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Static partial scattering functions for linear
and ring random copolymers

Hitoshi Endo and Mitsuhiro Shibayama

The static partial scattering functions for linear and ring random copolymers of type A–B are investigated. In the case of

random distribution of the different kinds of monomers, analytic forms can be derived. Monte Carlo simulations are used to

make evaluations on biased distributions of the different kinds of monomers. Results clearly show that the number, fraction

and distribution of monomers have significant effect on the scattering intensities at Q�Rg41, where Q is the magnitude of the

scattering vector and Rg is the radius of gyration of the polymer. The scattering function in molten state is also calculated on

the basis of random phase approximation.
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INTRODUCTION

Development of a variety of polymers with specific molecular archi-
tecture, for example block and graft copolymers (for recent reviews on
block and graft copolymer, see Hamley1 and Lodge2), star polymer
(for recent reviews on star polymer, see Mishra3 and Grest4),
dendrimer,5 polyrotaxane6 and so on, has been the mainstream in
polymer science for advanced applications (for recent reviews on
designed polymerization, see Hatada7 and Odian8). Therefore, an
investigation of the static configuration of these polymers is funda-
mental to the field and has been of intensive interest.
Historically, Flory9 first predicted that the static configuration of

linear polymers on the melt obeys the Gaussian statistic, which was
proved by small-angle neutron scattering with protonated polymers in
a deutrated polymer matrix.10 Since then, many types of polymers
have been identified by their static structures with the small-angle
neutron scattering technique, and the contemporary theoretical pro-
gress in small-angle scattering has been of importance.11

In this study, the static scattering contributions from different kinds
of monomer units in linear and ring random copolymers, which have
hardly been given attention, are discussed. We assume random
copolymers consisting of two different kinds of monomer units,
namely monomer-A and monomer-B. The static partial scattering
functions of the monomer-A component, that is, the scattering
contribution from monomer-A units, in linear and ring copolymers
are derived on the basis of Gaussian statistics. Monte Carlo simulation
is applied to evaluate the array of monomers. The scattering function
of the molten random copolymers of type A–B is also discussed.

SCATTERING THEORY

Linear random copolymer
Let us begin with the Debye function for the linear Gaussian polymer
consisting of N segments with the segment length b,12 that is,
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1
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with the magnitude of scattering vector Q(¼4p sin(y/2)/l, scattering
angle y, wavelength of incident beam l) and the radius of gyration of
the linear polymer Rgl given by

Rgl ¼
ffiffiffiffiffiffiffiffi
Nb2

6

r
ð2Þ

In the above description, the total length L of the linear polymer can
be defined as L¼Nb.
As the first step, Equation (1) is discretized with the interval l0,

namely,
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where i and j are natural numbers and n0 is related to the interval l0 as
l0¼N/n0. n0 roughly corresponds to the polymerization degree (the
number of monomer units within the single polymer chain) by
assuming that the lengths of monomer-A and monomer-B are the
same. In this case, b�l0 is equivalent to the length of the single
monomer unit. In our model, one segment of a Gaussian chain may
hypothetically contain a number of monomers. In the case of flexible
polymers, l0 is very close to unity, and l0o1 corresponds to semi-
flexible or rigid polymers. Figure 1 schematically depicts the model of
a linear random copolymer.
To reflect the distribution of monomer-A units, Equation (3) is

modified as follows

SLinearDebyeðQÞ ¼
1
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where Am,n(k) is a n0-dimensional vector defined by

Am;nðkÞ ¼
1 ðmonomer-A existÞ
0 ðmonomer-B existÞ

�
ð5Þ

for the k-th interval. The ensemble average hAmðiÞ � AnðjÞi is
given by

hAmðiÞ � AnðjÞi ¼
FA ðfor i ¼ jÞ
F2

A ðfor i 6¼ jÞ

�
ð6Þ

with the length fraction of the monomer-A component, FA.
In the case of a purely random process for the distribution of

monomers, we can substitute hAmðiÞ � AnðjÞi for Am(i) �An(j) in
Equation (4), and in this condition, an analytic form of Equation
(4) can be obtained as follows

SLinearDiscr ðQÞ ¼
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with x¼Q2Rgl
2 and Nl ¼1+(1�FA)/(FAn0).

Ring random copolymer
The above treatment can be applied to the ring polymer. On
the basis of Gaussian statistics, the form factor of the ring polymer

is given by13
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where D(u) is the Dawson function, that is, D(u)¼
expð�u2Þ

R u

0 expðt2Þ dt, and Rgr is the radius of gyration for the
ring polymer defined by

Rgr ¼
ffiffiffiffiffiffiffiffi
Nb2

12

r
ð9Þ

Thereafter, the discretization and summation for the purely random
process of the distribution of monomers are executed for the
length fraction of the monomers, FA, in the same way as in Equations
(3)–(7), and after some derivations, we obtain
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with x¼Q2Rgr
2 and Nr ¼1+(1�FA)/(FAn0).

RESULTS AND DISCUSSION

Behavior of SLinearDiscr ðQÞ and S
Ring
DiscrðQÞ

The effects of the parameters FA and n0 (¼N/l0) on SLinearDiscr ðQÞ in
Equation (7) are examined in Figure 2 and Figure 3. It is clearly seen
that the normalized scattering function is hardly affected by FA and n0
for QRgl o1, whereas excess scattering intensity arises with decreasing
FA and/or n0 for QRgl41.
In Figure 4, SRing(Q) values given by Equation (8) are clarified with

SDebye(Q) values given by Equation (1), where Q�Rg for SDebye(Q) is
multiplied by

ffiffiffi
2

p
to compare the shape of the curves. The essential

difference between SDebye(Q) and SRing(Q) is the curvature at QE1/Rg,
that is, the curvature of SRing(Q) is greater than that of SDebye(Q). The
dependence of FA and n0 on S

Ring
DiscrðQÞ in Equation (10) is similar to

SLinearDiscr ðQÞ, that is, excess scattering is observed for QRgr41 with
decreasing FA and/or n0 as exhibited in Figure 4.

Effect of biased monomer distribution
The effect of the distribution of monomers can be investigated by
Monte Carlo simulation. We define the conditional probability that
two monomer-A units are successively placed as fAA, as well as the
conditional probability that a monomer-A unit and a monomer-B
unit are successively placed as fAB. Thereafter, FA, fAA and fAB are

Figure 1 Schematic picture of a random copolymer consisting of a random

sequence of 50% monomer-A and 50% monomer-B, where the segment

length is b and the monomer length is b�l0. The polymer is generated by

3D-random walks with 100 steps.
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related as follows

fAB ¼ FA

1� FA
ð1� fAAÞ ð12Þ

In this simple model, FAofAA indicates that monomer-A units tend
to neighbor; similarly, FA4fAA indicates that monomer-A units are
distributed separately. Am,n(k) in Equation (4) is determined by
generating random numbers fk between 0 and 1 as follows,

Am;nðkÞ ¼
1 ðforfkpfAAÞ
0 ðforfk4fAAÞ

�
ð13Þ

in the case of Am,n(k�1)¼1, and

Am;nðkÞ ¼
1 ðforfkpfABÞ
0 ðforfk4fABÞ

�
ð14Þ

in the case of Am,n(k�1)¼0.
In Figure 5, the results of Monte Carlo simulations by changing fAA

with n0¼100 and FA¼0.25 are exhibited. Sampling was repeated until
the relative variation between n-th and (n+1)-th step became less
than 10�5. Otherwise, SLinearMC ðQÞ was the average of 104 samplings.
The partial scattering function, SLinearMC ðQÞ, is affected only at
QRg41, and the additional scattering intensity arises with increasing
fAA. SLinearMC ðQÞ with fAA¼1 coincides with the Debye function

SDebye(Q)¼2{exp(�x)�1+x}/x2 with x¼Q2Rg
2FA. The results obviously

confirm that the alignment of different kinds of monomers is also an
import condition for the partial scattering function.

Molten state
The scattering function for molten copolymers can be calculated on
the basis of random phase approximation (RPA).14 For instance, static
scattering functions for multiblock copolymers with various architec-
tures in the molten state were obtained by RPA.15 In the case of the
linear random copolymer of monomer-A and monomer-B with
random monomer distribution, RPA leads to the scattering function as

SLinearRPA ¼ N

S� 2wN
ð15Þ

with

S ¼ S11+2S12+S22
S11 � S22 � S212

ð16Þ

where N is the segment number and

S11 ¼F2
A � SLinearDiscr ðx; FA; n0Þ

S22 ¼ð1� FAÞ2 � SLinearDiscr ðx; 1� FA; n0Þ
S12 ¼FAð1� FAÞ � SDebyeðxÞ

ð17Þ

Figure 3 Normalized partial scattering functions for linear random

copolymers given by Equation (7) with different n0 as a function of QRg:

n0¼100 (B); n0¼250 (.); n0¼500 (W); n0¼1000 (J); the normalized

Debye function given by Equation (1) (- - -). The fixed parameter is FA

(¼0.25).

Figure 4 Normalized partial scattering functions for ring random copolymers

given by Equation (10) with different n0 and FA as a function of QRg: FA¼1

(J); the normalized Debye function given by Equation (1) (- - -); FA¼0.25

and n0¼100 (B); FA¼0.25 and n0¼1000 (m).

Figure 5 Normalized partial scattering functions for linear random

copolymers obtained by Monte Carlo simulation with different fAA as a

function of QRg: fAA¼1 (B); fAA¼0.75 (m); fAA ¼0 (J); the normalized

Debye function given by Equation (1) (- - -). The fixed parameters are n0

(¼100) and FA (¼0.25).

Figure 2 Normalized partial scattering functions for linear random

copolymers given by Equation (7) with different FA as a function of QRg:

FA¼0.25 (B); FA¼0.5 (.); FA¼0.75 (W); FA¼0.25 (J); the normalized

Debye function given by Equation (1) (- - -). The fixed parameter is n0

(¼100).
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with x¼Q2Rgl
2, and SDebye(x) and SLinearDiscr ðx; FA; n0Þ are defined by

Equations (1) and (7), respectively. The other parameters are the
Flory–Huggins segment–segment interaction parameter, w, the length
fraction of monomer-A, FA and the number of monomer units, n0. In
Figure 6, the parametric calculations with Equations (15)–(17) are
shown, where the tested parameters are FA, n0 and w. In the case of FA

dependence, see Figure 6 left, peak heights were only affected, that is,
the highest peak is given by FA¼0.50 and the heights decreased with
FA-0 and FA-1, whereas the peak widths and peak positions were
the same for each FA. On the other hand, both the peak heights, peak
widths and peak positions were evidently affected by different n0
values as shown in Figure 6 center, where the peak heights were
decreased with increasing n0, and at the same time, the peak widths
broadened and the peak positions shifted to a higher Q. The w
dependence was similar to the linear polymer blends, that is, the
peak height with larger w was higher than that of smaller w, and the
peak width with larger w was narrower than that of smaller w, as
exhibited in Figure 6 right.

Experimental feasibility
The experimental observation of such behaviors is feasible, for
example, by contrast matched or contrast variation neutron scattering
experiments with partially deuterated random copolymers.11 In the
case of small-angle neutron scattering (SANS), the observable highest-
Q of the usual diffractometers with pinhole collimaters and a constant
neutron wavelength is limited, for example, the limitation of SANS-U
diffractometer at JRR-3 in Japan is QMAXE0.2 Å�1 with l¼7 Å.16

To examine the difference between a random copolymer and the
corresponding homopolymer by SANS, the radius of gyration, Rg,
(that is, the molecular weight) of the measured polymer should be
absolutely large. For example, Rg of polystyrene with molecular weight
40 kgmol–1 in the y-condition is 57 Å,17 which gives Q¼0.175 Å�1 for
Q�Rg¼10. Therefore, we believe that experimental verification with a
usual SANS diffractometer is possible. Future time of flight SANS
diffractometers at the second generation spallation neutron sources
will be certainly useful for the purpose, as diffractometers can cover a
higher Q-range (QMAXB50 Å�1).18

CONCLUSIONS

The static partial scattering functions for linear and ring random
copolymers were evaluated. In the case of random distribution of
monomers, analytic forms were obtained. Monte Carlo simulation was

used to verify the effects on biased distribution of the monomers.
Results clearly showed that the number, fraction and distribution of
monomers have a significant effect on the scattering intensities at
QRg41, which could be examined by scattering experiments.
In the case of molten state, scattering intensity was obtained by

random phase approximation. The appearance of a single peak was
numerically predicted, which has an analogy to block copolymers of
type A–B. It was shown that the shape, height and position of the peak
were affected by the three parameters, namely, fraction, number
of monomers and the Flory–Huggins segment–segment interaction
parameter.
Furthermore, the mathematical treatments and methodology

achieved in the article can be applied for the detailed analyses of
random copolymers of semiflexible non-Gaussian chains with the
helical wormlike chain model,19 distribution of beaded molecules in
polyrotaxane20,21 and so on by means of small-angle scattering.
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(right) w dependence by fixing FA¼0.5 and n0¼100: wN¼50 (B); wN¼0
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