Abstract
Halloysite nanotubes (HNTs) are chemically modified via silylation with 3-(trimethoxysilyl)propyl methacrylate. The modified HNTs (m-HNTs) are characterized by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, solid state 13C NMR spectroscopy, thermogravimetric analysis (TGA) and extraction experiment. It is showed that the silane has been effectively grafted onto HNTs surface and renders the hydrophobicity to m-HNTs. The nanocomposites consisting of polyamide 6 (PA6) and m-HNTs show significantly improved mechanical properties and heat distortion temperature, which are attributed to the covalent interfacial bonding and the excellent dispersion state of m-HNTs. M-HNTs are found to disperse individually into PA6 matrix. The nucleation effect by m-HNTs is verified by the lowered fold-surface free energy of PA6/ HNTs nanocomposites and the observation of polarized optical microscopy (POM). Both high cooling rate and high m-HNTs loading are beneficial to the formation of gamma-crystals of PA6. The polymorphism could be correlated to the heterogeneous nucleation effects of m-HNTs and the interfacial interactions between m-HNTs and PA6 matrix.
References
“Nylon Plastics Handbook,” M. I. Kohan, Ed., Hanser Gardner Publications, 1995.
A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 8, 1179 (1993).
Y. Kojima, A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 8, 1185 (1993).
A. N. Wilkinson, Z. Man, J. L. Stanford, P. Matikainen, M. L. Clemens, G. C. Lees, and C. M. Liauw, Compos. Sci. Technol., 67, 3360 (2007).
A. N. Wilkinson, Z. Man, J. L. Stanford, and C. M. Liauw, Macromol. Mater. Eng., 291, 917 (2006).
M. Fermeglia, M. Ferrone, and S. Pricl, Fluid Phase Equilib., 212, 315 (2003).
T. X. Liu, I. Y. Phang, L. Shen, S. Y. Chow, and W. D. Zhang, Macromolecules, 37, 7214 (2004).
C. G. Zhao, G. J. Hu, R. Justice, D. W. Schaefer, S. M. Zhang, M. S. Yang, and C. C. Han, Polymer, 46, 5125 (2005).
W. G. Shao, Q. Wang, F. Wang, and Y. H. Chen, Carbon, 44, 2708 (2006).
B. L. Pan, Q. F. Yue, J. F. Ren, H. G. Wang, L. Q. Jian, J. Y. Zhang, and S. R. Yang, Polym. Test., 25, 384 (2006).
B. L. Pan, Q. F. Yue, J. F. Ren, H. G. Wang, L. Q. Jian, J. Y. Zhang, and S. R. Yang, J. Macromol. Sci., Part B: Phys., 45, 1025 (2006).
J. B. Dixon and T. R. McKee, Clays Clay Miner., 22, 127 (1974).
G. J. Churchman, T. J. Davy, and L. A. G. Aylmore, Clay Miner., 30, 89 (1995).
T. F. Bates, F. A. Hildebrand, and A. Swineford, Am. Mineral., 35, 463 (1950).
R. R. Price, B. P. Gaber, and Y. M. Lvov, J. Microencapsulation, 18, 713 (2001).
E. Joussein, S. Petit, J. Churchman, B. Theng, D. Righi, and B. Delvaux, Clay Miner., 40, 383 (2005).
Y. P. Ye, H. B. Chen, J. S. Wu, and L. Ye, Polymer, 48, 6426 (2007).
M. X. Liu, B. C. Guo, Q. L. Zou, M. L. Du, and D. M. Jia, Nanotechnology, 19, 205709 (2008).
M. X. Liu, B. C. Guo, M. L. Du, X. J. Cai, and D. M. Jia, Nanotechnology, 18, 455703 (2007).
M. L. Du, B. C. Guo, and D. M. Jia, Polym. J., 38, 1198 (2006).
B. C. Guo, Q. L. Zou, Y. D. Lei, M. X. Liu, and D. M. Jia, New Chem. Mater. (in Chinese) 6, 32 (2008).
G. Gurato, A. Fichera, F. Z. Grandi, R. Zanetti, and P. Canal, Makromol. Chem., 175, 953 (1974).
D. M. Lincoln, R. A. Vaia, and R. Krishnamoorti, Macromolecules, 37, 4554 (2004).
M. Colilla, M. Darder, P. Aranda, and E. Ruiz-Hitzky, J. Mater. Chem., 15, 3844 (2005).
http://riodb01.ibase.aist.go.jp/sdbs/cgi-bin/cre_index.cgi?lang=eng
T. X. Liu and I. Y. Phang, Macromolecules, 37, 7214 (2004).
Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, and T. O. Kurauchi, J. Mater. Res., 8, 1185 (1993).
B. C. Guo, Q. L. Zou, Y. D. Lei, M. L. Du, M. X. Liu, and D. M. Jia, Thermochim. Acta, 484, 48 (2009).
J. D. Hoffman, G. T. Davis, and J. I. Lauritzen, in “Treatise on Solid State Chemistry,” N. B. Hannay, Ed., Plenum, New York, 1976, p497.
S. Vyazovkin, J. Comput. Chem., 18, 393 (1997).
S. Vyazovkin, J. Comput. Chem., 22, 178 (2001).
D. R. Holmes, C. W. Bunn, and D. J. Smith, J. Polym. Sci., 17, 159 (1955).
H. Arimoto, M. Ishibashi, M. Hirai, and Y. Chatani, J. Polym. Sci, Part A: Polym. Chem., 3, 317 (1965).
X. H. Liu, Q. J. Wu, and L. A. Berglund, Macromol. Mater. Eng., 287, 515 (2002).
M. K. Akkapeddi, Presented at ANTEC 99 Conference, New York, 1999.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Guo, B., Zou, Q., Lei, Y. et al. Structure and Performance of Polyamide 6/Halloysite Nanotubes Nanocomposites. Polym J 41, 835–842 (2009). https://doi.org/10.1295/polymj.PJ2009110
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1295/polymj.PJ2009110
Keywords
This article is cited by
-
A study on the anticorrosion performance of epoxy nanocomposite coatings containing epoxy-silane treated nanoclay on mild steel in chloride environment
Journal of Polymer Research (2021)
-
The crystallization of polypropylene/halloysite fibers
Journal of Thermal Analysis and Calorimetry (2019)
-
Mechanical, thermal, and flame-retardant performance of polyamide 11–halloysite nanotube nanocomposites
Journal of Materials Science (2015)
-
Surface-dependent cytotoxicity on bacteria as a model for environmental stress of halloysite nanotubes
Journal of Nanoparticle Research (2013)