Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Polymer Journal
  • View all journals
  • Search
  • Log in
  • Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. polymer journal
  3. award account
  4. article
Development of Liquid-Crystalline Semiconductors with High Carrier Mobilities and Their Application to Thin-film Transistors
Download PDF
Download PDF
  • Published: 08 April 2009

SPSJ Hitachi Chemical Award Accounts

Development of Liquid-Crystalline Semiconductors with High Carrier Mobilities and Their Application to Thin-film Transistors

  • Masahiro Funahashi1 

Polymer Journal volume 41, pages 459–469 (2009)Cite this article

  • 2223 Accesses

  • 122 Citations

  • 3 Altmetric

  • Metrics details

Abstract

Carrier transport in liquid-crystal phases, design of liquid-crystalline semiconductors with high carrier mobilities, and their application to field-effect transistors are reviewed. High carrier mobility has been observed in the smectic phases of oligothiophene derivatives as well as in the columnar phases of triphenylene and hexabenzocoronene derivatives. The mobility increases with the molecular ordering in the mesophases and extension of the π-conjugated system of the liquid-crystal molecules. Asymmetrically substituted liquid-crystalline oligothiophene derivatives retain the highly ordered smectic phases below room temperature. The liquid crystals are solution-processable and can be used in high-performance field-effect transistors. The transistors exhibit high hole mobility and on/off ratio of 4 × 10−2 cm2 V−1 s−1 and 107, respectively.

References

  1. P.M. Borsenberger and D.S. Weiss, “Organic Photoreceptors for Xerography”, Marcel Dekker Inc., New York, 1998

    Google Scholar 

  2. G. Hughes and M. R. Bryce, J. Mater. Chem., 15, 94 (2005).

  3. C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, Adv. Funct. Mater., 11, 15 (2001).

  4. C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater., 14, 99 (2002).

  5. M. Kitamura and Y. Arakawa, J. Phys.: Condens. Matter, 20, 184011 (2008).

  6. S. Allard, M. Forster, B. Souharce, H. Thiem, and U. Scherf, Angew. Chem., Int. Ed., 47, 4070 (2008).

  7. A. Dodabalapur, Mater. Today, 9, 24 (2006).

  8. Y. Shirota, J. Mater. Chem., 15, 75 (2005).

  9. T. Kato, N. Mizoshita, and K. Kishimoto, Angew. Chem., Int. Ed., 45, 38 (2006).

  10. A. R. Murphy, P. C. Chang, P. VanDyke, J. Liu, J. M. Fréchet, V. Subramanian, D. M. DeLongchamp, S. Sambasivan, D. A. Fischer, and E. K. Lin, Chem. Mater., 17, 6033 (2005).

  11. J. E. Anthony, Chem. Rev., 106, 5028 (2006).

  12. A. Salleo, Mater. Today, 10, 38 (2007).

  13. R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, J. M. J. Fréchet, and M. F. Toney, Macromolecules, 38, 3312 (2005).

  14. M. O'Neill and S. M. Kelly, Adv. Mater., 15, 1135 (2003).

  15. Y. Shimizu, K. Oikawa, K. Nakayama, and D. Guillon, J. Mater. Chem., 17, 4223 (2007).

  16. M. Funahashi, H. Shimura, M. Yoshio, and T. Kato, Struct. Bonding, 128, 151 (2008).

  17. S. Laschat, A. Baro, N. Steinke, F. Giesselmann, C. Hägele, G. Scalia, R. Judele, E. Kapatsina, S. Sauer, A. Schreivogel, and M. Tosoni, Angew. Chem., Int. Ed., 46, 4832 (2007).

  18. K. Yoshino, N. Tanaka, and Y. Inuishi, Jpn. J. Appl. Phys., 15, 735 (1976).

  19. K. Yoshino, K. Yamashiro, and Y. Inuishi, Jpn. J. Appl. Phys., 13, 1471 (1974).

  20. Y. Shimizu, K. Shigeta, and S. Kusabayashi, Mol. Cryst. Liq. Cryst., 140, 105 (1986).

  21. S. Murakami, H. Naito, M. Okuda, and A. Sugimura, J. Appl. Phys., 78, 4533 (1995).

  22. A. Sawada, K. Tarumi, and S. Naemura, Jpn. J. Appl. Phys., 38, 1418 (1999).

  23. A. Sawada, K. Tarumi, and S. Naemura, Jpn. J. Appl. Phys., 38, 1423 (1999).

  24. T. Ikeda, H. Mochizuki, Y. Hayashi, M. Sisido, and T. Sasakawa, J. Appl. Phys., 70, 3689 (1991).

  25. K. L. Woon, M. P. Aldred, P. Vlachos, G. H. Mehl, T. Stirner, S. M. Kelly, and M. O'Neill, Chem. Mater., 18, 2311 (2006).

  26. M. Funahashi and N. Tamaoki, ChemPhysChem, 7, 1193 (2006).

  27. M. Funahashi and N. Tamaoki, Chem. Mater., 19, 608 (2007).

  28. D. Markovitsi, T.-H. Tran-Thi, V. Briois, J. Simon, and K. Ohta, J. Am. Chem. Soc., 110, 2001 (1988).

  29. N. Boden, R. J. Bushby, J. Clements, M. V. Jesudason, P. F. Knowles, and G. Williams, Chem. Phys. Lett., 152, 94 (1988).

  30. D. Adam, F. Closs, T. Frey, D. Funhoff, D. Haarer, H. Ringsdorf, P. Schuhmacher, and K. Siemensmeyer, Phys. Rev. Lett., 70, 457 (1993).

  31. N. Boden, R. J. Bushby, J. Clements, B. Movaghar, K. J. Donovan, and T. Kreouzis, Phys. Rev. B: Condens. Matter Mater. Phys., 52, 13274 (1995).

  32. D. Adam, P. Schuhmacher, J. Simmerer, L. Häußling, K. Siemensmeyer, K. Etzbach, H. Ringsdorf, and D. Haarer, Nature, 371, 141 (1994).

  33. M. Funahashi and J. Hanna, Phys. Rev. Lett., 78, 2184 (1997).

  34. M. Funahashi and J. Hanna, Appl. Phys. Lett., 71, 602 (1997).

  35. K. Kogo, T. Goda, M. Funahashi, and J. Hanna, Appl. Phys. Lett., 73, 1595 (1998).

  36. A. E. A. Contoret, S. R. Farrar, P. O. Jackson, S. M. Khan, L. May, M. O'Neill, J. E. Nicholls, S. M. Kelly, and G. J. Richards, Adv. Mater., 12, 971 (2000).

  37. T. Hassheider, S. A. Benning, H.-S. Kitzerow, M.-F. Achard, and H. Bock, Angew. Chem., Int. Ed., 40, 2060 (2001).

  38. A. Bacher, I. Bleyl, C. H. Erdelen, D. Haarer, W. Paulus, and H.-W. Scmidt, Adv. Mater., 9, 1031 (1997).

  39. M. P. Aldred, A. E. A. Contoret, S. R. Farrar, S. M. Kelly, D. Mathieson, M. O'Neill, W. C. Tsoi, and P. Vlachos, Adv. Mater., 17, 1368 (2005).

  40. L. Schmidt-Mende, A. Fechtenkötter, K. Müllen, E. Moons, R. H. Friend, and J. D. MacKenzie, Science, 293, 1119 (2001).

  41. S. Sergeyev, W. Pisula, and Y. H. Geerts, Chem. Soc. Rev., 36, 1902 (2007).

  42. M. Funahashi, Transworld Research Network, Recent Develop. of Appl. Phys., 6, 839 (2003).

  43. A. M. van de Craats, J. M. Warman, K. Müllen, Y. Geerts, and J. D. Brand, Adv. Mater., 10, 36 (1998).

  44. Z. An, J. Yu, S. C. Jones, S. Barlow, S. Yoo, B. Domercq, P. Prins, L. D. A. Siebbeles, B. Kippelen, and S. R. Marder, Adv. Mater., 17, 2580 (2005).

  45. M. Funahashi and J. Hanna, Appl. Phys. Lett., 76, 2574 (2000).

  46. M. Funahashi and J. Hanna, Mol. Cryst. Liq. Cryst., 410, 529 (2004).

  47. M. Funahashi and J. Hanna, Adv. Mater., 17, 594 (2005).

  48. K. Oikawa, H. Monobe, J. Takahashi, K. Tsuchiya, B. Heinrich, D. Guillon, and Y. Shimizu, Chem. Commun., 2005, 5337

  49. J. Simmerer, B. Glüsen, W. Paulus, A. Kettner, P. Schuhmacher, D. Adam, K.-H. Etzbach, K. Siemensmeyer, J. H. Wendorff, H. Ringsdorf, and D. Haarer, Adv. Mater., 8, 815 (1996).

  50. M. Funahashi and J. Hanna, Mol. Cryst. Liq. Cryst., 368, 303 (2001).

  51. B. Glüsen, W. Heitz, A. Kettner, and J. H. Wendorff, Liq. Cryst., 20, 627 (1996).

  52. M. Funahashi and J. Hanna, Appl. Phys. Lett., 73, 3733 (1998).

  53. M. Van der Auweraer, F. C. De Schryver, P. M. Borsenberger, and H. Bässler, Adv. Mater., 6, 199 (1994).

  54. D. Hertel and H. Bässler, ChemPhysChem, 9, 666 (2008).

  55. M. Pope and C. Swneberg, “Electronic Processes in Organic Crystals and Polymers”, 2nd ed., Oxford University Press, Oxford, 1999

    Google Scholar 

  56. I. Bleyl, C. Erdelen, H.-W. Schmidt, and D. Haarer, Philos. Mag., B79, 463 (1999).

  57. D. Adam, P. Schuhmacher, J. Simmerer, L. Häußling, W. Paulus, K. Siemensmeyer, K.-H. Etzbach, H. Ringsdorf, and D. Haarer, Adv. Mater., 7, 276 (1995).

  58. H. Bässler, Phys. Status Solidi B, 175, 15 (1993).

  59. M. Kastler, F. Laquai, K. Müllen, and G. Wegner, Appl. Phys. Lett., 89, 252103 (2006).

  60. M. Funahashi, F. Zhang, N. Tamaoki, and J. Hanna, ChemPhysChem, 9, 1465 (2008).

  61. A. M. van de Craats, J. M. Warman, A. Fechtenkötter, J. D. Brand, M. A. Harbison, and K. Müllen, Adv. Mater., 11, 1469 (1999).

  62. A. M. van de Craats and J. M. Warman, Adv. Mater., 13, 130 (2001).

  63. W. D. Gill, J. Appl. Phys., 43, 5033 (1972).

  64. H. Monobe, K. Awazu, and Y. Shimizu, Adv. Mater., 12, 1495 (2000).

  65. H. Monobe, K. Kiyohara, N. Terasawa, M. Heya, K. Awazu, and Y. Shimizu, Adv. Funct. Mater., 13, 919 (2003).

  66. H. Monobe, K. Awazu, and Y. Shimizu, Adv. Mater., 18, 607 (2006).

  67. A. M. van de Craats, N. Stutzmann, O. Bunk, M. M. Nielsen, M. Watson, K. Mullen, H. D. Chanzy, H. Sirringhaus, and R. H. Friend, Adv. Mater., 15, 495 (2003).

  68. W. Pisula, A. Menon, M. Stepputat, I. Lieberwirth, U. Kolb, A. Tracz, H. Sirringhaus, T. Pakula, and K. Mullen, Adv. Mater., 17, 684 (2005).

  69. F. Garnier, R. Hajlaoui, A. El Kassmi, G. Horowitz, L. Laigre, W. Porzio, M. Armanini, and F. Provasoli, Chem. Mater., 10, 3334 (1998).

  70. K. Oikawa, H. Monobe, K. Nakayama, T. Kimoto, K. Tsuchiya, B. Heinrich, D. Guillon, Y. Shimizu, and M. Yokoyama, Adv. Mater., 19, 1864 (2007).

  71. A. J. J. M. van Breemen, P. T. Herwig, C. H. T. Chlon, J. Sweelssen, H. F. M. Schoo, S. Setayesh, W. M. Hardeman, C. A. Martin, D. M. de Leeuw, J. J. P. Valeton, C. W. M. Bastiaansen, D. J. Broer, A. R. Popa-Merticaru, and S. C. J. Meskers, J. Am. Chem. Soc., 128, 2336 (2006).

  72. H. Zhang, S. Shiino, A. Shishido, A. Kanazawa, O. Tsutsumi, T. Shiono, and T. Ikeda, Adv. Mater., 12, 1336 (2000).

  73. H. Iino and J. Hanna, Mater. Res. Soc. Symp. Proc., 1091, AA11–82 (2008).

  74. M. Funahashi, F. Zhang, and N. Tamaoki, Adv. Mater., 19, 353 (2007).

  75. F. Zhang, M. Funahashi, and N. Tamaoki, Appl. Phys. Lett., 91, 063515 (2007).

  76. T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, and T. Sakurai, Proc. Natl. Acad. Sci. U.S.A., 101, 9966 (2004).

  77. T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, H. Kawaguchi, and T. Sakurai, Proc. Natl. Acad. Sci. U.S.A., 102, 12321 (2005).

  78. F. Zhang, M. Funahashi, and N. Tamaoki, Org. Electron., 10, 73 (2009).

  79. I. McCulloch, W. Zhang, M. Heeney, C. Bailey, M. Giles, D. Graham, M. Shkunov, D. Sparrowe, and S. Tierney, J. Mater. Chem., 13, 2436 (2003).

  80. K. Tashiro, K. Ono, Y. Minagawa, M. Kobayashi, T. Kawai, and K. Yoshino, J. Polym. Sci, Part B: Polym. Phys., 29, 1223 (1991).

  81. I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. MacDonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang, M. L. Chabinyc, R. J. Kline, M. D. McGehee, and M. F. Toney, Nat. Mater., 5, 328 (2006).

Download references

Author information

Authors and Affiliations

  1. Department of Chemistry and Biotechnology, School of Engineering, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan

    Masahiro Funahashi

Authors
  1. Masahiro Funahashi
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Masahiro Funahashi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Funahashi, M. Development of Liquid-Crystalline Semiconductors with High Carrier Mobilities and Their Application to Thin-film Transistors . Polym J 41, 459–469 (2009). https://doi.org/10.1295/polymj.PJ2008324

Download citation

  • Received: 20 December 2008

  • Accepted: 31 January 2009

  • Published: 08 April 2009

  • Issue Date: 01 June 2009

  • DOI: https://doi.org/10.1295/polymj.PJ2008324

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Organic Semiconductor
  • Liquid Crystal
  • Liquid-Crystalline Semiconductor
  • Smectic Phase
  • Columnar Phase
  • Time-of-Flight Technique
  • Field-Effect Transistor

This article is cited by

  • Synthesis and characterization of dendritic compounds containing nitrogen: monomer precursors in the construction of biomimetic membranes

    • Jordi Guardià
    • Alireza Zare
    • Xavier Montané

    Scientific Reports (2022)

  • Crystals Array via Oriented Nucleation and Growth Induced by Smectic E Mesophase of C7-T-BTBT

    • Hongxiang Li
    • Sichun Wang
    • Yanchun Han

    Chemical Research in Chinese Universities (2022)

  • A liquid-crystalline semiconducting polymer based on thienylene–vinylene–thienylene: Enhanced hole mobilities by mesomorphic molecular ordering and thermoplastic shape-deformable characteristics

    • Tatsuya Mori
    • Hideaki Komiyama
    • Takuma Yasuda

    Polymer Journal (2020)

  • Integration of electro-active π-conjugated units in nanosegregated liquid-crystalline phases

    • Masahiro Funahashi

    Polymer Journal (2017)

  • Alkylated oxygen-bridged V-shaped molecules: impacts of the substitution position and length of the alkyl chains on the crystal structures and fundamental properties in aggregated forms

    • Chikahiko Mitsui
    • Tatsuro Annaka
    • Toshihiro Okamoto

    Polymer Journal (2017)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe
  • Featured Articles

Publish with us

  • For Authors & Referees
  • Language editing services
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Polymer Journal (Polym J) ISSN 1349-0540 (online) ISSN 0032-3896 (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • Nano
  • Protocol Exchange
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Nature Research Academies
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Career development

  • Nature Careers
  • Nature Conferences
  • Nature events

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Italy
  • Nature Japan
  • Nature Korea
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • California Privacy Statement
Springer Nature

© 2023 Springer Nature Limited