f12 ¼
4F1F2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðr1r2 � 1ÞF1F2

p ð4Þ

The f12 depends on comonomer composition. A copolymer with
equimolar composition, F1¼ F2¼ 0.5, maximizes f12. A completely
random copolymer whose comonomer sequence distribution obeys
Bernoullian statistics (r1¼ r2¼ 1) gives f12¼ 0.5 at F1¼ 0.5. Homo-
polymer and completely alternating copolymers exhibit extreme
values of f12, 0 and 1, respectively. The f12 is equivalent to the RN
defined by Harwood et al.18 (run number¼ 100 f12).

The monomer reactivity ratios of MMA, rM and TBMA, rT were
calculated to be 0.81±0.06 and 1.26±0.03 with an R2 of 0.997,
respectively, by the Kelen-Tüdõs method19 using nine copolymers
obtained at early stages of copolymerization (L-6–L-93, Table 1).
These were comparable to previously reported values (rM¼ 0.96 and
rT¼ 1.35 by Yuki et al.,15 rM¼ 0.68 and rT¼ 1.29 by Zhao et al.20).
The fMT (M1: MMA, M2: TBMA) for L-6–L-93 were calculated with
Equation (4). The good relationship between the PC2 score (w) and
the fMT (z) of L-6–L-93 and the two homopolymers was obtained as
the following equation with an R2 of 0.996:

w ¼ 283:6z þ 18:6

PC2 scores succeeded in reducing the quantitative information of
the fraction of hetero dyad sequences, fMT.

Statistical determination of dyad sequence distribution by PLSR
Dyad sequence distributions (dyad sequence distributions mean,
strictly speaking, the distributions of sequence of two monomeric
units in each copolymer chain. In this report, we simply define them
as the fractions of each dyad sequence in measured samples) of

copolymers should be determined by PLSR with a training set of
copolymers obtained at low conversions, because the information of
the fraction of two homo dyads, M1–M1: f11 and M2–M2: f22 were also
included in the three spectral regions. The f11 in the copolymers
obtained at an early stage of polymerization is expressed as
Equation (5),16

f11 ¼
P21P11

P12 þ P21
¼ F1ð1

2F2

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðr1r2 � 1ÞF1F2

p Þ ð5Þ

where P11 denotes the probabilities of addition to the M1 monomer
by the M1-ended radical (P11¼ 1–P12).17 f22 is also expressed by
replacing suffix number 1 with 2 in Equation (5). The fractions of
three dyad sequences, fMM, fMT, fTT for PMMA, PTBMA and the
copolymers of L-6–L-93 were calculated from Equations (4) and (5),
as summarized in Table 2. Chemical composition was adopted as fMM

and fTT of the blends of two homopolymers with fMT¼ 0. Leave-one-
out cross-validation21 was performed by PLSR to validate the training
set models of fMM, fMT and fTT, which were constructed with 20 13C
NMR spectra and theoretical fractions in Table 2. Each cumulative
contribution rate of three PLSR models, as summarized in Table 3,
was over 99% with two latent variables, LV1 and LV2. Figure 7 shows

Table 2 Theoretical fractions of dyad sequences for training set

modelsa

Code fMM (%) fMT (%) fTT (%)

H-0 100 0 0

B-13b 87.2 0 12.8

B-22b 77.9 0 22.1

B-32b 68.4 0 31.6

B-42b 58.2 0 41.8

B-51b 49.3 0 50.7

B-61b 38.9 0 61.1

B-70b 30.1 0 69.9

B-80b 19.6 0 80.4

B-90b 13.1 0 86.9

H-100 0 0 100

L-6 88.4 11.2 0.4

L-18 66.7 29.9 3.4

L-28 51.3 40.6 8.1

L-41 35.0 48.2 16.8

L-56 19.9 49.2 30.9

L-71 8.6 41.3 50.1

L-79 4.6 33.5 61.8

L-88 1.4 21.0 77.5

L-93 0.5 12.7 86.8

aCalculated from Equations (4) and (5).
bData from Momose et al.13

Table 3 Contribution rates of PLSR models to predict the fractions of

dyad sequences

LV fMM (%) fMT (%) fTT (%)

LV1 94.7 97.4 93.4

LV2 4.9 2.3 6.4

Total 99.6 99.7 99.8

Abbreviation: PLSR, partial least squares regression.
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the LV1 and LV2 loading histograms of their PLSR models on the
spectra regions of carbonyl carbons. The shapes of the LV1 and LV2
loading histograms of the fMM model coincided with those of PC1
and PC2 on PCA loadings, and indicated that the LV1 and LV2 of
fMM model caught information on the homo and hetero dyad
sequences in the polymer samples. The LV1 of the fMT model were
the same as LV2 of the fMM model reflected the hetero dyad
sequences. The positive and negative LV1 loading of the fTT model
showed the same shape of PTBMA and PMMA spectra, which were
the opposite sign of those of fMM model. The loading histograms on

the spectra regions of the quaternary and a-methyl carbons showed
the same results as those of the carbonyl carbon. Therefore their PLSR
models were reasonable to predict the three fractions of dyad
sequences in copolymer samples. Figure 8 (see Supplementary Table
S1 and Figure S1) shows the PLSR models predicting fMM, fMT and
fTT. This indicates that a good fit between theoretical and predicted
fractions was obtained, with an R2 of 0.999–0.997 and an RSD of
3.5–7.1%. Thus, their PLSR models should be able to predict the
fractions of three dyad sequences with good accuracy and precision
from spectra of unknown samples.

Verifying adaptability to a wide variety of MMA-TBMA copoly-
mers, the prediction of fMM, fMT and fTT of the two copolymers,
which were blended with different large copolymers of dyad sequence
distributions, were initially tried on the PLSR models in Figure 8.
Table 4 shows the amount of the original copolymers and the TBMA
unit compositions of the copolymer blends.

The fractions of dyad sequences were determined by PLSR models
in Figure 8. Table 2 summarizes the fractions of three dyad sequences
calculated from the blend molar ratio of the original copolymers and
those predicted by PLSR. Calculation procedures are described in
Supplementary information. The predicted fractions of dyad
sequences were excellent in relation to their predicted values, with
an R2 of 0.995 and an RSD of 2.6% for six of the fractions of three
dyad sequences. It was confirmed that the fractions of dyad sequences
of copolymer samples were predicted with good accuracy and
precision by using those training set models.

Figure 9 shows the predicted distribution of seven copolymers
obtained at higher conversions, H-83–H-24 and M-78–M-29, using
the training set model. These plots deviated slightly from the
simulation for the copolymers obtained at early stages of copolymer-
ization owing to the difference of conversions. The average fractions
of each dyad sequence at full conversions calculated by the Spinner
method22 showed the same tendency as Figure 8 (see Supplementary
Table S1 and Supplementary Figure S1).

PCA for side chain structures
PCA was also performed for the quaternary carbons (Figure 2e) and
the methyl carbons (Figure 2f) of the tert-butyl ester groups in TBMA
units. Only the plot of the PMMA homopolymer deviated far from
the other plots, indicating that PMMA homopolymer was easily
distinguished from other samples. This was because no signals were
observed in these resonance regions of the spectrum of PMMA.

The PCA score plots for the backbone methylene carbons and the
methyl carbons of methyl ester groups in MMA units (Figure 2d)
were a similar shape to those for a-methyl, backbone quaternary and
carbonyl carbons (Figures 2a–c), although the PC1 plot distances of
the blends of homopolymers narrowed with increasing PC1 scores.
The narrow plot distance can be attributed to incorporation of the
signals from the methyl ester groups, which only belong to MMA
monomeric units. If the signals of the methyl carbons of methyl ester
groups in MMA units could be separated from those of the methylene
carbons, the PCA score plots for the backbone methylene groups
would be similar to those for the a-methyl, backbone quaternary and
carbonyl carbons (Figures 2a–c).

CONCLUSIONS

We applied multivariate analysis of 13C NMR spectra of PMMA,
PTBMA, their blends and poly(MMA-co-TBMA)s to compositional
and sequential characterization. The two principal components of
PCA explained the spectra of the majority of samples tested. PC1 and
PC2 indicated the chemical composition and the fraction of hetero

Figure 7 The loading histograms of the PLSR model, which predicts the

fractions of three dyad sequences in samples, constructed with the 13C

NMR spectra and theoretical fractions of dyad sequences with the two

homopolymers, and nine copolymers and their blends obtained at early

stages of copolymerization.
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dyad sequence, respectively. Also, the dyad sequence distributions of
copolymers obtained at higher conversions were successfully deter-
mined by PLSR using homopolymers and the copolymers at early
stages of copolymerization as a training data set, without assignment
of 13C NMR resonance peaks. We are currently investigating a
quantitative determination method of stereoregularity in addition
to chemical composition and comonomer sequence distribution of
poly(MMA-co-TBMA).
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Table 4 Calculated and predicted fractions of dyad sequences for

the blends of copolymers obtained at low conversions

Original

copolymer

TBMA

fMM (%) fMT (%) fTT (%)

Code I II (mol%)a Calc.b Pred.c Calc.b Pred.c Calc.b Pred.c

CB-1 L-71 L-28 47.0 32.5 32.2 40.9 42.1 26.6 25.7

CB-2 L-6 L-93 48.4 45.6 46.3 11.9 12.6 42.4 41.7

Total R2 0.995

Total RSD (%) 2.6

Abbreviations: Calc., calculated; NMR, nuclear magnetic resonance; PMMA, poly methyl
methacrylate; pred., predicted; PTBMA, poly tert-butyl methacrylate.
aDetermined by 1H NMR.
bCalculation procedure of fractions of dyad sequences is described in the Supplementary
Information.
cPredicted condition: 2LVs. Training set models: the resonance regions owing to the carbonyl,
quaternary and a-methyl carbons, and the samples owing to PMMA (H-0), PTBMA (H-100),
blends of homopolymers (B-13–B-90) and copolymers obtained at low conversions (L-6–L-93).

Figure 9 Dyad sequence distributions of the copolymer obtained at higher

conversions. Each dashed line indicates the dyad sequence calculated from

Equations (4) and (5) obtained at low conversions.

Figure 8 PLSR models for predicting fractions of (a) MMA homo (fMM), (b) MMA-TBMA hetero (fMT) and (c) TBMA homo (fTT) dyad sequences from 13C

NMR signals of the carbonyl, backbone quaternary and a-methyl carbons of PMMA (~), PTBMA (~), their blends (}) and poly(MMA-co-TBMA)s obtained

at early stages of copolymerization (&).
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