Solution Properties of Amylose Tris(Phenylcarbamate): Local Conformation and Chain Stiffness in 1,4-Dioxane and 2-Ethoxyethanol

Abstract

Light and small-angle X-ray scattering, sedimentation equilibrium, viscosity, circular dichroism, and infrared absorption measurements have been made on 1,4-dioxane (DIOX) and 2-ethoxyethanol (2EE) solutions of seven amylose tris(phenylcarbamate) samples ranging in molecular weight from 2 × 104 to 3 × 106. Analyses of gyration radius, scattering function, and intrinsic viscosity data in terms of the wormlike chain model yield Kuhn segment lengths of 22 ± 2 nm and 16 ± 2 nm in DIOX and 2EE, respectively, and a contour length per residue of 0:33 ± 0:02 nm in both, showing that the amylose derivative chain has high stiffness and a contour length slightly shorter than the known value 0.37−0.40 nm for amylosetriesters in the crystalline state. These results are consistent with the intramolecular hydrogen bonding between the C=O and NH groups of the neighbor repeating units detected by infrared absorption and also with the locally regular (or helical) conformation indicated by circular dichroism.

References

  1. 1

    W. Burchard, Z. Physik. Chem., 42, 293 (1964).

  2. 2

    J. M. G. Cowie, Biopolymers, 3, 69 (1965).

  3. 3

    W. Burchard, Makromol. Chem., 88, 11 (1965).

  4. 4

    H. Bittiger and G. Keilich, Biopolymers, 7, 539 (1969).

  5. 5

    W. Banks, C. T. Greenwood, and J. Sloss, Makromol. Chem., 140, 109 (1970).

  6. 6

    W. Banks, C. T. Greenwood, and J. Sloss, Makromol. Chem., 140, 119 (1970).

  7. 7

    W. Banks and C. T. Greenwood, Makromol. Chem., 144, 135 (1971).

  8. 8

    W. Banks, C. T. Greenwood, and J. Sloss, Eur. Polym. J., 7, 879 (1971).

  9. 9

    W. Burchard, Br. Polym. J., 3, 214 (1971).

  10. 10

    W. Sutter and W. Burchard, Makromol. Chem., 179, 1961 (1978).

  11. 11

    A. K. Gupta, E. Marchal, W. Burchard, and B. Pfannemüller, Macromolecules, 12, 281 (1979).

  12. 12

    B. Pfannemüller, M. Schmidt, G. Ziegast, and K. Matsuo, Macromolecules, 17, 710 (1984).

  13. 13

    Y. Muroga, K. Hayashi, M. Fukunaga, T. Kato, S. Shimizu, and K. Kurita, Biophys. Chem., 121, 96 (2006).

  14. 14

    Y. Nakanishi, T. Norisuye, A. Teramoto, and S. Kitamura, Macromolecules, 26, 4220 (1993).

  15. 15

    T. Norisuye, Polym. J., 26, 1303 (1994).

  16. 16

    Y. Okamoto and E. Yashima, Angew. Chem., Int. Ed., 37, 1020 (1998).

  17. 17

    C. Yamamoto and Y. Okamoto, Bull. Chem. Soc. Jpn., 77, 227 (2004).

  18. 18

    O. Kratky and G. Porod, Recl. Trav. Chim. Pays-bas, 68, 1106 (1949).

  19. 19

    P. Zugenmaier and H. Steinmeier, Polymer, 27, 1601 (1986).

  20. 20

    S. Kitamura, H. Yunokawa, S. Mitsuie, and T. Kuge, Polym. J., 14, 93 (1982).

  21. 21

    S. Kitamura, K. Kobayashi, H. Tanahashi, T. Ozaki, and T. Kuge, Denpun Kagaku (J. Jpn. Soc. Starch Sci.) 36, 257 (1989).

  22. 22

    S. Kitamura, in “The Polymeric Materials Encyclopedia, Synthesis, Properties and Applications,” J. C. Salamone, Ed., CRC Press: New York, 1996; Vol. 10, p 7915.

    Google Scholar 

  23. 23

    H. Waldmann, D. Gygax, M. D. Bednarski, W. R. Shangraw, and G. M. Whitesides, Carbohydr. Res., 157, C4 (1986).

  24. 24

    Gj. Deželić and J. Vavra, Croat. Chem. Acta, 38, 35 (1966).

  25. 25

    D. N. Rubingh and H. Yu, Macromolecules, 9, 681 (1976).

  26. 26

    G. C. Berry, J. Chem. Phys., 44, 4550 (1966).

  27. 27

    T. Norisuye, T. Yanaki, and H. Fujita, J. Polym. Sci. Polym: Phys. Ed., 18, 547 (1980).

  28. 28

    M. L. Huggins, J. Am. Chem. Soc., 64, 2716 (1942).

  29. 29

    D. F. Mead and R. M. Fuoss, J. Am. Chem. Soc., 64, 277 (1942).

  30. 30

    F. W. Billmeyer Jr., J. Polym. Sci., 4, 83 (1949).

  31. 31

    R. B. Kasat, Y. Zvinevich, H. W. Hillhouse, K. T. Thomson, N.-H. L. Wang, and E. I. Franses, J. Phys. Chem. B., 110, 14114 (2006).

  32. 32

    H. Benoit and P. Doty, J. Phys. Chem., 57, 958 (1953).

  33. 33

    H. Yamakawa and W. H. Stockmayer, J. Chem. Phys., 57, 2843 (1972).

  34. 34

    J. Shimada and H. Yamakawa, J. Chem. Phys., 85, 591 (1986).

  35. 35

    H. Yamakawa, “Helical Wormlike Chains in Polymer Solutions,” Springer, Berlin, 1997.

    Google Scholar 

  36. 36

    C. Domb and A. J. Barrett, Polymer, 17, 179 (1976).

  37. 37

    Y. Nakamura and T. Norisuye, J. Polym. Sci. Part B: Polym. Phys., 42, 1398 (2004).

  38. 38

    T. Konishi, T. Yoshizaki, T. Saito, Y. Einaga, and H. Yamakawa, Macromolecules, 23, 290 (1990).

  39. 39

    H. Yamakawa and T. Yoshizaki, Macromolecules, 13, 633 (1980).

  40. 40

    A. J. Barrett, Macromolecules, 17, 1566 (1984).

  41. 41

    P. Hickl, M. Ballauff, U. Scherf, K. Müllen, and P. Lindner, Macromolecules, 30, 273 (1997).

  42. 42

    K. Terao, K. Mizuno, M. Murashima, Y. Kita, C. Hongo, K. Okuyama, T. Norisuye, and H. P. Bächinger, Macromolecules, 41, 7203 (2008).

  43. 43

    F. Kasabo, T. Kanematsu, T. Nakagawa, T. Sato, and A. Teramoto, Macromolecules, 33, 2748 (2000).

  44. 44

    Y. Takahashi and S. Nishikawa, Macromolecules, 36, 8656 (2003).

  45. 45

    C. V. Goebel, W. L. Dimpfl, and D. A. Brant, Macromolecules, 3, 644 (1970).

  46. 46

    J. Shimada, H. Kaneko, T. Takada, S. Kitamura, and K. Kajiwara, J. Phys. Chem. B., 104, 2136 (2000).

  47. 47

    C. Yamamoto, E. Yashima, and Y. Okamoto, J. Am. Chem. Soc., 124, 12583 (2002).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ken Terao.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Terao, K., Fujii, T., Tsuda, M. et al. Solution Properties of Amylose Tris(Phenylcarbamate): Local Conformation and Chain Stiffness in 1,4-Dioxane and 2-Ethoxyethanol. Polym J 41, 201–207 (2009). https://doi.org/10.1295/polymj.PJ2008233

Download citation

Keywords

  • Amylose Tris(Phenylcarbamate)
  • Light Scattering
  • SAXS
  • Intrinsic Viscosity
  • Wormlike Chain
  • Hydrogen Bonding

Search