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Phase separation in mixtures of flexible and
semiflexible polymers

Narayan P Adhikari and Ekkehard Straube

Using off-lattice Monte Carlo simulations, the critical value of the Flory–Huggins parameter, v, for flexible–semiflexible

(isotropic–isotropic) polymer systems as a function of the stiffness of the semiflexible components was estimated. The

simulation data were compared with those of the mean field, and it was found that both agree very well. The interfacial

tension and the width of the flexible–semiflexible polymer systems were also studied for strong and weak segregation limits.
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INTRODUCTION

Different kinds of polymers can be mixed into a single material in
different ways, which can lead to a wide range of phase behaviors that
directly influence the associated physical properties and applications
of polymers. Two different polymers generally do not mix well. The
factors that control polymer–polymer phase behavior are the choice of
monomers, molecular architecture, composition, molecular size,
interaction energies, specific interactions and the ‘Equation of state
effects’. The study of the structure, phase behavior and interfacial
properties of polymers has found longstanding and widespread
interest.1–10 Understanding the phase behavior of mixtures of different
kinds of polymers is important scientifically11 as well as practically.
The scientific importance arises from the complex behavior polymer
mixtures display, and the practical importance arises from the many
industrial applications of these materials. Polymer blends are generally
structurally asymmetric, corresponding to species-dependent local
intramolecular properties, such as monomer shape, branch content,
and persistence length. Such asymmetries are expected to have a major
impact on blend thermodynamics and phase diagrams and can give
rise to non-Flory–Huggins miscibility behavior. The prediction of the
phase behavior of semiflexible polymeric materials is an important
step toward the full characterization of the structural and dynamic
properties of liquid–crystalline polymeric materials. In polymer
blends, it is important to know how the locations of various phases,
isotropic and nematic, and their transitions depend on the properties
of the two components, their rigidities, polymerization indices, inter-
actions and so on.

Differences in chemical structure may also lead to different spatial
configurations of the chemical repeat units, corresponding to different
persistence lengths, that is, stiffness disparities.4 Such stiffness dispa-
rities may occur even in materials that are chemically very similar, for
example, different polyolefins. Liu and Fredrickson12 have calculated a

free energy functional for a flexible–semiflexible polymer system that
depends on two order parameters, namely, the concentration and
orientational density of polymer segments. Usually, the phase behavior
of flexible polymers is described in terms of a single order parameter,
the concentration. However, owing to the fact that individual mono-
mers may have a rigid, anisotropic character, a description of stiff
polymers should include the orientational density as a second order
parameter. The model by Holyst and Schick13 extracts general rela-
tionships between the properties of phase diagrams and polymer
parameters. Sheng et al.14 have studied the effect of chain stiffness
on polymer phase behavior.

In the case of flexible and semiflexible polymer blends, one wants to
know how the location of various phases, isotropic and nematic, and
their transitions depend on the properties of the two components,
their rigidities, polymerization indices, interactions and so on.4 The
prediction of the phase behavior of semiflexible polymeric materials is
an important step toward the full characterization of the structural
and dynamic properties of liquid–crystalline polymeric materials.
High-performance materials containing blends of small-molecule
liquid crystals or liquid–crystalline polymers with flexible polymers
are typically multidomain composites. Liquid crystals and liquid–
crystalline polymers are quite stiff and consequently mix poorly with
flexible polymers.12,15,16

Polymer systems with flexible–semiflexible chains have attracted a
great deal of attention because different polymers have different
stiffnesses. As the stiffness disparity increases, the study of phase
separation becomes more difficult.4 Usually, the study of phase
separation by computer simulation is performed using a semi-grand
canonical ensemble in which the long wavelength degrees of freedom
are relaxed by the exchange between different types of chains.17 When
the stiffness disparity increases, such a semi-grand canonical ensemble
becomes inefficient as there are many more allowed configurations of
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flexible chains than semiflexible chains.15 Therefore, the study of phase
transitions in flexible–semiflexible polymer systems using computer
simulation is challenging.

The simplest polymer mixture is a blend of two different types of
homopolymers. A very fruitful approach to study this type of system
near its consolute (critical) point is based on the mean-field (MF)
Flory–Huggins free energy and the de Gennes random phase approx-
imation for the scattering intensity.18 Both can be stated in terms of
the Landau–Ginzburg model. De Gennes pointed out that the MF
theory is rather good for high molecular mass mixtures in contrast to
low molecular mass mixtures, for which the MF theory breaks down
close to the critical point. In fact, in the limit of N-N (N, number of
monomers per chain), the MF theory is exact. In other words, because
of the chain connectivity, the effective range of interactions between
polymers, which is roughly the extension of the chains, becomes very
large for high molecular weights, and according to the Ginzburg
criterion, the critical region in which critical fluctuations become
important is very small as a result. The MF approach is quantitatively
correct if the correlation length xB(T/TC�1) is comparable or smaller
than the typical length scale in the system, that is, the radius of
gyration BON. Comparing two length scales for a large N, we find
that the MF theory breaks down very close to the critical point, that is,
for |T�TC|/TCB1/N. This is the Ginzburg criterion.

In the present work, the critical value of the Flory–Huggins
parameter was estimated as a function of the stiffness of the semi-
flexible components in flexible–semiflexible polymer systems. In the
next section, the model and techniques are described; in the following
section, the results are presented and discussed. We close with a brief
discussion of our findings and an outlook on future work.

MODEL AND SIMULATION TECHNIQUES

We performed computer simulations of mixtures of flexible and semiflexible

polymers to estimate the critical value of the Flory–Huggins parameter, w.

Figure 1 shows a typical snapshot of such a system. A coarse-grained

continuous-space model has been used, which is described in detail elsewhere.15

This off-lattice model has the advantage of providing a more direct way (by

setting a restriction on bond angles) of generating semiflexible chains and

allows for the investigation of chains with larger stiffness ranges than those

under the often used lattice model.17 The polymer chains are modeled, using

the rod-bead model, as a succession of jointed spherical monomers. Each

chain consists of N (with N¼32) spheres of equal diameter dmin¼O3 that are

connected by (N–1) bonds of variable length dminpdmaxp(4/3)dmin. A bending

restriction has been imposed by a stepwise potential. We have generated

semiflexible chains in which the angle between two consecutive bond vectors

is not larger than 901, 751 and 601, which correspond to semiflexible chains

with persistence lengths in units of average bond length (lp/a) equal to 2.0, 2.5

and 4.0, respectively, where a is the average bond length. In the present model,

the flexible chains assume (lp/a) values equal to 1.25. The whole system consists

of 512 flexible and semiflexible chains. All chains have an average bond length

aB2.

The interaction between any indirectly jointed segments is also modeled by a

stepwise potential. It is assumed that the interaction between similar monomers

A and B (type A for flexible chains and type B for semiflexible chains), is

symmetric, that is, VAA¼VBB¼0, and a repulsive potential with the interaction

parameter e acts between different monomers VAB¼kBTe, where kB is the

Boltzmann constant and T is the absolute temperature. The assumed range of

the interaction between two different types of monomers is dint¼(O5/3)dmin.

The Flory–Huggins parameter depends on the monomer interaction parameter

e and also on the average number of interchain contacts for a monomer within

a sphere corresponding to the interaction range between two different types of

monomers, zeff:

w ¼ zeff e ð1Þ

where

Zeff ¼
Zeff ;flexible

2
+

Zeff ;semiflexible

2
: ð2Þ

Hence, w increases slightly with the increasing stiffness of the semiflexible

component because in the semiflexible chains the number of contacts between

monomers from other chains increases. We generated 32 flexible random walk

chains with random bond-length distributions dminpdpdmax with no overlap

between the next nearest neighbors within the chain.15 Another 32 random

walk chains (semiflexible) were generated by setting additional constraints on

the angles between two consecutive bond vectors of a chain. We considered an

initial box with the dimensions 64�16�16 as having three compartments.

One half of the box was randomly occupied by flexible chains (a quarter at the

top and a quarter at the bottom) and the remaining half of the box (the

middle) by the semiflexible chains. The overlaps between the segments

were then removed by a stepwise increase in the diameter of the spherical

monomers followed by Monte Carlo steps. This process was repeated until the

minimum distance between any two monomers was equal or greater than dmin.

After the overlaps were removed, the size of the system was doubled by shifting

the y and z coordinates to obtain a system of 256 chains in a 64�32�32

parallelepiped. Furthermore, we multiplied the system by shifting the y

and z coordinates again to obtain a system of study with 1024 chains in a

64�64�64 cube.

For equilibration and thermodynamic averaging, we performed Monte

Carlo steps according to the standard Metropolis algorithm using a random

choice of monomer and cyclic choice of one of the six directions along the

coordinate axes. The length of an attempted step was randomly chosen to be

between zero and a maximum step length B0.23�dmin. To accelerate the tests

for hard core overlapping and the calculations of the interaction energy after

each attempted move, we followed the linked-cell method.19 This process leads

to two well-defined interfaces in the generated canonical (NVT) ensemble

(L�L�L), with periodic boundary conditions along all three directions. The

interfaces are, on average, located in 1/4 and 3/4 of the x dimensions of the

simulation box.

To determine whether we had reached equilibrium configurations, we

monitored the square of the interfacial width (w2) and the mean squared

displacement (MSD) of the center of mass of chains against time. A system with

interfaces in the weak segregation limit (WSL) may be expected to be in

equilibrium if the MSD of the center of mass of chains after the removal of the

overlaps is comparable to the square of the interfacial width. In the strong

segregation limit (SSL), it is sufficient to monitor the square of the radius of

gyration, Rg
2, rather than w2, as in the case when Rg

24w2. In WSL, w24Rg
2, so

we monitored w2. Owing to confinement along the perpendicular direction

caused by the two interfaces in the system, the perpendicular and parallel

components of the MSD (parallel and perpendicular with respect to the plane

of the interface, see the Figure 1) are not equal because of chain orientation,15

and the MSDs also become increasingly different with increasing displacement.

Figure 2 presents the MSD and the square of interfacial width for a system of

semiflexible chains and flexible chains in which the semiflexible component has

Figure 1 Typical snapshot of systems studied in the present work. Green

polymers are flexible, whereas red polymers are semiflexible. The stiffness of

the red chains varies. A full color version of this figure is available at

Polymer Journal online.
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a persistence length (lp/a) equal to 4.2, and the Flory–Huggins parameter (w) of

the system is 0.136. The attempted number of moves per monomer required to

reach an equilibrium configuration also varies with w and the flexibility of the

semiflexible component. For a system with a persistence length of the

semiflexible component equal 4.2 and w equal to 0.085, 108 attempted number

of moves per monomer were performed to reach a configuration sufficiently

close to equilibrium. Measurements of the interfacial tensions were performed

after testing the equilibrium of the systems.

In the present work, because of the stiffness disparity between the species,

the straightforward application of the semi-grand-canonical identity changes

between different polymer types became rather inefficient with increasing

stiffness disparity. We determined the interfacial tension with the virial

theorem. One can also estimate the interfacial tension by analyzing the

spectrum of capillary fluctuations,15 but in the present work, we used the

virial theorem. Determining the interfacial tension using the virial theorem

rests on the determination of the anisotropy of the pressure tensor of a system

with an interface. The interfacial tension s can be expressed as follows:

s ¼ DF

DA
ð3Þ

where DF is the difference in the free energy on changing the cross-sectional

area of the interface by DA. The change in the free energy can be calculated by

considering the forces caused by a small deformation of the simulation box.

This results in the following:

s ¼ f?L?
L2
k
�

fk
Lk

ð4Þ

where f>,|| are the normal forces acting on the boundary of the simulation box

perpendicular and parallel to the interface plane. The force can be measured by

a small homogeneous uniaxial deformation of the chains. In the present work

(for the step potential, Ui), the force components were calculated as follows:

f?;kL?;k
kBT

¼ 1

Da

X
i
hDWiMiða; a� DaÞi ð5Þ

where i is the type of interaction,

DWi ¼ Dðexpð�Ui=kBTÞÞ ð6Þ
is the change in weight and

Miða; a� DaÞ

is the number of monomers entering/leaving the interaction range for i of

another monomer when changing the compression/expansion from a to

a±Da.

In the present work, the change in the interfacial tension and width as a

function of w were studied, covering both the SSL and the WSL. The simulation

results were compared with the MF results. In SSL, MF theory predicts that

the interfacial tension varies as the square root of the Flory–Huggins

parameter, w:20

s
kBT
¼ 2

3

ffiffiffi
a
p ðb3

A � b3
BÞ

ðb2
A � b2

BÞ

 !
ð7Þ

bi (i¼A,B), such that

bi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

6
r0ibi

� �s
ð8Þ

are the parameters that contain the chain statistics. The statistical segment

lengths bi are defined in the same way as in the reference15 and r0i are the

number densities of statistical segments in both bulk phases, respectively. The

interaction parameter a of the interaction between two statistical segments is

then given by

a ¼ r0w ð9Þ

with the Flory–Huggins parameter w for the interaction of two beads of chains

of different kinds defined by equation (1).

In the WSL, the Flory–Huggins–de Gennes formula for interfacial

tension is5

s
kBT
¼ 9

b2
ffiffiffiffi
N
p 1� wC

w

� �3=2

ð10Þ

where b is the statistical segment length, N is the number of monomers per

chain and wC is the critical value of w. To derive equation (10), it is assumed

that the statistical segment length for two types of chains is equal. If one

considers an asymmetrical system, the prefactor will be different; however, the

exponents will remain the same. From equation (10), (s/kBT)2/3 linearly varies

with (1/w), and the interfacial tension vanishes when w¼wC. Thus, by studying

the behavior at low values of w for the interfacial tension and extrapolating to

zero, one can estimate the critical value of w.

The behavior of the interfacial width at low w has also been studied. In the

WSL, the interfacial width w is given by

W ¼ b
ffiffiffiffi
N
p

3

w
wC

� 1

� �ð�1=2Þ
ð11Þ

In equation (11), b and N carry the same meanings as in equation (10). From

equation (11), it is clear that the width w will be infinite at w¼wC. We substitute

NwC¼2 in equation (10) and use the same mapping as those in15 to compare

the simulation data with the MF data.

RESULTS AND DISCUSSION

Figures 3–6 show the interfacial tension (s/kBT)2/3 as a function of
(1/w) for different stiffnesses (persistence length, (lp/a)¼1.25, 2.00,
2.50 and 4.20) of the semiflexible components. As described in the
previous section (see equation (10)), (s/kBT)2/3 varies linearly with
(1/w) in the WSL, and the interfacial tension vanishes when w¼wC.
Figure 3 shows the dependence of (s/kBT)2/3 on (1/w) for a flexible–
flexible polymer system. We can describe the low w behavior of
(s/kBT)2/3 as a straight line, as shown in WSL, which enables us to
estimate the value of w for which (s/kBT)2/3 vanishes. Furthermore,
Figure 3 shows the interfacial tension in the SSL and a curve
describing its behavior (see equation (7)). It can be seen in the figure
that the data for the SSL do not follow the straight line fitted for the

Figure 2 Mean squared displacement (MSD) of the center of mass of

polymers and square of the interfacial width versus the attempted number of

moves per monomer (AMM) in the weak segregation limit for a flexible–

semiflexible system in which the semiflexible polymers have persistence

length (lp/a)¼4.2 when w¼0.136.
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data in the WSL. From the fitted straight line for the interfacial tension
in the WSL, we have estimated the critical value of w.

The critical value of w was also estimated for flexible–semiflexible
polymer systems in which the semiflexible components had persis-
tence lengths (lp/a¼) 1.25, 2, 2.5 and 4.2. The method used was the
same as that described for flexible–flexible polymer systems. The
interfacial tensions for these systems are presented in Figures 4–6
for the entire range of w that was studied. Furthermore, the prefactors
in equation (10) were also calculated. Table 1 shows the prefactors in
equation (10), which were determined using the MF and present
work. The prefactors from the MF and present work are not very
dissimilar. The difference between them is o5%.

As described above, the critical value of w was estimated as a
function of the stiffness of the semiflexible components in our systems
of study. We studied flexible–flexible and flexible–semiflexible (with
varying persistence length lp/a of semiflexible components up to 4.2,
in units of bond length) polymer blends. A comparison of our
estimated value of critical w with that of Werner et al.21 for the
flexible–flexible polymer blend shows that our result (wC¼0.0795) for
this system is not much different from their result (wC¼0.08, estimated
from their graph).

Figure 7 shows the dependence of the total interfacial width on the
Flory–Huggins parameter, w, for a flexible–semiflexible polymer blend.
Figure 7a shows the dependence of the interfacial width as a function
of w for a flexible–flexible polymer blend. From Figure 7a, it can be
seen that the interfacial width diverges at extremely low values of w.
Werner et al.21 have also studied the behavior of interfacial tension,

Figure 3 (s/kBT)2/3 versus (1/w) in a flexible–flexible polymer system. The

solid line is a fit to the weak segregation data, and the dashed line is the

curve of the formula in the strong segregation limit (equation (7)).

Figure 4 (s/kBT)2/3 versus (1/w) in a flexible–semiflexible polymer system in

which the semiflexible component has persistence length (lp/a¼2.0). The

solid line is a fit to the weak segregation data, and the dashed line is the

curve of the formula in the strong segregation limit (equation (7)).

Figure 5 (s/kBT)2/3 versus (1/w) in a flexible–semiflexible polymer system in

which the semiflexible component has persistence length (lp/a¼2.5). The

solid line is a fit to the weak segregation data, and the dashed line is the

curve of the formula in the strong segregation limit (equation (7)).

Figure 6 (s/kBT)2/3 versus (1/w) in a flexible–semiflexible polymer system in

which the semiflexible component has persistence length (lp/a¼4.2). The

solid line is a fit to the weak segregation data, and the dashed line is the

curve of the formula in the strong segregation limit (equation (7)).

Table 1 The prefactors in equations (7) and (10) obtained after

comparing our data with the mean field (MF)

Systems ( lp/a) Equation (7) Equation (10) Equation (7) MF Equation (10) MF

1.25 0.1840 0.109 0.1744 0.125

2.00 0.1886 0.121 — 0.145

2.50 0.1939 0.140 — 0.165

4.20 0.2283 0.165 — 0.192

Here, l p’s are in units of the average bond length (a). In the column of system means, the
system contains flexible polymers and semiflexible polymers of given persistence length.
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width and other interfacial properties in the WSL using Monte Carlo
techniques. Similarly, Figures 7b, c, d show the interfacial width as a
function of w for a system of flexible–semiflexible polymers in which
the semiflexible chains have persistence lengths (lp/a)¼2.0, 2.5 and 4.2,
respectively. It can be seen from the figures that the interfacial
width increases with the decrease in the interfacial tension. The
interfacial width will be infinite at the critical value of w. The wC

value determined from our simulations was compared with the MF
value for critical w (wC). From the MF theory, one obtains the
following:5

NwC ¼
1

2

1

ðC1NAÞ1=4
+

1

ðC1NBÞ1=4

 !2

ð12Þ

where C1Ni (i¼A,B) is the characteristic ratio of the ith component
as defined in (ref. 15) and N is the number of monomers in a chain.
The value of NwC as a function of the stiffness of the semiflexible

component in a blend of flexible–semiflexible polymers has been
calculated using the formula above and from simulation data. Figure 8
shows both types of data. They both show that the value of NwC

decreases with an increase in the stiffness of the semiflexible polymers.
The MF theory gives lower values of NwC than the simulation, which is
not unexpected, as the MF theory neglects the fluctuations. The nature
of both types of data is the same.

CONCLUSIONS AND OUTLOOK

In the present work, we have estimated the critical value of w, that is,
wC, as a function of the stiffness of the semiflexible components in
flexible and semiflexible polymer blends using off-lattice Monte Carlo
simulations for the case of mixing of polymers with different stiff-
nesses. The semiflexible components had the following persistence
lengths (lp), in units of bond length (a): (lp/a)¼2.0, 2.5 and 4.2. The
flexible component had a persistence length (lp/a)¼1.25. The critical
values of w were estimated for all four systems studied. The estimated
critical values of w for flexible–flexible polymer systems agree with the
previously reported data of Werner et al.21 within o1%. The
estimated data for wC were compared with those obtained from the
MF theory, and it was observed that the data agree at least qualita-
tively. The MF data estimate values that are lower than those
determined in the present work. This may be due to the negligence
of fluctuations in the MF theory.

The present work can be extended to study mixtures of rod-like
polymers and flexible polymers to consider all of the possible
flexibilities of the semiflexible components and of rigid rod-like
polymers in the kinds of systems discussed in the present work.
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