## Phonon Dispersion and Heat Capacity in Microbial Poly(ε-L-lysine)(M-ε-PL)

By Mahendra SINGH,<sup>1</sup> Abhishek K. MISHRA,<sup>2</sup> Navnit K. MISRA,<sup>1</sup> Poonam TANDON,<sup>3,\*</sup> Ko-Ki KUNIMOTO,<sup>4</sup> and V. D. GUPTA<sup>3</sup> REGULAR ARTICLE

Microbial  $poly(\varepsilon-L-lysine)(M-\varepsilon-PL)$  is a naturally occurring biomaterial, which is water soluble, biodegradable, edible and non-toxic towards humans and environment. Normal mode analysis including phonon dispersion has been performed to understand completely the vibrational spectra of this polymer. Various characteristic features of the dispersion curves have been reported. The heat capacity is calculated as a function of temperature *via* density-of-states in the range 1–450 K. KEY WORDS: Microbial Poly( $\varepsilon$ -L-lysine) / Density-of-states / Phonon Dispersion / Heat Capacity /

Due to the environmental problems related to the plastic materials, there is an ongoing worldwide research effort to develop biodegradable polymers. Poly(amino acid)s are an important class of biodegradable polymers based on natural amino acids linked by amide bonds.<sup>1</sup> These belong to small group of polyamides that consist of only one type of amino acids linked by amide bonds. They are different from proteins that are polyamides of different amino acids. Poly( $\varepsilon$ -L-lysine)( $\varepsilon$ -PL) is an unusual cationic, naturally occurring homopolyamide made of L-lysine, having amide linkage between  $\varepsilon$ -amino and  $\alpha$ -carboxyl groups [Figure 1]. Polyaminoacids have been suggested and recently investigated as a potential family of biodegradable polymers with optimum mechanical and thermal properties, as well as processing and susceptibility to degradation.<sup>2,3</sup>

Kushwaha et al.4 were the first to report the chemical synthesis of  $\varepsilon$ -PL. They discussed the conformational behaviour of the polymer in aqueous solution based on CD spectra. On the basis of mainly pH dependence of CD spectra, they concluded that it assumes a  $\beta$ -sheet conformation in aqueous alkaline solution. At acidic pHs, *ɛ*-PL took up an electrostatically expanded conformation due to repulsion of protonated  $\alpha$ -amino groups, whereas at elevated pH above pK<sub>a</sub> of  $\alpha$ -amino group, the conformation changed to antiparallel  $\beta$ -sheet like structure. Shima and Sakai isolated  $\varepsilon$ -PL from culture filtrate of Streptomyces albulus and studied its fermentation conditions and physicochemical properties.<sup>5–8</sup> This microbially produced  $\varepsilon$ -PL abbreviated as M- $\varepsilon$ -PL is a naturally occurring biomaterial, which is water soluble, biodegradable, edible and nontoxic towards humans and environment. It shows antibacterial activities against a large number of microorganisms, due to which it finds application as a preservative for various food products.9 Other potential applications of this polymer are as emulsifying agent, dietary agent, biodegradable fibers, highly water absorbable hydrogels, drug carriers, anticancer agent enhancer and biochip coatings.<sup>10</sup>

Polymeric systems in general and biopolymers in particular are capable of existing in a variety of conformations. The type of conformation taken up by them dictates almost all their properties. Spectroscopic approach has proved a very powerful diagnostic tool in characterizing their conformation. Several workers<sup>11-15</sup> have studied the molecular structure and conformation of M- $\varepsilon$ -PL, which indicate that it assumes a  $\beta$  sheet conformation. For example, Maeda et al.14 recorded FT-IR, FT-Raman and <sup>13</sup>C NMR spectra to investigate the conformation of M-E-PL. FT-IR and FT-Raman spectra indicate that it assumes  $\beta$ -sheet conformation in solid state. <sup>13</sup>C NMR suggested that M-*\varepsilon*-PL existed as a mixture of two crystalline forms. Introduction of several CH2 groups in the backbone of the chain makes it possible to view this polymer as sequential copolymer of polyethylene and  $poly(\alpha$ -peptide) type sequences.

Vibrational spectroscopy is an important tool for probing conformation through conformationally sensitive modes of a polymer. In general, the IR absorption, Raman spectra, inelastic neutron scattering (INS) from polymeric systems are very complex and cannot be unraveled without the full knowledge of dispersion curves. One cannot appreciate without it the origin of both symmetry dependent and symmetry independent spectral features. Normal mode analysis helps in precise assignment and identification of spectral features. Further the presence of regions of high density-of-states that appears in all these techniques and play an important role in the thermodynamical behaviour is also dependent on the profile of dispersion curves. The lack of this information in many polymeric systems has been responsible for incomplete understanding of polymeric spectra. Dispersion curves also provide information on the extent of coupling along the chain together with an understanding of the dependence of the frequency of the given mode upon the sequence length of ordered conformation.

<sup>&</sup>lt;sup>1</sup>Department of Physics, Brahmanand P.G. College, Kanpur 224 008, India

<sup>&</sup>lt;sup>2</sup>Department of Physics, Amity School of Engineering, Amity University, Noida 201 301, India

<sup>&</sup>lt;sup>3</sup>Department of Physics, University of Lucknow, Lucknow 226 007, India <sup>4</sup>Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan

<sup>\*</sup>To whom correspondence should be addressed (Tel: +91-522-278-2653, Fax: +91-522-278-2653, E-mail: poonam.tandon@yahoo.co.uk).



Figure 1. One chemical repeat unit of M-e-PL.

Misra *et al.*<sup>16</sup> reported a detailed dynamical study of helical poly( $\alpha$ -L-lysine) but no such work has been reported on M- $\varepsilon$ -PL. In the present work, we report a comprehensive study of normal mode analysis, phonon dispersion, density-of-states and heat capacity of M- $\varepsilon$ -PL using Urey-Bradley force field (UBFF). This potential field in addition to valence force field accounts for the non-bonded interactions in the *gem* and *cis* configuration and the tension terms. The density-of-states is used to calculate heat capacity, which enables us to correlate the microscopic behaviour with macroscopic properties. The predictive values of heat capacity are being reported in the temperature range 1–450 K.

## THEORY

### **Calculation of Normal Mode Frequencies**

Normal mode calculations for a polymeric chain were carried out using Wilson's GF matrix method<sup>17</sup> as modified by Higgs<sup>18</sup> for an infinite polymeric chain. The vibrational secular equation to be solved is

$$|\mathbf{G}(\delta)\mathbf{F}(\delta) - \lambda(\delta)\mathbf{I}| = 0 \quad 0 \le \delta \le \pi \tag{1}$$

where  $\delta$  is the phase difference between the modes of adjacent chemical units,  $G(\delta)$  is the inverse kinetic energy matrix and  $F(\delta)$  is the force field matrix for a certain phase value. The wavenumber  $v_i(\delta)$  in cm<sup>-1</sup> are related to eigen values by

$$\lambda_{i}(\delta) = 4\pi^{2}c^{2}[\nu_{i}(\delta)]^{2}$$
<sup>(2)</sup>

A plot of  $v_i(\delta)$  versus  $\delta$  gives the dispersion curve for the i<sup>th</sup> mode. The use of the type of force field is generally a matter of one's chemical experience and intuition. In the present work, we have used Urey-Bradley force field as it is more comprehensive than valence force field. The Urey-Bradley takes into account both bonded and non-bonded interactions as well as internal tensions.

## **Calculation of Heat Capacity**

Dispersion curves can be used to calculate the specific heat of a polymeric system. For a one-dimensional system, the density-of-state function or the frequency distribution function expresses the way energy is distributed among the various branches of normal modes in the crystal, is calculated from the relation

$$g(\nu) = \sum (\partial \nu_j / \partial \delta)^{-1}]_{\nu j(\delta) = \nu j}$$
(3)

The sum is over all the branches j. Considering a solid as an assembly of harmonic oscillators, the frequency distribution  $g(\nu)$  is equivalent to a partition function. The constant volume heat capacity can be calculated using Debye's relation

$$C_{v} = \sum g(\nu_{j})KN_{A}(h\nu_{j}/KT)^{2} \times [\exp(h\nu_{j}/KT)/\{\exp(h\nu_{j}/KT)-1)\}^{2}]$$
(4)

with  $\int g(v_i) dv_i = 1$ .

#### **RESULTS AND DISCUSSION**

One residue unit of M-*\varepsilon*-PL (Figure 1) contains 21 atoms, which give rise to 63 dispersion curves. The geometry of the chain was obtained by molecular modeling techniques and minimization of conformational energy. The structural parameters thus obtained are given in Table I. Initially the force constants were transferred from  $poly(\varepsilon$ -caprolactone) (PCL).<sup>19</sup>  $\beta$  poly(L-valine)<sup>20</sup> and poly( $\alpha$ -L-lysine)<sup>16</sup> and later modified to give the "best fit" to the observed spectra of Maeda et al.14 The "best-fitted" force constants are given in Table II. The assignments were made on the basis of potential energy distribution (PED), band profile, line intensities and the presence/absence of similar groups in an identical environment. The vibrational frequencies have been calculated for the values of  $\delta$  ranging from 0 to  $\pi$  in steps of 0.05 $\pi$ . The optically active modes correspond to those at  $\delta = 0$  and  $\delta = \pi$ . The assignments of all modes along with percentage PED are given in Table III.

Table I. Structural Parameters of M-e-PL

| Parameters                                                                                                                                   | Values  |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Bond Lengths                                                                                                                                 |         |
| All C-H Bonds                                                                                                                                | 1.08 Å  |
| All N-H Bonds                                                                                                                                | 1.00 Å  |
| Aliphatic C-C bonds (Except $C_{\alpha}$ -C = 1.53 Å)                                                                                        | 1.54 Å  |
| C=O Bond                                                                                                                                     | 1.24 Å  |
| $C_{\alpha}$ - $N_{\alpha}$ , N- $C_{\varepsilon}$ Bonds                                                                                     | 1.47 Å  |
| C=N Bond                                                                                                                                     | 1.32 Å  |
| Bond Angles                                                                                                                                  |         |
| All $\angle C_{\alpha}'^{s}$ , $\angle C_{\beta}'^{s}$ , $\angle C_{\gamma}'^{s}$ , $\angle C_{\delta}'^{s}$ , $\angle C_{\varepsilon}'^{s}$ | 109.47° |
| $\angle H-N-C_{\varepsilon}, \angle N-C-C_{\alpha}$                                                                                          | 114.00° |
| ∠O-C-C <sub>α</sub>                                                                                                                          | 121.00° |
| ∠C-N-C <sub>e</sub>                                                                                                                          | 123.00° |
| $\angle H-N_{\alpha}-C_{\alpha}$                                                                                                             | 120.00° |
| Dihedral Angles                                                                                                                              |         |
| $\chi (C_{\gamma}-C_{\delta}-C_{\varepsilon}-N)$                                                                                             | 180.00° |
| $\chi (C_{\beta} - C_{\gamma} - C_{\delta} - C_{\varepsilon})$                                                                               | 180.00° |
| $\chi (C_{\alpha} - C_{\beta} - C_{\gamma} - C_{\delta})$                                                                                    | 180.00° |
| $\chi (C-C_{\alpha}-C_{\beta}-C_{\gamma})$                                                                                                   | 180.00° |
| $\chi$ (H-N-C <sub>e</sub> -C <sub><math>\delta</math></sub> )                                                                               | 0.00°   |
| $\chi$ (H-N <sub><math>\alpha</math></sub> -C <sub><math>\alpha</math></sub> -C <sub><math>\beta</math></sub> )                              | 0.00°   |

Table II. Internal coordinates and force constants for M-e-PL (mydn/Å)

| Internal                                                                               | Force        | Internal                                                                          | Force        |
|----------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------|--------------|
| Coordinates                                                                            | Constants    | Coordinates                                                                       | Constants    |
| ν (N-C <sub>ε</sub> )                                                                  | 3.000        | $\varphi (C_{\gamma} - C_{\beta} - H)$                                            | 0.405(0.220) |
| $\nu (C_{\varepsilon} - C_{\delta})$                                                   | 3.350        | $\varphi$ (H-C <sub><math>\beta</math></sub> -C <sub><math>\alpha</math></sub> )  | 0.460(0.230) |
| $\nu (C_{\delta} - C_{\gamma})$                                                        | 3.250        | $\varphi (C_{\gamma} - C_{\beta} - C_{\alpha})$                                   | 0.425(0.500) |
| $\nu (C_{\gamma} - C_{\beta})$                                                         | 3.150        | φ (H-C <sub>β</sub> -H)                                                           | 0.360(0.365) |
| $\nu (C_{\beta} - C_{\alpha})$                                                         | 3.100        | $\varphi$ (C <sub><math>\beta</math></sub> -C <sub><math>\alpha</math></sub> -H)  | 0.480(0.215) |
| $\nu$ (C <sub><math>\alpha</math></sub> -C)                                            | 2.000        | $\varphi (C_{\beta} - C_{\alpha} - N_{\alpha})$                                   | 0.105(0.390) |
| v (C=N)                                                                                | 5.600        | $\varphi$ (H-C <sub><math>\alpha</math></sub> -C)                                 | 0.440(0.215) |
| ν (C <sub>ε</sub> -H)                                                                  | 3.920        | $\varphi (N_{\alpha}-C_{\alpha}-C)$                                               | 0.130(0.500) |
| ν (C <sub>δ</sub> -H)                                                                  | 4.160        | $\varphi$ (H-C <sub><math>\alpha</math></sub> -N <sub><math>\alpha</math></sub> ) | 0.300(0.800) |
| ν (C <sub>γ</sub> -H)                                                                  | 4.160        | $\varphi (C_{\beta}-C_{\alpha}-C)$                                                | 0.750(0.500) |
| ν (C <sub>β</sub> -H)                                                                  | 4.160        | $\varphi$ (C <sub><math>\alpha</math></sub> -N <sub><math>\alpha</math></sub> -H) | 0.500(0.600) |
| ν (C <sub>α</sub> -H)                                                                  | 4.163        | $\varphi$ (H-N <sub><math>\alpha</math></sub> -H)                                 | 0.225(0.355) |
| $\nu (C_{\alpha} - N_{\alpha})$                                                        | 2.050        | $\varphi$ (C <sub><math>\alpha</math></sub> -C=O)                                 | 0.890(0.900) |
| ν (N <sub>α</sub> -H)                                                                  | 5.840        | $\varphi$ (O=C=N)                                                                 | 0.910(0.900) |
| v (C=O)                                                                                | 7.670        | $\varphi$ (C <sub><math>\alpha</math></sub> -C=N)                                 | 0.585(0.600) |
| v (N-H)                                                                                | 5.530        | $\varphi$ (C <sub><math>\alpha</math></sub> =N-H)                                 | 0.345(0.520) |
| $\varphi$ (N-C <sub><math>\varepsilon</math></sub> -H)                                 | 0.230(0.800) | $\varphi$ (H-N-C <sub><math>\varepsilon</math></sub> )                            | 0.310(0.520) |
| $\varphi$ (H-C <sub>e</sub> -C <sub><math>\delta</math></sub> )                        | 0.395(0.220) | $\varphi$ (C=N-C <sub>e</sub> )                                                   | 0.440(0.540) |
| $\varphi (N-C_{\varepsilon}-C_{\delta})$                                               | 0.460(0.600) | ω (C=O)                                                                           | 0.500        |
| $\varphi$ (H-C <sub><math>\varepsilon</math></sub> -H)                                 | 0.350(0.360) | ω (N-H)                                                                           | 0.135        |
| $\varphi$ (C <sub><math>\varepsilon</math></sub> -C <sub><math>\delta</math></sub> -H) | 0.429(0.220) | $\omega$ (N <sub><math>\alpha</math></sub> -H)                                    | 0.0241       |
| $\varphi (H-C_{\delta}-C_{\gamma})$                                                    | 0.432(0.230) | $\tau (C_{\varepsilon} - C_{\delta})$                                             | 0.041        |
| $\varphi (C_{\varepsilon} - C_{\delta} - C_{\gamma})$                                  | 0.450(0.600) | $\tau (C_{\delta} - C_{\gamma})$                                                  | 0.009        |
| $\varphi$ (H-C <sub><math>\delta</math></sub> -H)                                      | 0.360(0.365) | $\tau (C_{\gamma}-C_{\beta})$                                                     | 0.009        |
| $\varphi (C_{\delta}-C_{\gamma}-H)$                                                    | 0.405(0.220) | $\tau (C_{\beta}-C_{\alpha})$                                                     | 0.011        |
| $\varphi$ (H-C <sub><math>\gamma</math></sub> -C <sub><math>\beta</math></sub> )       | 0.405(0.230) | $\tau$ (C <sub><math>\alpha</math></sub> -C)                                      | 0.010        |
| $\varphi (C_{\delta} - C_{\gamma} - C_{\beta})$                                        | 0.476(0.600) | $\tau$ (C=N)                                                                      | 0.095        |
| φ (H-C <sub>γ</sub> -H)                                                                | 0.360(0.365) | $\tau (C_{\alpha}-N_{\alpha})$                                                    | 0.010        |
|                                                                                        |              | $\tau (N-C_{\varepsilon})$                                                        | 0.011        |

Note: 1. v,  $\varphi$ ,  $\omega$  and  $\tau$  denote stretch, angle bend, wag and torsion respectively.

2. Non-bonded force constants are given in parentheses.

Since the spectra below  $200 \text{ cm}^{-1}$  are not available hence exact fitting of the force constants related to this region could not be carried out. However in the near infrared region, the calculated frequencies depend on both bonded as well as nonbonded interactions and if they generate the best values in this region then it is expected that in the low frequency region as well, they would yield good results because the non-bonded interactions play dominant role in this region as well. Dispersion curves are plotted in Figure 3(a) for the modes below  $400 \text{ cm}^{-1}$ , because the modes above this are either non dispersive or show very little dispersion. Heat capacity is obtained from the dispersion curves *via* density-of-states. Normal mode frequencies are broadly classified under amide modes, methylene modes, NH<sub>2</sub> group modes and other modes.

## Amide Modes

The amide linkage is one of the most fundamental and wide spread chemical linkages in nature. Amide groups of polypeptides are strong chromophores in IR absorption, and these groups give rise to strong characteristic bands (Amide A, I to VII), thus amide modes play a vital role in the vibrational dynamics of polypeptides and polyamides. These modes along with other modes have been used for structural diagnosis. On the basis of such diagnostic correlations, secondary structural compositions are estimated in proteins as well. A comparison of the amide modes of M- $\varepsilon$ -PL with those of other  $\beta$  sheet polypeptides is given in Table IV. The minor differences between different amide modes are due to the presence of different chemical groups in between amide groups and number of intervening CH<sub>2</sub> groups that affect the long range interaction and side chain involved in the motion. For example in PG I, the amide group is flanked by only one CH<sub>2</sub> group while in M- $\varepsilon$ -PL, it is sandwiched between four CH<sub>2</sub> groups and a NH<sub>2</sub>CH group. Since amide bands are affected by the dipole-dipole interaction between neighbouring amide groups, their frequencies and intensities are sensitive to the chain conformation.

The amide A band arising from N-H stretching is characteristic of its functional group and because of its being highly localized, it is not sensitive to the chain conformation and side chain structure. This mode is highly sensitive to the strength of N-H-O=C hydrogen bond. We have calculated amide A mode at 3322 cm<sup>-1</sup> corresponding to the observed peak at 3329/3320 in cm<sup>-1</sup> in IR/Raman spectra.<sup>14</sup> It should be noted that this frequency is somewhat more than those in other  $\beta$ polypeptides (Table IV). The force constant of N-H stretch in this case is more, which is consistent with weaker hydrogen bond in the pleated sheet structure as compared to the rippled sheet. Amide I mode has significant contribution from C=O and C-N stretches. This localized mode is calculated at 1639 cm<sup>-1</sup> at the zone centre and is in agreement with the observed band at 1639/1633 cm<sup>-1</sup> in IR/Raman spectra.<sup>14</sup> This mode reflects the hydrogen bond strength due to the presence of C=O stretch contributions. It is sensitive to backbone conformation.

Amide II is predominantly an N-H in plane bending mode. It is calculated at  $1528 \text{ cm}^{-1}$  and assigned to the peak observed at  $1540/1523 \text{ cm}^{-1}$  (IR/Raman).<sup>14</sup> This agrees well with the amide II modes in other  $\beta$  sheet structures such as  $\beta$ -PLV,  $\beta$ -PALS,  $\beta$ -PG I and  $\beta$ -PLS<sup>20–23</sup> [Table IV].

Amide III is a combination of N-H in plane bend and C-N stretch as in amide II but in opposite phase. The frequency of this mode does not solely depend on the main chain conformation. Side chain structure also plays important role.<sup>24</sup> This mode has been calculated at  $1279 \text{ cm}^{-1}$  at  $\delta = 0$  and assigned to the peak observed at  $1280 \text{ cm}^{-1}$  in the observed Raman spectra.<sup>14</sup>

Amide IV vibration is associated with the in plane bending of C=O band. This mode calculated at 549 cm<sup>-1</sup> (at  $\delta = 0$ ) is assigned to the peak appearing at the same value in the observed IR/Raman spectra. This mode is quite sensitive to molecular geometry.

Amide V and VI modes are mainly asymmetric out of plane wag of N-H and C=O bonds respectively. These vibrational modes calculated at 714 and 643 cm<sup>-1</sup> respectively at the zone centre match well with the observed peaks at 711 cm<sup>-1</sup> (IR) and 649/645 cm<sup>-1</sup> in IR/Raman spectra.<sup>14</sup> However, it should be mentioned that amide V and VI are not pure modes. These are mixed up with amide VII mode which is  $\tau$ (C=N).

| Cal.  | Obs. | . Freq.* |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cal.  | Obs. | . Freq.* |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------|------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Freq. | IR   | Raman    | Assignment ( $\delta = 0$ ) PED (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Freq. | IR   | Raman    | Assignment ( $\delta = \pi$ ) PED (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3417  | 3414 | _        | ν[N <sub>α</sub> -H](99)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3417  | 3414 |          | ν[N <sub>α</sub> -H](99)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3387  | 3386 | 3385     | ν[N <sub>α</sub> -H](99)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3387  | 3386 | 3385     | ν[N <sub>α</sub> -H](99)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3322  | 3329 | 3320     | v[N-H](99) (Amide A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3335  | 3329 | 3320     | v[N-H](99)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2941  | 2936 | 2933     | $\nu[C_{\alpha}-H](92)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2941  | 2936 | 2933     | $\nu[C_{\alpha}-H](91)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2940  | 2936 | 2933     | $\nu[C_{\varepsilon}-H](85)+\nu[C_{\delta}-H](11)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2940  | 2936 | 2933     | $\nu[C_{\delta}-H](85)+\nu[C_{\delta}-H](11)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2935  | 2936 | 2933     | $\nu[C_{\nu}-H](49) + \nu[C_{\beta}-H](24)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2935  | 2936 | 2933     | $v[C_{\gamma}-H](49)+v[C_{\beta}-H](24)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2000  | 2000 | 2000     | $+\nu[C_{\delta}-H](15)+\nu[C_{e}-H](8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2000  | 2000 | 2000     | $+\nu[C_{\delta}-H](15)+\nu[C_{\varepsilon}-H](8)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2929  | 2936 | 2933     | $\nu[C_{\delta}-H](47) + \nu[C_{\beta}-H](46)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2929  | 2936 | 2933     | $\nu[C_{\delta}-H](47)+\nu[C_{\beta}-H](46)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2925  | 2936 | 2933     | $\nu[C_{\nu}-H](47) + \nu[C_{\delta}-H](27) + \nu[C_{\beta}-H](24)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2925  | 2936 | 2933     | $\nu[C_{\nu}-H](47) + \nu[C_{\delta}-H](27) + \nu[C_{\beta}-H](24)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2020  | 2000 | 2000     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LULU  | 2000 | 2000     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2858  | 2858 | 2853     | $\nu[C_{\varepsilon}-H](94)+\nu[C_{\delta}-H](5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2858  | 2858 | 2853     | $\nu[C_{\epsilon}-H](94)+\nu[C_{\delta}-H](5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2854  | 2858 | 2853     | $\nu[C_{\nu}-H](51)+\nu[C_{\beta}-H](28)+\nu[C_{\delta}-H](18)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2854  | 2858 | 2853     | $\nu[C_{\gamma}-H](51)+\nu[C_{\beta}-H](29)+\nu[C_{\delta}-H](18)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2851  | 2858 | 2853     | $\nu[C_{\delta}-H](49) + \nu[C_{\beta}-H](48)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2851  | 2858 | 2853     | $\nu[C_{\delta}-H](49)+\nu[C_{\beta}-H](47)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2848  | 2858 | 2853     | $\nu[C_{\nu}-H](48) + \nu[C_{\delta}-H](27) + \nu[C_{\beta}-H](25)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2848  | 2858 | 2853     | $\nu[C_{\gamma}-H](48) + \nu[C_{\delta}-H](27) + \nu[C_{\beta}-H](24)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 20.0  | 2000 | 2000     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2010  | 2000 | 2000     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1639  | 1639 | 1633     | v[C=O](48)+v[C=N](26) (Amide I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1685  | _    | _        | $\nu$ [C=N](37)+ $\varphi$ [H-N-C $_{\varepsilon}$ ](16)+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |      |          | $\varphi[C=N-H](15)+\nu[N-C_{\varepsilon}](14)+\nu[C=O](6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1624  | 1639 | 1633     | $\varphi[C_{\alpha}-N_{\alpha}-H](46)+\varphi[H-N_{\alpha}-H](41)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1631  | 1639 | 1633     | $\nu$ [C=O](29)+ $\varphi$ [C <sub><math>\alpha</math></sub> -N <sub><math>\alpha</math></sub> -H](22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1021  | 1000 | 1000     | $\varphi[O_{\alpha} \cap \alpha \cap j(O) \cap \varphi[\cap \cap \alpha \cap j(O))]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1001  | 1000 | 1000     | $+\varphi[H-N_{\alpha}-H](19)+\varphi[C=N-H](7)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |      |          | $\varphi_1, \varphi_2, \ldots, \varphi_n, \varphi_n, \varphi_n, \varphi_n, \varphi_n, \varphi_n, \varphi_n, \varphi_n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1528  | 1540 | 1523     | $\varphi$ [C=N-H](31)+ $\varphi$ [H-N-C $_{\varepsilon}$ ](30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1621  | 1639 | 1633     | $\varphi[C_{\alpha}-N_{\alpha}-H](28)+\nu[C=O](24)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .020  |      | 1020     | $+\nu[C=N](15)+\nu[N-C_{e}](6)$ (Amide II)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |      | 1000     | $\varphi_{[0]\alpha} + \varphi_{[1]}(24) + \varphi_{[1]}(24) + \varphi_{[2]}(24) + \varphi_{$                                                                                                                                                                                           |
|       |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |      |          | $\varphi[1,1,q_{\alpha},1](2,1)+\varphi[0,2,1,1](0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1460  | 1461 | _        | $\varphi$ [H-C <sub><math>\beta</math></sub> -H](31)+ $\varphi$ [H-C <sub><math>\delta</math></sub> -H](22)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1460  | 1461 | _        | $\varphi$ [H-C <sub><math>\beta</math></sub> -H](31)+ $\varphi$ [H-C <sub><math>\delta</math></sub> -H](22)+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1100  | 1101 |          | $+\varphi[H-C_{\gamma}-H](20)+\varphi[H-C_{\beta}-C_{\alpha}](7)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1100  | 1101 |          | $\varphi[H-C_{\gamma}-H](20)+\varphi[H-C_{\beta}-C_{\alpha}](7)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1455  | 1461 | _        | $\varphi[H-C_{\delta}-H](38)+\varphi[H-C_{\beta}-H](32)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1455  | 1461 | _        | $\varphi_{[H-C_{\beta}-H](22)} + \varphi_{[H-C_{\beta}-H](22)} $                                                                                                                                                |
| 1100  | 1101 |          | $+\varphi[H-C_{\delta}-C_{\gamma}](5)+\varphi[H-C_{\beta}-C_{\alpha}](5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1100  | 1101 |          | $\varphi[H-C_{e}-H](14)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |      |          | $+\psi[1-O_{\delta}-O_{\gamma}](0)+\psi[1-O_{\beta}-O_{\alpha}](0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |      |          | $\varphi[1 - \Theta_{\varepsilon} - 1](1 + )$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1442  | 1440 | 1437     | $\varphi$ [H-C <sub><math>\nu</math></sub> -H](42)+ $\varphi$ [H-C <sub><math>\varepsilon</math></sub> -H](20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1447  | 1440 | 1437     | $\varphi$ [H-C <sub>e</sub> -H](54)+ $\varphi$ [N-C <sub>e</sub> -H](13)+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |      | 1.107    | $+\varphi[H-C_{\beta}-H](9)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |      |          | $\varphi_{[H-C_{\delta}-H](7)} + \varphi_{[H-C_{\gamma}-H](7)} + \varphi_{[H-C$ |
|       |      |          | ι φ[ ομ](ο)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |      |          | $\varphi[H-C_{\beta}-H](6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1439  | 1440 | 1437     | $\varphi$ [H-C <sub>e</sub> -H](40)+ $\varphi$ [H-C <sub><math>\delta</math></sub> -H](13)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1441  | 1440 | 1437     | $\varphi_{[H-C_{\gamma}-H]}(49) + \varphi_{[H-C_{\delta}-H]}(15) +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1100  | 1110 | 1107     | $+\varphi[H-C_{y}-H](13)+\varphi[N-C_{e}-H](11)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       | 1110 | 1107     | $\varphi[H-C_{\beta}-H](8)+\varphi[C_{\delta}-C_{\gamma}-H](5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |      |          | τι····μ···μ···μ····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1401  | _    | _        | $\varphi[C_{\alpha}-N_{\alpha}-H](25)+\nu[C_{\beta}-C_{\alpha}](18)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1401  | _    | _        | $\varphi[C_{\alpha}-N_{\alpha}-H](26)+\nu[C_{\beta}-C_{\alpha}](18)+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |      |          | $+\varphi[C_{\beta}-C_{\alpha}-H](13)+\varphi[H-C_{\alpha}-N_{\alpha}](11)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |      |          | $\varphi[C_{\beta}-C_{\alpha}-H](14)+\varphi[H-C_{\alpha}-N_{\alpha}](12)+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |      |          | $\varphi[C_{\gamma}-C_{\beta}-H](6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |      |          | <i>f(-)</i> - <i>p</i> ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1380  | 1376 |          | $\nu[C_{\varepsilon}-C_{\delta}](18)+\nu[C_{\delta}-C_{\nu}](17)+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1382  | 1376 | _        | $\nu[C_{\delta}-C_{\nu}](17)+\nu[C_{\epsilon}-C_{\delta}](16)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       |      |          | $\varphi$ [H-C <sub><math>\delta</math></sub> -C <sub><math>\nu</math></sub> ](15)+ $\varphi$ [C <sub><math>\varepsilon</math></sub> -C <sub><math>\delta</math></sub> -H](15)+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |      |          | $+\varphi[H-C_{\delta}-C_{\gamma}](13)+\varphi[C_{\epsilon}-C_{\delta}-H](13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       |      |          | $\varphi[N-C_{g}-H](6)+\varphi[H-C_{y}-C_{g}](6)+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |      |          | $+\varphi[H-C_{\gamma}-C_{\beta}](7)+\varphi[C_{\delta}-C_{\gamma}-H](6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |      |          | $\varphi[C_{\delta}-C_{\gamma}-H](6)+[H-C_{\varepsilon}-C_{\delta}](5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |      |          | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1345  | 1341 | 1353     | $\varphi[C_{\nu}-C_{\beta}-H](14)+\nu[C_{\nu}-C_{\beta}](13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1341  | 1341 | 1353     | $\varphi$ [H-C <sub><math>\alpha</math></sub> -N <sub><math>\alpha</math></sub> ](24)+ $\varphi$ [C <sub><math>\gamma</math></sub> -C <sub><math>\beta</math></sub> -H](13)+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       |      |          | $+\varphi[H-C_{\beta}-C_{\alpha}](13)+\varphi[H-C_{\alpha}-N_{\alpha}](13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |      |          | $\varphi[\text{H-C}_{\beta}\text{-C}_{\alpha}](12) + \nu[C_{\gamma}\text{-C}_{\beta}](10) +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       |      |          | $+\varphi[N-C_{\varepsilon}-H](7)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |      |          | $\nu[C_{\varepsilon}-C_{\delta}](5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|       |      |          | 1 + [ 8](.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1317  | 1319 | 1304     | $\varphi$ [H-C <sub>a</sub> -N <sub>a</sub> ](30)+ $\varphi$ [H-C <sub>a</sub> -C](15)+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1304  | 1319 | 1304     | $\varphi$ [H-C <sub><math>\alpha</math></sub> -N <sub><math>\alpha</math></sub> ](25)+ $\varphi$ [H-C <sub><math>\alpha</math></sub> -C](17)+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |      |          | $\nu[C_{\alpha}-C](12)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |      |          | $\varphi[C_{\alpha}-N_{\alpha}-H](14)+\varphi[N-C_{s}-H](8)+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |      |          | [-u-j()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |      |          | $\varphi$ [H-C <sub>e</sub> -C <sub><math>\delta</math></sub> ](7)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1279  | 1280 | _        | $v[C=N](14) + \varphi[C_{\alpha} - N_{\alpha} - H](13)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1291  | _    | _        | $\varphi$ [H-N-C <sub>e</sub> ](10)+ $\varphi$ [N-C <sub>e</sub> -H](10)+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       | .200 |          | $+\varphi[\text{H-N-C}_{\varepsilon}](10) \qquad (\text{Amide III})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |      |          | $\nu[C_{\alpha}-C](9) + \varphi[C_{\varepsilon}-C_{\delta}-H](8) +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |      |          | ι φ[ οε](.ο) (,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |      |          | $\varphi[H-C_{\delta}-C_{\gamma}](8)+\nu[C=N](8)+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |      |          | $\varphi[O=C=N](7)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1267  | 1264 | _        | $\varphi$ [N-C <sub>e</sub> -H](21)+ $\varphi$ [H-C <sub>e</sub> -C <sub>b</sub> ](20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1250  | _    | 1255     | $\varphi[C_{\alpha} - N_{\alpha} - H](14) + \varphi[H - C_{\varepsilon} - C_{\delta}](12) +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       |      |          | $+\varphi[H-C_{\beta}-C_{\alpha}](7)+\varphi[C_{\gamma}-C_{\beta}-H](7)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | .200  |      | 1200     | $\varphi_{[N-C_{\varepsilon}-H]}(11) + \nu[C=N](9)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |      |          | $f_{1} = f_{1} = f_{2} = f_{2} = f_{1} = f_{2} = f_{2$ |       |      |          | $\psi[1 \cup C_{\epsilon}, 1](1) + \psi[0 = 10](0)$<br>+ $\nu[C=O](8) + \varphi[H-N-C_{\epsilon}](7)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |      |          | $+\varphi[C=N-H](7)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1235  | 1228 | _        | $\varphi$ [N-C <sub>e</sub> -H](59)+ $\varphi$ [H-C <sub>e</sub> -C <sub><math>\delta</math></sub> ](17)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1235  | 1228 | _        | $\varphi[\text{N-C}_{\varepsilon}-\text{H}](59) + \varphi[\text{H-C}_{\varepsilon}-\text{C}_{\delta}](17) +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1200  | 1220 | _        | $\varphi[H-C_{\delta}-C_{\gamma}](10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1200  | 1220 | _        | $\varphi[\operatorname{H-C}_{\delta}-\operatorname{C}_{\nu}](10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |      |          | · •[· · • • • • •](· •)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |      |          | Ψι Οδ ΟγΙ(10)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |      |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| Table III. | Normal modes and their dispersion in M-e-P | Ľ |
|------------|--------------------------------------------|---|
|------------|--------------------------------------------|---|

Continued on the next page.



| Cal.  | Obs. | Freq.* |                                                                                                                                                                                                                                                                                                                                                                       | Cal.  | Obs. Freq.* |       |                                                                                                                                                                                                                                                                                                                                                                      |
|-------|------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Freq. | IR   | Raman  | Assignment ( $\delta = 0$ ) PED (%)                                                                                                                                                                                                                                                                                                                                   | Freq. | IR          | Raman | Assignment ( $\delta = \pi$ ) PED (%)                                                                                                                                                                                                                                                                                                                                |
| 1224  | 1228 | _      | $\begin{split} &\varphi[C_{\alpha}-N_{\alpha}-H](16)+\varphi[H-C_{\gamma}-C_{\beta}](15) \\ &+\varphi[C_{\delta}-C_{\gamma}-H](13)+\varphi[C_{e}-C_{\delta}-H](10) \\ &+\varphi[C_{\beta}-C_{\alpha}-H](9) \end{split}$                                                                                                                                               | 1222  | 1228        | _     | $\varphi[H-C_{\gamma}-C_{\beta}](19)+\varphi[C_{\delta}-C_{\gamma}-H](17)+ \\ \varphi[C_{\epsilon}-C_{\delta}-H](11)+\varphi[H-C_{\delta}-C_{\gamma}](10)+ \\ \varphi[C_{\alpha}-N_{\alpha}-H](7)+\varphi[C_{\beta}-C_{\alpha}-H](7)+ \\ \varphi[H-C_{\beta}-C_{\alpha}](7)$                                                                                         |
| 1201  | -    | 1200   | $ \varphi[C_{\beta}-C_{\alpha}-H](28)+\varphi[H-C_{\alpha}-C](24)+ \\ \varphi[C_{\alpha}-N_{\alpha}-H](13)+\varphi[H-C_{\beta}-C_{\alpha}](7)+ \\ \varphi[C_{\delta}-C_{\gamma}-H](6) $                                                                                                                                                                               | 1202  | -           | 1200  | $\varphi[\Pi^{-}C_{\beta}^{-}C_{\alpha}](7)$ $\varphi[C_{\beta}^{-}C_{\alpha}^{-}H](31) + \varphi[H^{-}C_{\alpha}^{-}C](25) + \varphi[C_{\alpha}^{-}N_{\alpha}^{-}H](16) + \varphi[H^{-}C_{\beta}^{-}C_{\alpha}](6) + \varphi[C_{\gamma}^{-}C_{\beta}^{-}H](6)$                                                                                                      |
| 1166  | 1171 | 1162   | $\varphi[H-C_{\beta}-C_{\alpha}](38)+\varphi[C_{\gamma}-C_{\beta}-H](28)$ $+\varphi[H-C_{\delta}-C_{\gamma}](9)$                                                                                                                                                                                                                                                      | 1167  | 1171        | 1162  | $\varphi[H-C_{\beta}-C_{\alpha}](38)+\varphi[C_{\gamma}-C_{\beta}-H](28)+ \\ \varphi[H-C_{\delta}-C_{\gamma}](10)+\varphi[C_{e}-C_{\delta}-H](7)+ \\ \nu[C_{\alpha}-N_{\alpha}](6)$                                                                                                                                                                                  |
| 1150  | —    | 1140   | $\begin{aligned} &\varphi[C_{\varepsilon}-C_{\delta}-H](32)+\varphi[H-C_{\delta}-C_{\gamma}](25) \\ &+\varphi[H-C_{\beta}-C_{\alpha}](10)+[H-C_{\varepsilon}-C_{\delta}](8) \end{aligned}$                                                                                                                                                                            | 1149  | —           | 1140  | $\varphi[C_{\delta}-C_{\delta}-H](32) + \varphi[H-C_{\delta}-C_{\gamma}](24) + \varphi[H-C_{\beta}-C_{\alpha}](11) + \varphi[H-C_{\gamma}-C_{\beta}](8) + \varphi[H-C_{\delta}-C_{\delta}](8)$                                                                                                                                                                       |
| 1120  | 1123 | 1122   | $\begin{split} &\varphi[C_{\delta}-C_{\gamma}-H](40)\!+\!\varphi[H-C_{\gamma}-C_{\beta}](38) \\ &+\varphi[H-C_{\delta}-C_{\gamma}](6) \end{split}$                                                                                                                                                                                                                    | 1119  | 1123        | 1122  | $\varphi[C_{\delta}^{-}C_{y}^{-}H](41) + \varphi[H^{-}C_{y}^{-}C_{\beta}](39) + \varphi[H^{-}C_{\delta}^{-}C_{y}](7)$                                                                                                                                                                                                                                                |
| 1104  | 1095 | —      | $\nu[N-C_{\varepsilon}](45)+\nu[C_{\beta}-C_{\alpha}](6)$                                                                                                                                                                                                                                                                                                             | 1070  | 1064        | 1066  | $\nu[C_{\alpha}-N_{\alpha}](27)+\nu[C_{\beta}-C_{\alpha}](26) +\varphi[C_{\beta}-C_{\alpha}-C](7)+\varphi[C_{\gamma}-C_{\beta}-H](6)$                                                                                                                                                                                                                                |
| 1057  | 1064 | 1066   | $\nu[C_{\alpha}-N_{\alpha}](27)+\nu[C_{\beta}-C_{\alpha}](18)$ $+\nu[N-C_{\epsilon}](16)+\nu[C_{\alpha}-C](8)$                                                                                                                                                                                                                                                        | 1054  |             |       | $\nu[\text{N-C}_{\varepsilon}](28) + \nu[\text{C}_{\delta}\text{-C}_{\gamma}](10) + \varphi[\text{N-C}_{\varepsilon}\text{-C}_{\delta}](9) + \varphi[\text{C}_{\varepsilon}\text{-C}_{\delta}\text{-C}_{\gamma}](8) + \nu[\text{C}=\text{N}](6) + \nu[\text{C}_{\varepsilon}\text{-C}_{\delta}](5)$                                                                  |
| 1027  | 1040 | 1037   | $\nu[C_{\delta}-C_{\gamma}](31)+\nu[C_{e}-C_{\delta}](18) +\phi[C_{e}-C_{\delta}-C_{\gamma}](8)+\phi[C_{\delta}-C_{\gamma}-C_{\beta}](5)$                                                                                                                                                                                                                             | 1009  |             |       | $\nu[\operatorname{N-C}_{e}](26) + \nu[\operatorname{C}_{\delta} - \operatorname{C}_{\gamma}](19) + \nu[\operatorname{C}_{e} - \operatorname{C}_{\delta}](15) + \nu[\operatorname{C}_{\alpha} - \operatorname{N}_{\alpha}](7) + \nu[\operatorname{C}_{\alpha} - \operatorname{C}](7) $                                                                               |
| 995   | 1001 | 1010   | $\begin{split} \nu[C_{\varepsilon}-C_{\delta}](29)+\nu[C_{\gamma}-C_{\beta}](27)+\nu[C_{\delta}-C_{\gamma}](7)\\ +\varphi[H-C_{\varepsilon}-C_{\delta}](6)+\varphi[C_{\gamma}-C_{\beta}-H](5) \end{split}$                                                                                                                                                            | 998   | 1001        | 1010  | $\nu[C_{\gamma}-C_{\beta}](30)+\nu[C_{\varepsilon}-C_{\delta}](30)$ $+\nu[C_{\delta}-C_{\gamma}](6)+\varphi[C_{\gamma}-C_{\beta}-H](6)$ $+\varphi[H-C_{\varepsilon}-C_{\delta}](5)$                                                                                                                                                                                  |
| 972   | 972  | _      | $\nu[C_{\gamma}-C_{\beta}](21)+\nu[C_{\delta}-C_{\gamma}](8)+ \varphi[H-C_{\gamma}-C_{\beta}](8)+\varphi[C_{\varepsilon}-C_{\delta}-H](7)+ \varphi[C_{\gamma}-C_{\beta}-H](6)+\varphi[C_{\delta}-C_{\gamma}-H](6)$                                                                                                                                                    | 971   | 972         | _     | $\nu[C_{\delta}-C_{\gamma}](22) + \nu[C_{\gamma}-C_{\beta}](17) + \varphi[H-C_{\gamma}-C_{\beta}](9) + \varphi[C_{\delta}-C_{\gamma}-H](8) + \nu[C_{\alpha}-N_{\alpha}](6) + \varphi[C_{\epsilon}-C_{\delta}-H](5)$                                                                                                                                                  |
| 961   | —    | 956    | $\varphi[H-C_{y}-C_{\beta}](1)+\varphi[C_{e}-C_{e}-H](1) + \nu[C_{y}-C_{\beta}](1)+\varphi[H-C_{e}-C_{\delta}](10) + \varphi[H-C_{e}-C_{\delta}](10) + \varphi[H-C_{e}-C_{\delta}](10)$                                                                                                                                                                               | 958   | —           | 956   | $\varphi[C_{e}-C_{\delta}-H](12) + \varphi[H-C_{y}-C_{\beta}](11) + \\ \varphi[H-C_{\delta}-C_{y}](10) + \varphi[H-C_{e}-C_{\delta}](9) + \\ \nu[C_{y}-C_{\beta}](9) + \varphi[C_{\delta}-C_{y}-H](8) \\ + \varphi[H-C_{\beta}-C_{\alpha}](8) + \varphi[C_{y}-C_{\beta}-H](7)$                                                                                       |
| 933   | _    | 933    | $\nu[C_{\alpha}-C](21)+\nu[C_{\beta}-C_{\alpha}](10) +\nu[C_{\alpha}-N_{\alpha}](8)+\nu[C_{\delta}-C_{\gamma}](8)$                                                                                                                                                                                                                                                    | 937   | _           | 933   | $\nu[C_{\alpha}^{-}C](23) + \nu[C_{\beta}^{-}C_{\alpha}](10) + \nu[C_{\beta}^{-}C_{\alpha}](10) + \nu[C=0](7) + \nu[C=N](7) + \rho[O=C=N](6)$                                                                                                                                                                                                                        |
| 894   | 881  | _      | $\nu[C_{\alpha}-N_{\alpha}](15)+\varphi[C_{\gamma}-C_{\beta}-H](10)$<br>+ $\varphi[H-C_{e}-C_{\delta}](9)+\nu[C_{\alpha}-C](8)$<br>+ $\nu[C_{\beta}-C_{\alpha}](8)+\varphi[H-C_{\delta}-C_{\gamma}](6)$                                                                                                                                                               | 908   | 914         | _     | $\nu[C_{\alpha}-N_{\alpha}](15)+\varphi[H-C_{\varepsilon}-C_{\delta}](10)+\varphi[C_{\gamma}-C_{\beta}-H](10)+\nu[C_{\beta}-C_{\alpha}](7)+\nu[C_{\alpha}-C](7)$                                                                                                                                                                                                     |
| 845   | _    | 851    | $\begin{split} &\varphi[\text{H-C}_{\varepsilon}\text{-C}_{\delta}](27) + \varphi[\text{H-C}_{\beta}\text{-C}_{\alpha}](11) + \\ &\varphi[\text{C}_{\delta}\text{-C}_{\gamma}\text{-H}](11) + \nu[\text{C}_{\alpha}\text{-N}_{\alpha}](10) \\ &+ \varphi[\text{N-C}_{\varepsilon}\text{-H}](7) + \varphi[\text{C}_{\gamma}\text{-C}_{\beta}\text{-H}](6) \end{split}$ | 844   | _           | 851   | $\begin{split} &\varphi[\text{H-C}_{\varepsilon}\text{-C}_{\delta}](24) + \nu[\text{C}_{\alpha}\text{-N}_{\alpha}](16) + \\ &\varphi[\text{H-C}_{\beta}\text{-C}_{\alpha}](11) + \varphi[\text{C}_{\delta}\text{-C}_{\gamma}\text{-H}](9) + \\ &\varphi[\text{N-C}_{\varepsilon}\text{-H}](7) + \varphi[\text{C}_{\gamma}\text{-C}_{\beta}\text{-H}](5) \end{split}$ |
| 811   | 831  | —      | $\begin{split} &\varphi[C_{e}-C_{\delta}-H](26)+\varphi[H-C_{\delta}-C_{\gamma}](13)+\\ &\tau[C_{e}-C_{\delta}](13)+\varphi[H-C_{e}-C_{\delta}](12)+\\ &\varphi[C_{\gamma}-C_{\beta}-H](8) \end{split}$                                                                                                                                                               | 811   | 831         | —     | $\begin{split} & \varphi[C_{e}\text{-}C_{\delta}\text{-}H](27) + \tau[C_{e}\text{-}C_{\delta}](14) + \\ & \varphi[H\text{-}C_{e}\text{-}C_{\delta}](14) + \varphi[H\text{-}C_{\delta}\text{-}C_{y}](13) + \\ & \varphi[C_{y}\text{-}C_{\beta}\text{-}H](7) + \varphi[H\text{-}C_{\beta}\text{-}C_{\alpha}](7) \end{split}$                                           |
| 772   | 768  | 758    | $\omega$ [N-H](23)+ $\omega$ [C=O](17)+ $\tau$ [C=N](8)                                                                                                                                                                                                                                                                                                               | 762   | 768         | 758   | ω[N-H](26)+ω[C=O](18)+τ[C=N](12)                                                                                                                                                                                                                                                                                                                                     |
| 734   | —    | 730    | φ[H-C <sub>γ</sub> -C <sub>β</sub> ](22)+ $φ$ [C <sub>δ</sub> -C <sub>γ</sub> -H](19)<br>+ $φ$ [C <sub>γ</sub> -C <sub>β</sub> -H](15)+ $ω$ [N-H](10)                                                                                                                                                                                                                 | 741   | —           | 730   | $\varphi[\text{H-C}_{\gamma}-\text{C}_{\beta}](25)+\varphi[\text{C}_{\delta}-\text{C}_{\gamma}-\text{H}](2)+\varphi[\text{C}_{\gamma}-\text{C}_{\beta}-\text{H}](17)+\omega[\text{N-H}](8)+\varphi[\text{C}_{\gamma}-\text{C}_{\beta}-\text{H}](17)+\varphi[\text{N-H}](8)+\varphi[\text{N-H}](2)$                                                                   |
| 714   | 713  | —      | $\begin{split} &\omega[\text{N-H}](21) + \tau[\text{C=N}](16) \\ &+ \nu[\text{C}_{\alpha}\text{-C}](9) + \nu[\text{C}_{\alpha}\text{-N}_{\alpha}](7) \\ &\qquad \qquad $                                                                              | 711   | 713         | _     | $\begin{split} &\varphi[\text{H-C}_{\beta}\text{-C}_{\alpha}](8) \\ &\omega[\text{N-H}](19) + \tau[\text{C}=\text{N}](16) + \nu[\text{C}_{\alpha}\text{-C}](7) \\ &+\nu[\text{C}_{\alpha}\text{-N}_{\alpha}](6) + \varphi[\text{O}=\text{C}=\text{N}](6) + \\ &\varphi[\text{C}_{\alpha}\text{-C}=\text{O}](5) \end{split}$                                          |
| 643   | 649  | 645    | $\omega[C=O](53)+\tau[C=N](13) \qquad (Amide VI)$                                                                                                                                                                                                                                                                                                                     | 642   | 649         | 645   | $\omega[C=O](52) + \tau[C=N](13) + \nu[C_{\alpha}-N_{\alpha}](7)$                                                                                                                                                                                                                                                                                                    |

Continued on the next page.

# Polymer Journal

| Cal.  | Obs.      | Freq.* |                                                                                                                                                                                                                                                                                                                          |               | Obs. Freq.* |       |                                                                                                                                                                                                                                                                                          |
|-------|-----------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Freq. | IR        | Raman  | Assignment ( $\delta = 0$ ) PED (%)                                                                                                                                                                                                                                                                                      | Cal.<br>Freq. | IR          | Raman | Assignment ( $\delta = \pi$ ) PED (%)                                                                                                                                                                                                                                                    |
| 549   | 9 549 550 |        | $\begin{split} &\varphi[C_{\alpha}\text{-}C=\text{N}](17)+\varphi[C_{\delta}\text{-}C_{\gamma}\text{-}C_{\beta}](15) \\ &+\varphi[C_{\varepsilon}\text{-}C_{\delta}\text{-}C_{\gamma}](11)+\varphi[C_{\alpha}\text{-}C=O](11) \\ &+\varphi[C_{\beta}\text{-}C_{\alpha}\text{-}C](7) \end{split} \tag{Amide IV}$          | 538           | 549         | 550   | $\varphi[C_{\alpha}-C=N](18)+\varphi[N-C_{\varepsilon}-C_{\delta}](14)+ \\ \varphi[C_{\gamma}-C_{\beta}-C_{\alpha}](13)+\varphi[C_{\delta}-C_{\gamma}-C_{\beta}](11)+ \\ \varphi[C_{\alpha}-C=O](10)+\varphi[C_{\varepsilon}-C_{\delta}-C_{\gamma}](6)$                                  |
| 489   | 493       | 493    | $\omega[N_{\alpha}-H](74)+\tau[C_{\alpha}-N_{\alpha}](15)$                                                                                                                                                                                                                                                               | 488           | 493         | 493   | $\omega[N_{\alpha}\text{-}H](74) + \tau[C_{\alpha}\text{-}N_{\alpha}](15)$                                                                                                                                                                                                               |
| 440   | _         | 431    | $\varphi[N-C_{\varepsilon}-C_{\delta}](21)+\varphi[C_{\gamma}-C_{\beta}-C_{\alpha}](19)+\varphi[C_{\varepsilon}-C_{\delta}-C_{\gamma}](17)+\varphi[C_{\delta}-C_{\gamma}-C_{\beta}](10)$                                                                                                                                 | 430           | _           | 431   | $\varphi[C_{\varepsilon} - C_{\delta} - C_{\gamma}](26) + \varphi[C_{\delta} - C_{\gamma} - C_{\beta}](21) + \varphi[C_{\alpha} - C = O](10) + \varphi[C = N - C_{\varepsilon}](8) + \varphi[O = C = N](7) + \varphi[C_{\delta} - C_{\alpha} - C](7)$                                    |
| 382   | _         | 391    | $\varphi[\text{N-C}_{\varepsilon}-\text{C}_{\delta}](18)+\varphi[\text{C}_{\delta}-\text{C}_{\gamma}-\text{C}_{\beta}](14) +\varphi[\text{C}_{\varepsilon}-\text{C}_{\delta}-\text{C}_{\gamma}](11)+\varphi[\text{C}_{\gamma}-\text{C}_{\beta}-\text{C}_{\alpha}](11) +\varphi[\text{C}_{\alpha}-\text{C}=\text{N}](10)$ | 341           | _           | 329   | $\begin{aligned} &\varphi[C_{\beta}-C_{\alpha}-N_{\alpha}](20)+\varphi[H-C_{\alpha}-C](9) \\ &+\tau[C=N](8)+\varphi[H-C_{\alpha}-N_{\alpha}](8)+ \\ &\tau[C_{e}-C_{\delta}](7)+\varphi[C_{\beta}-C_{\alpha}-H](7)+ \\ &\varphi[N_{\alpha}-C_{\alpha}-C](7)+\omega[N-H](6) \end{aligned}$ |
| 334   | _         | 330    | $\begin{split} &\varphi[C_{\beta}-C_{\alpha}-N_{\alpha}](14)+\varphi[H-C_{\alpha}-C](10) \\ &+\varphi[H-C_{\alpha}-N_{\alpha}](9)+\varphi[N_{\alpha}-C_{\alpha}-C](9) \\ &+\tau[C=N](8)+\varphi[C_{\beta}-C_{\alpha}-H](7) \end{split}$                                                                                  | 314           | _           | _     | $\nu[N-C_{\varepsilon}](12) + \varphi[N-C_{\varepsilon}-C_{\delta}](11) + \\ \varphi[N_{\alpha}-C_{\alpha}-C](9) + \nu[C=N](8) + \\ \nu[C_{\alpha}-C](7) + \tau[C_{\alpha}-N_{\alpha}](6)$                                                                                               |
| 300   | _         | _      | $\tau[C_{\alpha}-N_{\alpha}](68)+\omega[N_{\alpha}-H](14)$                                                                                                                                                                                                                                                               | 299           | _           | _     | $\tau[C_{\alpha}-N_{\alpha}](73)+\omega[N_{\alpha}-H](18)$                                                                                                                                                                                                                               |
| 287   | _         | 281    | $\varphi[C_{\beta}-C_{\alpha}-C](19)+\varphi[C=N-C_{\varepsilon}](14)$<br>+ $\tau[C_{\alpha}-N_{\alpha}](7)+\varphi[C_{\delta}-C_{\gamma}-C_{\beta}](7)$<br>+ $\varphi[C_{\alpha}-C=O](7)+\varphi[N_{\alpha}-C_{\alpha}-C](7)$                                                                                           | 288           | _           | 281   | $\varphi[C_{\beta}-C_{\alpha}-N_{\alpha}](19)+\varphi[C_{\gamma}-C_{\beta}-C_{\alpha}](17)+\\\varphi[N-C_{\alpha}-C_{\alpha}](11)+\varphi[N_{\alpha}-C_{\alpha}-C](10)+\\\nu[C_{\alpha}-C](7)+\varphi[C_{\beta}-C_{\alpha}-C](6)$                                                        |
| 256   | _         | 245    | $\tau[C_{\varepsilon}-C_{\delta}](32)+\varphi[C_{\beta}-C_{\alpha}-N_{\alpha}](15)+$<br>$\tau[C_{\gamma}-C_{\beta}](7)+\tau[C=N](7)$                                                                                                                                                                                     | 245           | _           | 245   | $\tau[C_{\varepsilon}-C_{\delta}](33)+\tau[C=N](7)$ $+\omega[C=O](7)+\tau[C_{\beta}-C_{\alpha}](5)$                                                                                                                                                                                      |
| 200   | —         | 207    | $\varphi[N_{\alpha}-C_{\alpha}-C](41)+\varphi[C_{\beta}-C_{\alpha}-N_{\alpha}](23)$ $+\tau[C_{\varepsilon}-C_{\delta}](7)$                                                                                                                                                                                               | 210           | —           | 215   | $\varphi[C_{\delta}-C_{\gamma}-C_{\beta}](24)+\varphi[C=N-C_{\varepsilon}](14)+$<br>$\varphi[C_{\beta}-C_{\alpha}-N_{\alpha}](10)+\varphi[N_{\alpha}-C_{\alpha}-C](8)+$<br>$\varphi[N-C_{\varepsilon}-C_{\delta}](5)$                                                                    |
| 140   | —         | _      | $\tau[C_{\delta}-C_{\gamma}](42)+\tau[N-C_{\varepsilon}](28) +\tau[C_{\beta}-C_{\alpha}](18)$                                                                                                                                                                                                                            | 173           | —           | -     | $\varphi[C_{\beta}-C_{\alpha}-C](29)+\varphi[C_{\epsilon}-C_{\delta}-C_{\gamma}](18)$<br>+ $\varphi[N_{\alpha}-C_{\alpha}-C](16)+\varphi[C_{\alpha}-C=O](7)+$<br>$\varphi[C_{\alpha}-C=N](6)$                                                                                            |
| 125   | _         | _      | $\begin{aligned} \tau[C=N](22) + \tau[C_{\gamma}-C_{\beta}](18) + \tau[C_{\beta}-C_{\alpha}](16) \\ + \tau[N-C_{e}](12) + \omega[N-H](12) + \tau[C_{e}-C_{\delta}](7) \end{aligned}$                                                                                                                                     | 158           | _           | _     | $\varphi[C_{\gamma}-C_{\beta}-C_{\alpha}](13)+\varphi[C=N-C_{e}](10)+$<br>$\tau[C_{\delta}-C_{\gamma}](9)+\tau[C_{\gamma}-C_{\beta}](7)+$<br>$\varphi[N-C_{e}-C_{\delta}](6)+\tau[N-C_{e}](6)$                                                                                           |
| 100   | _         | _      | $\tau[C_{\alpha}-C](43)+\tau[N-C_{\varepsilon}](20) + \tau[C_{\beta}-C_{\alpha}](13)+\tau[C_{\gamma}-C_{\beta}](11)$                                                                                                                                                                                                     | 137           | _           | _     | $\tau[N-C_{\varepsilon}](28)+\tau[C_{\delta}-C_{\gamma}](24)+$<br>$\varphi[C_{\beta}-C_{\alpha}-N_{\alpha}](10)+\varphi[C_{\gamma}-C_{\beta}-C_{\alpha}](7)$                                                                                                                             |
| 56    | —         | _      | $\varphi[C_{\varepsilon}-C_{\delta}-C_{\gamma}](28)+\varphi[C=N-C_{\varepsilon}](18)+$<br>$\varphi[N-C_{\varepsilon}-C_{\delta}](12)+\varphi[C_{\gamma}-C_{\beta}-C_{\alpha}](10)+$<br>$\varphi[C_{\delta}-C_{\gamma}-C_{\beta}](6)$                                                                                     | 111           | —           | _     | $\tau[C_{\gamma} - C_{\beta}](21) + \tau[C=N](21) + \omega[N-H](18)$ $+ \tau[C_{\varepsilon} - C_{\delta}](8) + \tau[C_{\alpha} - C](8)$                                                                                                                                                 |
| 50    | —         | _      | $\begin{aligned} &\varphi[C_{\beta}-C_{\alpha}-C](28)+\varphi[C_{\gamma}-C_{\beta}-C_{\alpha}](21) \\ &+\varphi[C_{\beta}-C_{\gamma}-C_{\beta}](13)+\varphi[C=N-C_{\epsilon}](8) \\ &+\varphi[C_{\alpha}-C=N](8) \end{aligned}$                                                                                          | 84            | —           | _     | $\tau[C_{\beta}-C_{\alpha}](47)+\tau[N-C_{\varepsilon}](31)$                                                                                                                                                                                                                             |
| 30    | —         | _      | $\tau[C_{\varphi}-C_{\beta}](27)+\tau[C_{\delta}-C_{\gamma}](13)$<br>+ $\tau[C_{\varepsilon}-C_{\delta}](12)+\tau[N-C_{\varepsilon}](11)+\omega[N-H](9)$                                                                                                                                                                 | 62            | —           | _     | $\tau[C_{\alpha}-C](62)+\tau[C_{\gamma}-C_{\beta}](12) + \tau[C_{\delta}-C_{\gamma}](10)$                                                                                                                                                                                                |
| 20    | _         | _      | $\tau[C_{\alpha}-C](31)+\tau[C_{\beta}-C_{\alpha}](26)$ $+\tau[C_{\gamma}-C_{\beta}](10)+\tau[C_{\delta}-C_{\gamma}](7)$                                                                                                                                                                                                 | 41            | —           | _     | $\tau[C_{\gamma}-C_{\beta}](26)+\tau[C_{\delta}-C_{\gamma}](25)$<br>+ $\tau[C_{\beta}-C_{\alpha}](18)+\tau[N-C_{\varepsilon}](11)$<br>+ $\tau[C=N](7)+\tau[C_{\varepsilon}-C_{\delta}](6)$                                                                                               |

Note: 1. All frequencies are in cm<sup>-1</sup>.

2. \*-observed frequencies are taken from work of Meada et al., Ref. 14.

## Methylene (CH<sub>2</sub>) Group Modes

Several CH<sub>2</sub> groups appearing in the backbone of M- $\varepsilon$ -PL chain make it possible to compare the CH<sub>2</sub> group modes of this polymer with those of Polyethylene (PE). The M- $\varepsilon$ -PL molecule has four methylene groups that are flanked by the rigid (-NH<sub>2</sub>CHCONH-) groups. This linear chain of CH<sub>2</sub> groups has selection rules different from those for an infinite chain. They are related to the dispersion of given normal mode of an infinite chain and the absorption/scattering occurs at the phase values given by the following relation

$$\delta = k\pi/(m+1) \tag{5}$$

Where m denotes the number of CH<sub>2</sub> groups in the linear chain linkage and k = 1, 2...4. Thus the allowed values of  $\delta$ for a given mode, would give rise to wave numbers on the corresponding dispersion curve for an infinite system which is polyethylene (PE)<sup>25</sup> in this case. The wave numbers thus obtained are given in Table V. The calculated CH<sub>2</sub> group frequencies of M- $\varepsilon$ -PL are in good agreement with those calculated from the dispersion curves of PE [Figure 2]. Small



| Table IV. | Comparison of | Amide Modes | of M- <i>e</i> -PL | with other | β-Sheet Polypeptides |
|-----------|---------------|-------------|--------------------|------------|----------------------|
|-----------|---------------|-------------|--------------------|------------|----------------------|

| M- <i>e</i> -PL |              | e-PL           | β-PLV        |                | β-PALS       |                | <b>β</b> -PG1 |                | β-PLS        |                |
|-----------------|--------------|----------------|--------------|----------------|--------------|----------------|---------------|----------------|--------------|----------------|
| Modes           | $\delta = 0$ | $\delta = \pi$ | $\delta = 0$ | $\delta = \pi$ | $\delta = 0$ | $\delta = \pi$ | $\delta = 0$  | $\delta = \pi$ | $\delta = 0$ | $\delta = \pi$ |
| Amide A         | 3322         | 3335           | 3290         | 3290           | 3303         | 3303           | 3274          | 3274           | 3318         | 3318           |
| Amide I         | 1639         | 1685           | 1638         | 1638           | 1640         | 1637           | 1642          | 1634           | 1637         | 1628           |
| Amide II        | 1528         | _              | 1545         | 1545           | 1521         | 1517           | 1520          | 1520           | 1532         | 1537           |
| Amide III       | 1279         | 1291           | 1228         | 1228           | 1229         | 1217           | 1306          | 1287           | 1249         | 1270           |
| Amide IV        | 549          | 538            | 548          | 684            | 600          | _              | 630           | 711            | 533          | 773            |
| Amide V         | 714          | 711            | 715          | 715            | 695          | 718            | 720           | 745            | 713          | 685            |
| Amide VI        | 643          | 642            | 615          | 628            | 448          | 515            | 570           | 634            | 533          | 647            |

Note: 1. All frequencies are in cm<sup>-1</sup>

2. PLV = Poly (L-Valine)<sup>20</sup>

PALS = Poly (O-Acetyl, L-Serine)<sup>22</sup>

 $PG1 = Polyglycine I^{23}$ 

 $PLS = Poly (L-Serine).^{24}$ 

#### Table V. Comparison of CH<sub>2</sub> modes of M-ε-PL with those from dispersion curves of Polyethylene (PE)

| Modes                      | Calculated by<br>selection rule from |              | M-e-PL                                 |  |
|----------------------------|--------------------------------------|--------------|----------------------------------------|--|
| Modes                      | PE dispersion curves                 | Freq (calc.) | Freq (obs.) [Ref. 14]                  |  |
| CH <sub>2</sub>            | 2919*                                | 2940,2935    | 2933 <sup>R</sup> , 2936 <sup>IR</sup> |  |
| asymmetric                 |                                      | 2929,2925    |                                        |  |
| stretch                    |                                      |              |                                        |  |
| CH <sub>2</sub> symmetric  | 2848*                                | 2858,2854,   | 2853 <sup>R</sup> , 2858 <sup>IR</sup> |  |
| stretch                    |                                      | 2851,2848    |                                        |  |
| CH <sub>2</sub> scissoring | 1473                                 | 1460,1455    | 1461 <sup>IR</sup>                     |  |
|                            | 1440                                 | 1442,1439    | 1440 <sup>IR</sup>                     |  |
| CH <sub>2</sub> wag        | 1386                                 | 1380         | 1376 <sup>IR</sup>                     |  |
|                            | 1346                                 | 1345         | 1341 <sup>IR</sup>                     |  |
|                            | 1286                                 | 1267         | 1264 <sup>IR</sup>                     |  |
|                            | 1220                                 | 1235         | 1228 <sup>IR</sup>                     |  |
| CH <sub>2</sub> twist      | 1297                                 | 1267         | 1264 <sup>IR</sup>                     |  |
|                            | 1292                                 | 1224         | 1228 <sup>IR</sup>                     |  |
|                            | 1265                                 | 1201         | 1200 <sup>R</sup>                      |  |
|                            | 1208                                 | 1166         | 1171 <sup>IR</sup>                     |  |
|                            | —                                    | 1150         | 1123 <sup>IR</sup>                     |  |
|                            | —                                    | 1120         | —                                      |  |
| CH <sub>2</sub> rock       | 992                                  | 961          | 956 <sup>R</sup>                       |  |
|                            | 900                                  | 894          | 881 <sup>IR</sup>                      |  |
|                            | 799                                  | 845          | 851 <sup>R</sup>                       |  |
|                            | 743                                  | 811          | 831 <sup>IR</sup>                      |  |
|                            |                                      | 734          | 730 <sup>R</sup>                       |  |
| C-C stretch                | 1054                                 | 1057         | 1064 <sup>IR</sup>                     |  |
|                            | 1049                                 | 1027         | 1043 <sup>IR</sup>                     |  |
|                            | 1028                                 | 995          | 1014 <sup>IR</sup>                     |  |
|                            | 983                                  | 972          | 972 <sup>IR</sup>                      |  |
|                            |                                      | 933          | 933 <sup>R</sup>                       |  |

Note: 1. All wavenumbers are in cm<sup>-1</sup>

2. \*marked wavenumbers are observed in the spectra of polyethylene.

deviations could arise because of the intra and inter chain interactions of CH<sub>2</sub> group with (-NH<sub>2</sub>CHCONH-) group in M- $\epsilon$ -PL.

Since the  $CH_2$  groups in M- $\varepsilon$ -PL are flanked by rigid (-NH<sub>2</sub>CHCONH-) groups at both ends so due to such

anchoring, a comparison of the wave numbers obtained from the dispersion curves of PE, corresponding to phase values given by equation (5) is in order in case of CH<sub>2</sub> group modes except for the skeletal modes. These modes in polyethylene mostly consist of coupled motions of  $\varphi$ (C-C-C) and  $\tau$ (C-C) and



Figure 2. Dispersion curves of the scissoring (v<sub>2</sub>), wagging (v<sub>3</sub>), twisting (v<sub>7</sub>) and rocking (v8) modes of polyethylene. ..., indicates the allowed phase values  $(\delta)$ 

are spread over the entire chain. In PE, these modes are acoustical in nature whereas in M- $\varepsilon$ -PL, the skeletal modes of  $(-CH_2-)_4$  fragments are optical in nature and thus a comparison would not be in order. A similar phenomenon has been observed in nylon 6.<sup>26–28</sup> The origin of such optical phonon is explained by the splitting of the longitudinal acoustic phonon band of PE chain into several optical bands due to a periodic perturbation (the presence of the heavier amide groups -NHCO-). The same situation appears in poly(caprolactone) (PCL),<sup>19</sup> where CH<sub>2</sub> groups are flanked by (-COO-) groups.

### Other Modes

The side group of M- $\varepsilon$ -PL consists of an amino group and hydrogen attached to  $\alpha$ -carbon. The NH<sub>2</sub> asymmetric and symmetric stretching modes calculated at 3417 and 3387 cm<sup>-1</sup> are assigned to the observed IR peak at 3414(sh.) and 3386/ 3385 cm<sup>-1</sup> (IR/Raman).<sup>14</sup> The same range of these modes is observed in case of poly( $\alpha$ -L-lysine)<sup>16</sup> [3420 & 3362 cm<sup>-1</sup>].

The NH<sub>2</sub> group scissoring mode calculated at  $1624 \,\mathrm{cm}^{-1}$ is assigned to the observed peaks at  $1639/1633 \,\mathrm{cm}^{-1}$  (IR/ Raman). Wagging mode of NH2 group is calculated at M. SINGH et al.



(a) Dispersion curves (Below 400 cm<sup>-1</sup>). (b) Density-of-states Figure 3.  $(Below 400 \, cm^{-1})$ 

1401 cm<sup>-1</sup>. This mode has also been observed at 1400 cm<sup>-1</sup> in poly(α-L-lysine).<sup>16</sup>

The C<sub> $\alpha$ </sub>-H stretching mode calculated at 2941 cm<sup>-1</sup> is assigned to observed peak at 2936/2933 cm<sup>-1</sup> (IR/Raman).<sup>14</sup> The C<sub> $\alpha$ </sub>-H bending mode calculated at 1317 cm<sup>-1</sup> matches well with observed peak at 1319 cm<sup>-1</sup> (IR).<sup>14</sup>

## **Dispersion Curves**

Dispersion curves and frequency distribution function are important for an understanding of thermodynamical and elastic properties of solids. Besides providing knowledge of densityof-states, dispersion curves give information on the extent to the coupling of a mode along the chain in the ordered state. Also a study of these is necessary to appreciate the origin of both symmetry independent and symmetry dependent spectral features. The dispersion curves and the corresponding density of states of M- $\varepsilon$ -PL below 400 cm<sup>-1</sup> are shown in Figure 3(a) and 3(b) respectively. Except a few, the modes above  $400 \,\mathrm{cm}^{-1}$ are almost non dispersive, hence not shown. The lower two branches ( $\nu = 0$  at  $\delta = 0$  &  $\delta = \pi$ ) corresponds to four acoustic modes. Two of them are at the zone center and two are at the zone boundary. They represent three translations (one parallel and two perpendicular to the axis) and one free rotation about the chain axis.

The mode calculated at  $382 \text{ cm}^{-1}$  (at  $\delta = 0$ ) remains undispersed up to  $\delta = 0.40\pi$  but beyond this, the energy of this mode decreases continuously. At around  $\delta = 0.75\pi$  mixing of PED of this mode with the lower mode at  $334 \text{ cm}^{-1}$  starts.

Beyond  $\delta = 0.820\pi$ , these modes move apart, showing repulsive feature. This repulsive feature between various modes is also observed in the dispersion curves of  $\beta$ -PALS,  $\beta$ -PLS etc. It is found that modes belonging to the same symmetry species repel one another.

The frequency of the mode calculated at  $287 \text{ cm}^{-1}$  at the zone centre decreases with  $\delta$  and attains a minimum value at  $\delta = 0.73\pi$ . After this  $\delta$  value its energy increases and the mode reaches  $288 \text{ cm}^{-1}$  at  $\delta = \pi$ . Contribution of  $\varphi(C_{\beta}-C_{\alpha}-C)$  continuously decreases from the zone centre to the zone boundary. At the minimum point in this curve  $d\omega/dk \rightarrow 0$ , such critical points are known as Von-Hove type singularities in lattice dynamics. The two backbone torsional modes at 140 and 125 cm<sup>-1</sup> at zone center move parallel upto  $\delta = 0.42\pi$  but after this  $\delta$  value, drastic increase in the energy takes place and they reach at 173 and  $158 \text{ cm}^{-1}$  respectively at  $\delta = \pi$ . A similar feature is found between the pair of modes at 125 and  $100 \text{ cm}^{-1}$ . The parallelism between two dispersion curves indicates that the speed of optical phonons is same in both modes.

The lowest optical mode crosses twice the upper acoustical mode at  $\delta = 0.078\pi$  and  $\delta = 0.376\pi$ . The lower frequency modes, specially the acoustical modes are characteristic of the  $\beta$ -sheet polypeptides.

The two acoustical branches in the dispersion curves are similar in shape to the dispersion curves of these branches in Nylon 6,<sup>28</sup> PCL,<sup>19</sup> PG I,<sup>22</sup> poly(glycolic acid) (PGA).<sup>29</sup> The peaks in the acoustic curves of M- $\varepsilon$ -PL occur at  $\delta = 0.150\pi$  and  $\delta = 0.275\pi$ . A comparison with dispersion curves of Nylon 6<sup>28</sup> shows that the peaks in the acoustic curves fall at about the same  $\delta$  value and the peak heights are nearly the same.

When the approaching modes belong to different symmetry species and polymeric chain has mirror plane symmetry then modes can crossover. Since M- $\varepsilon$ -PL has a mirror plane of symmetry along the chain axis, hence crossings are permissible. A crossover implies two different species existing at the same frequency. They have been called as "non-fundamental resonances" which occur at a wave vector value away from the zone centre but within the zone boundary and as such their mode of vibration at this point can not be designated as a "normal mode." These are useful in the interpretation of the spectral features and interactions.

#### **Frequency Distribution Function and Heat Capacity**

The frequency distribution function as obtained from dispersion curves is shown in Figure 3(b). The observed frequencies compare well with the peak positions. The peaks in the dispersion curves correspond to the regions of high density-of-states and thus contribute to heat capacity. We have calculated the heat capacity of M- $\varepsilon$ -PL in the temperature range (1–450 K) (Figure 4) using density-of-states *via* dispersion curves using Debye's formalism (eq 4).

Our calculations have been made for an isolated molecular chain, thus the interpretation of IR/Raman spectra and theoretical calculations are subject to certain limitations. A complete interpretation of the spectra requires calculations of



Figure 4. Variation of heat capacity with temperature (1-450 K).

dispersion curves for a three dimensional system which is a difficult job. Interchain modes involving hindered translatory and rotatory motion will appear and the total number of modes will depend on the contents of the unit cell. Apart from the large dimensionality of the problem, it would bring in an enormous number of interactions and make the problem somewhat interactable. The interchain interactions are generally of the same order of magnitude as the weaker intrachain interactions. They can affect the force constants and depending upon the crystal symmetry lead to the field splitting at zone center and zone boundary but the dominant assignments are unaffected. Thus in spite of these limitations, the present work provides a good starting point for further basic studies on the dynamic and thermodynamic behavior of polypeptides and proteins.

## CONCLUSION

All characteristic features of the dispersion curves such as regions of high density-of-states, crossing and repulsion between the various pairs of modes have been well interpreted from the vibrational dynamics of M- $\varepsilon$ -PL. In addition, the predictive values of heat capacity as a function of temperature in the region 1 to 450 K are presented.

Acknowledgment. Financial assistance to one of us (M.S.) from University Grants Commission, New Delhi under faculty improvement programme (F.I.P.) is gratefully acknowledged.

Received: October 23, 2007 Accepted: February 10, 2008 Published: April 23, 2008

#### REFERENCES

- F. Oppermann-Sanio and A. Steinbuchel, *Naturwissenschaften*, 89, 11 (2002).
- 2. R. J. Gaymans and J. L. Hann, Polymer, 34, 4360 (1993).
- I. Arvanitoyannis, A. Nakayama, N. Kawasaki, and N. Yamamoto, *Polymer*, 36, 857 (1995).

## Polymer Journal

- 4. D. R. S. Kushwaha, K. B. Mathur, and D. Balasubramanian, *Biopolymers*, **19**, 219 (1980).
- 5. S. Shima and H. Sakai, Agric. Biol. Chem., 41, 1807 (1977).
- 6. S. Shima and H. Sakai, Agric. Biol. Chem., 45, 2497 (1981).
- 7. S. Shima and H. Sakai, Agric. Biol. Chem., 45, 2503 (1981).
- S. Shima, Y. Fukuhara, and H. Sakai, Agric. Biol. Chem., 46, 1917 (1982).
- 9. Y. T. Ho, S. Ishizaki, and M. Tanaka, Food Chem., 68, 449 (2000).
- I. L. Shih, M. H. Shen, and Y. T. Van, *Bioresour. Technol.*, 97, 1148 (2006).
- 11. H. Lee, K. Oyama, J. Hiraki, M. Hatakeyama, Y. Kurokawa, and H. Morita, *Chem. Express*, **6**, 683 (1991).
- 12. H. Fukushi, K. Oyama, M. Hatakeyama, J. Hiraki, D. Fujimori, and H. Lee, *Chem. Express*, **8**, 745 (1993).
- 13. H. Lee, H. Yamaguchi, D. Fujimori, A. Nishida, and H. Yamamoto, *Spectrosc. Lett.*, **28**, 177 (1995).
- S. Maeda, Ko-Ki Kunimoto, C. Sasaki, A. Kuwae, and K. K. Hanai, J. Mol. Struct., 655, 149 (2003).
- 15. S. Sasaki, T. Hishiyama, K. M. Huh, T. Ooya, and N. Yui, *Polym. Prep. Jpn.*, **50**, 2003 (2001).
- N. K. Misra, D. Kapoor, P. Tandon, and V. D. Gupta, *Polym. J.*, 29, 914 (1997).
- 17. E. B. Wilson, J. C. Decius, and P. C. Cross, "Molecular Vibrations:

The theory of infrared and Raman vibrational spectra," Dover Publications, New York, 1980.

- 18. P. W. Higgs, Proc. R. Soc. London, A220, 472 (1953).
- R. M. Misra, R. Agarwal, P. Tandon, and V. D. Gupta, *Eur. Polym. J.*, 40, 1787 (2004).
- L. Burman, P. Tandon, V. D. Gupta, S. Rastogi, and S. Srivastava, Biopolymers, 38, 53 (1996).
- 21. N. K. Misra, D. Kapoor, P. Tandon, and V. D. Gupta, *Polymer*, **41**, 2095 (2000).
- 22. V. Porwal, R. M. Misra, P. Tandon, and V. D. Gupta, *Indian J. Biochem. Biophys.*, **41**, 34 (2004).
- A. Gupta, P. Tandon, V. D. Gupta, and S. Rastogi, *Polymer*, 38, 2389 (1997).
- 24. S. Krimm and J. Bandekar, Adv. Protein Chem., 38, 181 (1986).
- 25. M. Tasumi and T. Shimanouchi, J. Mol. Spect., 9, 261 (1962).
- P. Papanek, J. E. Fischer, and N. S. Murthy, *Macromolecules*, 29, 2253 (1996).
- P. Papanek, J. E. Fischer, and N. S. Murthy, *Macromolecules*, 35, 4175 (2002).
- S. K. Shukla, N. Kumar, A. K. Mishra, P. Tandon, and V. D. Gupta, *Polym. J.*, **39**, 359 (2007).
- R. Agarwal, R. M. Mishra, P. Tandon, and V. D. Gupta, *Polymer*, 45, 5307 (2004).