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The ratio g� of the intrinsic viscosity of the Kratky–Porod (KP) wormlike regular three-arm star touched-bead model to that

of the KP linear one, both having the same (reduced) total contour length L and (reduced) bead diameter db, is numerically

evaluated in the Kirkwood–Riseman (KR) approximation. Prior to the evaluation of g�, an interpolation formula for the mean

reciprocal of the end-to-end distance of the once-broken KP chain, which is necessary for the theoretical calculation in the

KR approximation, is constructed on the basis of the asymptotic forms derived by the use of the Daniels method near the

random-coil limit and the � method near the rod limit and also on the basis of the Monte Carlo results. From an examination

of the behavior of g� as a function of L and db, it is found that the ratio g�=g
0
� of g� to the rod-limiting value g0� of g�

monotonically increases from 1 to 2.03 with increasing L and is almost independent of db for db . 0:2, although the behavior

of g� itself as a function of L remarkably depends on db. An empirical interpolation formula is then constructed for g�=g
0
� as a

function of L, which is considered to be useful for practical purposes.
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In a previous paper,1 effects of chain stiffness on the ratio g�
of the intrinsic viscosity ½�� of a regular three-arm star polymer

chain to that of the corresponding linear one, both having the

same structure and total chain length, have been examined by

Monte Carlo (MC) simulation on the basis of the freely rotating

chain with the Lennard–Jones 6-12 intramolecular potential

between beads. Since there is no theoretical method of

obtaining ½�� without any approximations, we have evaluated

it in the three approximate ways: the Kirkwood–Riseman (KR)

approximation,2,3 the Zimm rigid-body ensemble approxima-

tion,4 and the Fixman method.5,6 We note that upper and lower

bounds to ½�� may be obtained by the Zimm and Fixman

methods, respectively, and we have ignored the contribution of

the Einstein spheres.7,8 By combining the two bounds to ½�� so
obtained, we have evaluated upper and lower bounds to g� and

then shown that the KR approximation may give a good

approximate g� value for semiflexible or stiff polymer chains.

It is therefore convenient and useful for an analysis of

experimental data to construct a theoretical expression for g�
in the KR approximation on the basis of a proper model for

semiflexible and stiff polymer chains. The purpose of the

present paper is to construct an interpolation formula for g� of

the semiflexible regular three-arm star chain in the KR

approximation on the basis of the Kratky–Porod (KP) wormlike

chain7,9 without excluded volume.

For an evaluation of ½�� for both the KP regular three-arm

star and linear chains, we adopt the touched-bead hydro-

dynamic model so that ½�� may be written as a sum of the

solution ½��KR of the KR equation and the contribution ½��E of

the Einstein spheres.7,8 In order to complete the necessary KR

equation, i.e., a set of linear simultaneous equations for the

hydrodynamic force balance at each bead with the preaveraged

Oseen hydrodynamic interaction tensor,2,3 we need an appro-

priate approximate expression for the mean reciprocal hR�1i of
the distance between the centers of two beads, where h� � �i
denotes an equilibrium configurational average. Although such

an expression is available for a pair of beads on the KP linear

chain,10,11 there are none for a pair of beads on different two

arms of the KP star. Prior to the evaluation of ½�� and g�, we

must therefore derive an approximate expression for hR�1i
between the two beads on different parts of the once-broken KP

chain as a function of the two contour distances from the

broken point to the centers of the respective beads. We carry

out the task by the use of the two asymptotic methods, i.e., the

Daniels method7,12–14 near the random-coil limit and the �

method7,15,16 near the rod limit, and also of the MC results for

the once-broken KP chain.

BASIC EQUATIONS

Consider a regular three-arm star touched-bead model

composed of 3mþ 1 identical spherical beads of (hydrodynam-

ic) diameter db whose centers are located on the KP regular

three-arm star chain contour, as illustrated in Figure 1. For

convenience, the three arms are designated the first, second, and

third ones and the m beads on the ith (i ¼ 1; 2; 3) arm are

numbered ði� 1Þmþ 1; ði� 1Þmþ 2; . . . ; im from the branch

point (center) to the terminal end, with the center bead numbered

0. The angle between each pair of the unit vectors tangent to the

KP contours at the branch point is fixed to be 120�, so that the

three vectors are on the same plane. The linear touched-bead

model, the counterpart of the above star one, is the KP touched-

bead model composed of nþ 1 identical beads of diameter db
whose centers are located on the KP linear chain contour. We set

nþ 1 equal to 3mþ 1, so that n ¼ 3m. The nþ 1 beads are

numbered 0; 1; 2; . . . ; n from one end to the other. For both the
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star and linear touched-bead models, the contour distance

between the two adjacent beads is set equal to db.

The intrinsic viscosity ½�� of the touched-bead model

composed of nþ 1 identical spherical beads of diameter db
may be written as the sum of the solution ½��KR of the KR

equation and the contribution ½��E of the Einstein spheres,7,8 i.e.,

½�� ¼ ½��KR þ ½��E ð1Þ

where

½��KR ¼
NA

M

Xn
i¼0

�ii ð2Þ

½��E ¼
5�NAðnþ 1Þdb3

12M
ð3Þ

with NA the Avogadro constant and M the polymer molecular

weight. In eq 2, �ij is the solution of the following linear

simultaneous equations,

�ij þ
db

2

Xn
k¼0
6¼ i

hRik
�1i�kj ¼

�db

2
hSi � Sji ð4Þ

where hRij
�1i is the mean reciprocal of the distance between the

centers of the ith and jth beads and Si is the vector distance from

the center of mass of the chain to the center of the ith bead. In

order to complete the KR equation 4, we need an appropriate

approximate expression for hRij
�1i along with the theoretical

expression for the equilibrium average hSi � Sji. We first give

the latter and then consider the former. In what follows, all

lengths are measured in units of the stiffness parameter ��1 of

the KP chain unless otherwise specified.

AVERAGE hSi � Sji

As in the previous study of ½�� of the linear touched-bead

model,8 where we have adopted the value of hSi � Sji of the

(continuous) KP chain of total contour length L ¼ ðnþ 1Þdb as
that of the (discrete) touched-bead model, we adopt the value

of hSi � Sji of the KP regular three-arm star chain of total

contour length L ¼ ð3mþ 1Þdb as that of the regular three-arm
star touched-bead model. Here, L has consistently been set

equal to the total number nþ 1 or 3mþ 1 of beads multiplied

by db for both the linear and star chains. The relation L ¼
ð3mþ 1Þdb leads to the relation La ¼ ðmþ 1

3
Þdb between the

contour length La ¼ 1
3
L of each arm and db. Although the latter

relation seems somewhat awkward because of the inclusion of

the non-integer term 1
3
, it only reflects the fact that the center

bead belongs to all the three arms.

For the ½ði� 1Þmþ k�th and ½ð j� 1Þmþ l�th beads (i, j ¼
1; 2; 3; k, l ¼ 1; 2; . . . ;m) of the regular three-arm star chain,

i.e., the kth bead on the ith arm and the lth bead on the jth arm,

respectively, hSði�1Þmþk � Sð j�1Þmþli may then be given by

hSði�1Þmþk � Sð j�1Þmþli ¼ hSðtðiÞk Þ � Sðtð jÞl Þi ð5Þ

where SðtðiÞk Þ is the vector distance from the center of mass of

the KP regular three-arm star chain to the contour point on the

ith arm with the contour distance tðiÞk from the branch point, so

that

tðiÞk ¼ kdb ð6Þ

The average hSðtðiÞk Þ � Sðtð jÞl Þi may be given by (see

APPENDIX A)

hSðtðiÞk Þ � Sðtð jÞl Þi ¼
L

27
þ

ðtðiÞk Þ2 þ ðtð jÞl Þ2

2L
þ

tðiÞk þ t
ð jÞ
l

6
�

u
ði jÞ
kl

2

þ
1

24
ð1� 3�ijÞ½1� expð�2tðiÞk Þ

� expð�2t
ð jÞ
l Þ� �

1

8
ð1þ �ijÞ expð�2u

ði jÞ
kl Þ

þ
1

4L
�

1

4L
e�2L=3½coshð2tðiÞk Þ þ coshð2tð jÞl Þ�

þ
3

16L2
ð1� e�4L=3Þ ð7Þ

where �ij is the Kronecker delta and u
ði jÞ
kl is defined by

u
ði jÞ
kl ¼ ½ðtðiÞk Þ2 þ ðtð jÞl Þ2 þ 2ð1� 2�ijÞtðiÞk t

ð jÞ
l �1=2 ð8Þ

We note that hSði�1Þmþk � S0i ¼ hSðtðiÞk Þ � Sð0Þi and hS0 � S0i ¼
hSð0Þ � Sð0Þi are also given by eq 7 with u

ði jÞ
kl ¼ tðiÞk and 0,

respectively. In the rod limit, i.e., the limit of L (in units of

��1) ! 0, eq 7 reduces to

hSðtðiÞk Þ � Sðtð jÞl Þi ¼
1

2
ð3�ij � 1ÞtðiÞk t

ð jÞ
l ðrod limitÞ ð9Þ

As for the linear touched-bead model, hSi � Sji (i, j ¼
0; 1; 2; . . . ; n) may be given by

hSi � Sji ¼ hSðtiÞ � SðtjÞi ð10Þ

where SðtiÞ is the vector distance from the center of mass of the

KP linear chain to its contour point with the contour distance ti
from one end, so that

ti ¼ iþ
1

2

� �
db ð11Þ

The average hSðtÞ � Sðt0Þi is given by eq 19 in ref 17 and may

be written in the form,
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Figure 1. Illustration of the KP regular three-arm star touched-bead model.



hSðtÞ � Sðt0Þi ¼
L

3
þ

t2 þ t02

2L
�

t þ t0

2
�

jt � t0j
2

�
e�2jt�t0 j

4

þ
1

8L
½2� e�2t � e�2t0 � e�2ðL�tÞ � e�2ðL�t0Þ�

þ
1

8L2
ð1� e�2LÞ ð12Þ

In the rod limit, it reduces to

hSðtÞ � Sðt0Þi ¼
1

4
ð2t � LÞð2t0 � LÞ ðrod limitÞ ð13Þ

MEAN RECIPROCAL OF THE END-TO-END DIS-
TANCE

The mean reciprocal hR½ði�1Þmþk�½ð j�1Þmþl�
�1i of the distance

R½ði�1Þmþk�½ð j�1Þmþl� between the centers of the kth bead on the

ith arm and lth bead on the jth arm may be given by

hR½ði�1Þmþk�½ð j�1Þmþl�
�1i ¼ hR�1

�
tðiÞk ; t

ð jÞ
l

�
i ð14Þ

where hR�1ðtðiÞk ; t
ð jÞ
l Þi is the mean reciprocal of the distance

between the contour points tðiÞk and t
ð jÞ
l on the KP regular three-

arm star chain.

We first consider asymptotic forms for the mean reciprocal

hR�1ðt1; t2; �Þi of the end-to-end distance of the once-broken

KP chain of total contour length t1 þ t2 such that two KP

subchains 1 and 2 of contour lengths t1 and t2, respectively,

are connected with a bending angle �, i.e., the angle between

the unit vectors u1 and u2 tangent to the contours of the

subchains 1 and 2, respectively, at the broken point, as

illustrated in Figure 2. We then construct an interpolation

formula for the case of � ¼ 120� on the basis of the asymptotic

forms so obtained and also of MC results for the once broken

KP chain.

Asymptotic Forms

The asymptotic forms for hR�1ðt1; t2; �Þi in the cases of t1 �
1 and t2 � 1, t1 � 1 and t2 � 1, t1 � 1 and t2 � 1, and t1 �
1 and t2 � 1 may be written in the form (see APPENDIX B),

hR�1ðt1; t2; �Þi ¼ hR2i�1=2 fDDðt1; t2; �Þ for t1 � 1; t2 � 1

¼ hR2i�1=2 fD�ðt1; t2; �Þ for t1 � 1; t2 � 1

¼ hR2i�1=2 f�Dðt1; t2; �Þ for t1 � 1; t2 � 1

¼ hR2i�1=2 f��ðt1; t2; �Þ for t1 � 1; t2 � 1

ð15Þ

where

fDDðt1; t2; �Þ ¼
6

�

� �1=2

1�
11

40hR2i
þ

1

80hR2i2
431

56
þ 11ð1þ cos �Þ þ

11

2
ð1� cos2 �Þ

� �� �
ð16Þ

fD�ðt1; t2; �Þ ¼
6

�

� �1=2

1�
11

40hR2i
þ

1

40hR2i2
431

112
þ 9t2

2ð1� cos2 �Þ
� �� �

ð17Þ

f��ðt1; t2; �Þ ¼ 1þ
3

8

hR4i
hR2i2

� 1

� �
ð18Þ

and f�Dðt1; t2; �Þ ¼ fD�ðt2; t1; �Þ. In eqs 15–18, hR2i ¼ hR2ðt1; t2; �Þi and hR4i ¼ hR4ðt1; t2; �Þi are the second and fourth moments,

respectively, of the end-to-end distance of the once-broken KP chain given by

hR2ðt1; t2; �Þi ¼ t1 þ t2 �
1

2
½1� e�2ðt1þt2Þ� �

1

2
ð1� e�2t1 Þð1� e�2t2 Þð1þ cos �Þ ð19Þ

hR4ðt1; t2; �Þi ¼
5

3
ðt1 þ t2Þ2 � ðt1 þ t2Þ

26

9
þ e�2ðt1þt2Þ

� �
þ 2½1� e�2ðt1þt2Þ� �

1

54
½1� e�6ðt1þt2Þ�

�
�
ð1� e�2t1 Þ

5

3
t2 þ t2e

�2t2 �
3

2
ð1� e�2t2 Þ þ

1

18
ð1� e�6t2 Þ

� �

þ ð1� e�2t2 Þ
5

3
t1 þ t1e

�2t1 �
3

2
ð1� e�2t1 Þ þ

1

18
ð1� e�6t1 Þ

� ��
ð1þ cos �Þ

�
1

4
ð1� e�2t1 Þ �

1

3
ð1� e�6t1 Þ

� �
ð1� e�2t2 Þ �

1

3
ð1� e�6t2 Þ

� �
ð1� cos2 �Þ ð20Þ
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Figure 2. Illustration of the once-broken KP chain.



We note that fD�ðt; 0; �Þ given by eq 17 with t1 ¼ t and t2 ¼ 0 [or

f�Dð0; t; �Þ] is identical with the second Daniels approximate

expression for the mean reciprocal of the end-to-end distance

of the KP linear chain of total contour length t obtained by

Yamakawa and Fujii,11 up to Oðt�2Þ, and also note that the

expression for hR2ðt1; t2; �Þi given by eq 19 was first derived by

Mansfield and Stockmayer.18 In the rod limit, eq 15 (strictly the

fourth equation) reduces to

hR�1ðt1; t2; �Þi ¼ ½Rrodðt1; t2; �Þ��1 ðrod limitÞ ð21Þ

where Rrodðt1; t2; �Þ is the end-to-end distance of the once-broken

rod composed of the two straight rods of lengths t1 and t2 with the

bending angle � and is given by

Rrodðt1; t2; �Þ ¼ ðt12 þ t2
2 � 2t1t2 cos �Þ1=2 ð22Þ

Figures 3, 4, and 5 show plots of Rrodðt1; t2; 120�ÞhR�1ðt1; t2;
120�Þi against t1 for the once-broken KP chain with � ¼ 120�

and with t2 ¼ 0:1, 1, and 2, respectively. The dashed (DD),

two dot-dashed (D� and �D), and dotted (��) curves represent

the theoretical asymptotic values calculated from eq 15 with

eqs 16, 17, and 18, respectively, with � ¼ 120�. In the figures,

the unfilled circles and the solid curves represent the MC

values and those calculated from an interpolation formula,

which are obtained in the following two subsections.

MC Simulation

As seen from Figures 3, 4, and 5, it is difficult to construct

an interpolation formula on the basis only of the theoretical

asymptotic values because they cannot cover the whole range

of t1. In order to obtain additional reference values of

hR�1ðt1; t2; 120�Þi, we carry out MC simulation by the use of

the ideal once-broken freely rotating chain such that two freely

rotating subchains 1 and 2 are connected with a bending angle

120�, the subchain i (i ¼ 1; 2) being composed of ni bonds of

length a (in units of ��1) joined with a complementary bond

angle �. We note that the subchain i becomes identical with the

KP chain of total contour length ti in the limit of ni ! 1 and

a ! 0 under the conditions ti ¼ nia and 1� cos� ¼ 2a. As

done by Yamakawa and Fujii,11 we replace the KP subchains

approximately by the freely rotating ones having very small but

finite � satisfying the above two conditions, i.e., a ¼ 0:01 and

cos� ¼ 0:98.

By the use of the once-broken freely rotating chain so

defined, we evaluate hR�1ðt1; t2; 120�Þi as follows. Let aðiÞk (i ¼
1; 2; k ¼ 1; 2; . . . ; ni) be the kth bond vector on the subchain i,

the bond vectors being numbered 1; 2; . . . ; ni from the broken

point to the end of the subchain i, and let að1Þ1 ¼ ð0; 0; aÞT and

að2Þ1 ¼ ð
ffiffiffi
3

p
a=2; 0;�a=2ÞT in an external Cartesian coordinate

system with the superscript T indicating the transpose. In the
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Figure 3. Plots of Rrodðt1; t2; 120
�ÞhR�1ðt1; t2; 120

�Þi against t1 for the once-
broken KP chain with � ¼ 120� and t2 ¼ 0:1. The unfilled circles
represent the MC values. The solid curve represents the values
of the interpolation formula and the dashed (DD), two dot-dashed
(D� and �D), and dotted (��) curves represent the theoretical
asymptotic values for t1 � 1 and t2 � 1, t1 � 1 and t2 � 1, t1 � 1
and t2 � 1, and t1 � 1 and t2 � 1, respectively (see the text).
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Figure 4. Plots of Rrodðt1; t2; 120
�ÞhR�1ðt1; t2; 120

�Þi against t1 for the once-
broken KP chain with � ¼ 120� and t2 ¼ 1. All the symbols and
curves have the same meaning as those in Figure 3.
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Figure 5. Plots of Rrodðt1; t2; 120
�ÞhR�1ðt1; t2; 120

�Þi against t1 for the once-
broken KP chain with � ¼ 120� and t2 ¼ 2. All the symbols and
curves have the same meaning as those in Figure 3.



external system, aðiÞk may then be written in the form,

aðiÞk ¼ ½Að120�; 180�Þ�i�1 � Að�; �ðiÞ1 Þ � Að�; �ðiÞ2 Þ � � �

Að�; �ðiÞk�1Þ � ð0; 0; aÞ
T

ð23Þ

where �ðiÞk is the internal rotation angle around aðiÞk and Að�; �Þ
is the orthogonal transformation matrix defined by

Að�; �Þ ¼
� cos� cos� sin� � sin� cos�

� cos� sin� � cos� � sin� sin�

� sin� 0 cos�

0
B@

1
CA ð24Þ

The configuration of the once-broken freely rotating chain may

therefore be specified by the set of n1 þ n2 � 2 internal rotation

angles f�n1þn2�2g ¼ ð�ð1Þ1 ; �
ð1Þ
2 ; . . . ; �

ð1Þ
n1�1; �

ð2Þ
1 ; �

ð2Þ
2 ; . . . ; �

ð2Þ
n2�1Þ.

On the basis of N sample configurations, i.e., N sets of n1 þ
n2 � 2 internal rotation angles randomly chosen in the interval

½��; ��, hR�1ðt1; t2; 120�Þi may be evaluated from

hR�1ðt1; t2; 120�Þi ¼ N�1
X

f�n1þn2�2g

Xn1
i¼1

að1Þi �
Xn2
j¼1

að2Þj













�1

ð25Þ

where the first sum is taken over the N sample configurations.

In practice, we have adopted N ¼ 105. All the numerical

work has been done by the use of a personal computer with an

Intel Pentium4 CPU with a clock rate of 3.00GHz. A source

program coded in C has been compiled by the GNU C compiler

version 3.3.3 with real variables of double precision.

The MC values of Rrodðt1; t2; 120�ÞhR�1ðt1; t2; 120�Þi so

obtained for t2 ¼ 0:1, 1, and 2 are also shown in Figures 3,

4, and 5, respectively (unfilled circles). It is seen from Figure 3

for the case of small t2 (¼ 0:1) that the MC values connect

smoothly the �� values which are valid for t1 � 1 and t2 � 1

and the D� ones which are valid for t1 � 1 and t2 � 1. In the

case of large t2 (¼ 2), on the other hand, it is seen from

Figure 5 that the MC values connect smoothly the �D values

which are valid for t1 � 1 and t2 � 1 and the DD ones which

are valid for t1 � 1 and t2 � 1. In the case of intermediate

t2 (¼ 1) shown in Figure 4, The MC values lie between the

�� and �D values for t1 . 1 and follow the DD values for

t1 & 1.

Interpolation Formula

Now we are in a position to construct an interpolation

formula for hR�1ðt1; t2; 120�Þi on the basis of the theoretical

asymptotic forms given by eqs 15 with eqs 16–18 along with

the MC ones for the once-broken KP chain.

The asymptotic form fD� (or f�D) is not symmetric with

respect to the pair of variables t1 and t2 and is not convenient

for further developments as it stands. We therefore construct

a hybrid fDD�ðt1; t2; 120�Þ between fDDðt1; t2; 120�Þ and

fD�ðt1; t2; 120�Þ given by eqs 16 and 17, respectively, both

with � ¼ 120�, prior to the construction of the interpolation

formula, which may be written in the form,

fDD�ðt1; t2; 120�Þ

¼
6

�

� �1=2

1�
11

40hR2i
þ

431

4480hR2i2
þ

Cðt1; t2Þ
hR2i2

� � ð26Þ

where Cðt1; t2Þ is given by

Cðt1; t2Þ ¼
108�tt 2 þ 77�tt4

640ð1þ �tt4Þ
ð27Þ

with

�tt 2 ¼ ðt �2
1 þ t2

�2Þ�1 ð28Þ

We note that fDD� so defined has the symmetry relation

fDD�ðt1; t2; 120�Þ ¼ fDD�ðt2; t1; 120�Þ and recovers fDD given by

eq 16 up to Oðt2�2Þ in the case of t2 � 1 and fD� given by

eq 17 up to Oðt22Þ in the case of t2 � 1.

By combining f�� and fDD� given by eqs 18 and 26,

respectively, we then assume that hR�1ðt1; t2; 120�Þi may be

well represented by the following interpolation formula,

hR�1ðt1; t2; 120�Þi

¼ hR2i�1=2
�
1þ A1hR2iA2

��1½ f��ðt1; t2; 120�Þ þ A3hR2i3=2

þ A4t1t2ðt1 þ t2Þe�A5t1t2 þ A1hR2iA2 fDD�ðt1; t2; 120�Þ� ð29Þ

where hR2i ¼ hR2ðt1; t2; 120�Þi is given by eq 19 with � ¼
120�. In eq 29, A1;A2; . . . ;A5 are numerical constants which

must be determined so that the interpolation formula may well

reproduce the MC values evaluated in the last subsection, their

optimum values being given by

A1 ¼ 5; A2 ¼
11

2
; A3 ¼ 0:045; A4 ¼ 0:40; A5 ¼ 1

ð30Þ
In Figures 3–5, the solid curves represent the approximate

values calculated from eq 29 with eqs 18–20, 26–28, and 30

with � ¼ 120�. It is seen that the interpolation formula so

constructed may well reproduce the MC values.

Finally, the necessary hR½ði�1Þmþk�½ð j�1Þmþl�
�1i may be given

by eq 14 with hR�1ðtðiÞk ; t
ð jÞ
l Þi given by

hR�1ðtðiÞk ; t
ð jÞ
l Þi¼ hR�1ðtðiÞk ; t

ð jÞ
l ; 120

�Þi for i 6¼ j

¼ hR�1ðjtðiÞk � tðiÞl j; 0; 120�Þi for i ¼ j ð31Þ
We note that hR�1ðt; 0; 120�Þi and/or hR�1ð0; t; 120�Þi represent
the mean reciprocal of the end-to-end distance of the KP linear

chain of total contour length t and its approximate value

calculated from eq 29 with eqs 18–20, 26–28, and 30 and

with t1 ¼ t and t2 ¼ 0 agrees with that calculated from the

Yamakawa–Fujii11 interpolation formula for the KP linear

cylinder (with the cylinder diameter d ¼ 0) within 0.7% over

the whole range of t.

RESULTS FOR g� FACTOR

We have calculated the KR contribution ½��KR to the

intrinsic viscosity ½�� from eq 2 with the numerical solutions

�ii of the linear simultaneous equations 4 for both the KP

regular three-arm star and linear touched-bead models, in the

ranges of the total number nþ 1 of beads from 4 to 1501 and of

the bead diameter db from 0.001 to 0.4. Note that the total

contour length L of the chain is equal to ðnþ 1Þdb, as already
mentioned. In eq 4, hR�1ðtðiÞk ; t

ð jÞ
l Þi is given by eq 31 with

eqs 18–20 and 26–30 for the star chain and by the second of
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eq 31 for the linear one and hSi � Sji is given by eq 7 with eq 8

for the former and by eq 12 for the latter. We then have

calculated ½�� from eq 1 with the values of ½��KR so obtained

along with ½��E calculated from eq 3, for both the star and

linear chains. Finally we have evaluated g� as a function of L

and db from the defining equation,

g�ðL; dbÞ ¼
½��ðstarÞ
½��ðlinearÞ

ð32Þ

with the values of ½�� so obtained for the star and linear chains

having the same L and db.

Figure 6 shows plots of g� against the logarithm of L. The

unfilled circles represent the theoretical values of g�, various

directions of pips indicating different values of db indicated,

and the dashed curves connect smoothly the theoretical values

at constant db. The solid curves represent the values calculated

from an interpolation formula, which are obtained and

discussed in a later subsection. The horizontal line segment

indicates the value 0.90 obtained by Irurzun19 for the Gaussian

regular three-arm star chain without excluded volume in the

KR approximation. As L is decreased, g� first decreases and

then increases after passing through a minimum, in the range of

db investigated. It should be noted that the behavior of g�
remarkably depends on db.

In the following subsections, we examine the behavior of

g� in the random-coil and rod limits and then propose an

interpolation formula for g�.

Random-Coil Limit

The value of g� becomes a constant independent of db in the

random-coil limit, i.e., the limit of L (in units of ��1) ! 1.

Figure 7 shows plots of g�ðL; dbÞ against L�1=2 for db ¼ 0:1,

0.2, 0.3, and 0.4. All the symbols have the same meaning as

those in Figure 6. The dashed curves connect smoothly the

theoretical values at constant db and the solid straight lines

indicate the respective initial tangents. It is seen that as L�1=2 is

decreased to 0 (L ! 1), g� approaches the above-mentioned

value19 0.90 irrespective of the value of db. On the basis of such

numerical results, it may be concluded that

lim
L!1

g�ðL; dbÞ ¼ 0:900 ðrandom coilÞ ð33Þ

We note that the values of g� for smaller db have been omitted

in Figure 7, since we cannot make L�1=2 (¼ ½ðnþ 1Þdb��1=2)

small enough to evaluate g� at L�1=2 ¼ 0. We also note that

the g� value so obtained in the random-coil limit is some-

what smaller than the value 0:907 obtained by Zimm and

Kilb20 for the (dynamic) Gaussian spring–bead model21,22

without excluded volume and with the preaveraged Oseen

tensor.

The coil-limiting value in the KR approximation requires

some comments. Khasat et al.23 obtained the g� value 0.87 for

regular three-arm star polystyrene in cyclohexane at 34.5 �C

(�), which is somewhat smaller than Irurzun’s value 0.90.

Further, the g� values 0.75 and 0.63 obtained for regular four-

and six-arm star polystyrenes, respectively, in cyclohexane

at 34.5 �C (�)24,25 are ca. 10% smaller than the respective

theoretical values 0.82 and 0.70 obtained by Irurzun19 for the

Gaussian regular four- and six-arm star chains in the KR

approximation. The KR approximation therefore seems to

overestimate g� because of the preaveraging of the Oseen

tensor. It is interesting to refer the previous MC result1 that the

g� values for the regular three-arm star freely rotating chain of

bond angle 109� without the preaveraging approximation are

ca. 5% smaller than the corresponding KR one.

Rod Limit

In the rod limit, i.e., the limit of L ! 0, ½�� in the limit of

L=db ! 1 (thin rod limit) may be written in the form (see

APPENDIX C),
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Figure 6. Plots of g�ðL; dbÞ against log L. The unfilled circles represent the
theoretical values, various directions of pips indicating different
values of db indicated. The dashed curves connect smoothly the
theoretical values at constant db. The horizontal line segment
indicates the value 0.90 obtained by Irurzun19 for the Gaussian
regular three-arm star chain. The solid curves represent the values
calculated from the interpolation formula (see the text).
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lim
L!0

L=db!1

½�� ¼
�NAL

3

54M lnðL=dbÞ
ðthin rod limit, starÞ ð34Þ

As for the linear chain, we have

lim
L!0

L=db!1

½�� ¼
�NAL

3

24M lnðL=dbÞ
ðthin rod limit, linearÞ ð35Þ

which has been obtained from the result17 for the cylinder model of

diameter d along with the relation8 d ¼ 0:74db.

In the rod limit, g� should be a function only of L=db, i.e.,

lim
L!0

g�ðL; dbÞ ¼ g0�ðL=dbÞ ðrod limitÞ ð36Þ

From eq 32 with eqs 34, 35, and 36, we have

lim
L=db!1

g0�ðL=dbÞ ¼
4

9
ðthin rod limitÞ ð37Þ

It is interesting to note that the ratio gS of the mean-square

radius of gyration of the KP regular three-arm star chain to that

of the linear one,18 both having the same L, also becomes 4/9

in the rod limit.

We have also evaluated g0�ðL=dbÞ numerically in the same

manner as in the evaluation of g�ðL; dbÞ mentioned above using

the expressions for hRij
�1i given by eq 21 and hSi � Sji given by

eqs 9 and 13 in place of those for the KP chain. Figure 8 shows

plots of g0� against ½lnðL=dbÞ��1. The unfilled circles represent

the values so obtained and the horizontal line segment indicates

the asymptotic value 4/9 in the limit of ½lnðL=dbÞ��1 ! 0

(L=db ! 1). As ½lnðL=dbÞ��1 is decreased (L=db is increased),

g0� monotonically decreases to 4/9. For later convenience, we

have constructed an interpolation formula for g0�ðL=dbÞ in the

range of L=db & 10, which is given by

g0�ðxÞ ¼
4

9

1� 2:551ðln xÞ�1 þ 2:946ðln xÞ�2

1� 2:913ðln xÞ�1 þ 2:965ðln xÞ�2
for x & 10 ð38Þ

In Figure 8, the curve represents the values calculated from

eq 38 with x ¼ L=db. The error in the value of g0�ðL=dbÞ in the

range of L=db & 10 (solid part) does not exceed 0.2%.

Interpolation Formula

A simple interpolation formula, if it is available, seems to be

useful for practical purposes. Figure 9 shows plots of the ratio

g�ðL; dbÞ=g0�ðL=dbÞ against the logarithm of L, where g�=g
0
� has

been evaluated by dividing the g� values shown in Figure 6 by

the g0� values calculated from eq 38 with x ¼ L=db. All the

symbols have the same meaning as those in Figure 6. It is

seen that the circles form a single composite curve almost

independently of db for db . 0:2 and the curve monotonically

increases from 1 to 2.03 [¼ 0:900=ð4=9Þ] with increasing L.

We have therefore assumed that g�=g
0
� for db . 0:2 may be

represented by a function f ðLÞ of L irrespective of the value of

db, and have constructed an empirical interpolation formula for

f ðLÞ, which may be written in the form,

f ðLÞ¼ 1þ 0:1466L� 0:01233L2 for L � 3

¼ 2:03
1þ 0:7106ðln LÞ�1 þ 3:219ðlnLÞ�2

1þ 0:9402ðln LÞ�1 þ 5:713ðlnLÞ�2
for L > 3

ð39Þ
The function f ðLÞ given by eq 39 satisfies the asymptotic

conditions limL!0 f ðLÞ ¼ 1 and limL!1 f ðLÞ ¼ 2:03, which

hold in the limit of L=db ! 1. In Figure 9, the solid curve

represents the values calculated from eq 39. The factor

g�ðL; dbÞ may then be approximately expressed as

g�ðL; dbÞ ¼ g0�ðL=dbÞ f ðLÞ ð40Þ

where g0�ðL=dbÞ and f ðLÞ are given by eqs 38 and 39,

respectively.

In Figure 6, the solid curves represent the approximate

values calculated from eq 40 with eqs 38 and 39. It is seen that

the interpolation formula for g�ðL; dbÞ so proposed may well
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reproduce the numerical theoretical values in the ranges of

db . 0:2 and L=db & 10. The error in the value of g� in those

ranges of db and L=db does not exceed 2%.

CONCLUSION

We have evaluated the ratio g� of ½�� of the KP regular

three-arm star touched-bead model to that of the KP linear one,

both having the same (reduced) total contour length L and

(reduced) bead diameter db, in the KR approximation, and then

examined its behavior as a function of L and db. It is found

that the ratio g�=g
0
� of g� to the rod-limiting value g0� of g�

monotonically increases from 1 to 2.03 with increasing L and is

almost independent of db for db . 0:2, although the behavior

of g� itself as a function of L remarkably depends on db. Thus

we have constructed the empirical interpolation formula for

f ðLÞ ¼ g�=g
0
� as a function of L. By the use of the expression

for f ðLÞ along with that for g0�, which has also been

constructed, the value of g� may then be easily calculated for

given L and db in the ranges of db . 0:2 and L=db & 10.

APPENDIX A: AVERAGE hSðtðiÞÞ � Sðt0ð jÞÞi

In this appendix, we consider the equilibrium configura-

tional average hSðtðiÞÞ � Sðt0ð jÞÞi with SðtðiÞÞ the vector distance

from the center of mass of the KP regular f -arm star chain to

the contour point on the ith arm (i ¼ 1; 2; . . . ; f ) with the

contour distance tðiÞ from the branch point. Let La be the

contour length of the arms and �ij the angle between the unit

vectors tangent to the ith and jth arms at the branch point, so

that the total contour length L of the chain becomes fLa and

0 � tðiÞ, t0ð jÞ � La.

The average may be written in the form,

hSðtðiÞÞ � Sðt0ð jÞÞi

¼
1

2L

Xf

k¼1

Z La

0

½hR2ðtðiÞ; sðkÞÞi þ hR2ðt0ð jÞ; sðkÞÞi�dsðkÞ

�
1

2
hR2ðtðiÞ; t0ð jÞÞi � hS2i ðA:1Þ

where hR2ðtðiÞ; t0ð jÞÞi is the mean-square distance between the

two contour points tðiÞ and t0ð jÞ and is given by

hR2ðtðiÞ; t0ð jÞÞi ¼ hR2ðtðiÞ; t0ð jÞ; �ijÞi for i 6¼ j

¼ jtðiÞ � t0ð jÞj �
1

2
ð1� e�2jtðiÞ�t0ð jÞjÞ for i ¼ j

ðA:2Þ

with hR2ðtðiÞ; t0ð jÞ; �ijÞi being given by eq 19. In eq A·1, hS2i is
the mean-square radius of gyration of the KP regular f -arm star

chain and is given by18

hS2i ¼
3 f � 2

6 f 2
L�

2 f � 1

4 f
þ

1

4L
þ

f � 1

4L
�

f

8L2

� �
ð1� e�2L= f Þ

�
1

2 f 2
1�

f

L
�

f 2

2L2

� �
ð1� e�2L= f Þ �

f 2

4L2
ð1� e�4L= f Þ

� �Xf�1

i¼1

Xf

j¼iþ1

cos �ij ðA:3Þ

Carrying out the integration over sðkÞ, we obtain for the sum in eq A·1

Xf

k¼1

Z La

0

½hR2ðtðiÞ; sðkÞÞi þ hR2ðt0ð jÞ; sðkÞÞi�dsðkÞ ¼ fLa
2 � ð2 f � 1ÞLa þ

1

2
ð f þ 1Þ

þ ðtðiÞÞ2 þ ðt0ð jÞÞ2 þ ð f � 2ÞLaðtðiÞ þ t0ð jÞÞ þ
1

2
ð f � 1ÞLaðe�2tðiÞ þ e�2t0ð jÞ Þ

�
1

2
ð f � 1Þe�2La �

1

4
ðe�2tðiÞ þ e�2t0ð jÞ Þ �

1

4
e�2La ðe2t

ðiÞ
þ e2t

0ð jÞ
Þ

�
1

2
La �

1

2
ð1� e�2La Þ

� �
ð1� e�2tðiÞ Þ

Xf

k¼1
6¼ i

cos �ik þ ð1� e�2t0ð jÞ Þ
Xf

k¼1
6¼ j

cos �jk

2
64

3
75 ðA:4Þ

Equation A·1 with eqs A·2–A·4 and also with eq 19 gives hSðtðiÞÞ �
Sðt0ð jÞÞi. For the special case of f ¼ 3 and �ij ¼ 120� for all i and

j, it reduces to eq 7 with tðiÞ and t0ð jÞ in place of tðiÞk and t
ð jÞ
l ,

respectively.

APPENDIX B: ASYMPTOTIC FORMS FOR THE
MEAN RECIPROCAL OF THE
END-TO-END DISTANCE OF THE
ONCE-BROKEN KP CHAIN

In this appendix, we derive asymptotic forms for the mean

reciprocal hR�1ðt1; t2; �Þi of the end-to-end distance R of the

once-broken KP chain of total contour length t1 þ t2 such

that two KP subchains 1 and 2 of contour lengths t1 and

t2, respectively, are connected with a bending angle � (see

Figure 2).

Considering the characteristic function Iðk; t1; t2; �Þ, i.e., the
Fourier transform of the distribution function PðR; t1; t2; �Þ of R,
defined by

Iðk; t1; t2; �Þ ¼
Z

PðR; t1; t2; �Þeik�RdR ðB:1Þ

and then integrating both sides of eq B·1 over k, we obtain the

following expression for hR�1ðt1; t2; �Þi,
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hR�1ðt1; t2; �Þi ¼
2

�

Z 1

0

Iðk; t1; t2; �Þdk ðB:2Þ

Then the problem is to obtain asymptotic forms for

Iðk; t1; t2; �Þ.
The distribution function PðR; t1; t2; �Þ may be written in the

form,

PðR; t1; t2; �Þ ¼
1

8�2

Z 0�Z
GðR1ju1; t1ÞGðR2ju2; t2Þ

	 �ðR� R1 þ R2ÞdR1dR2

�
du1du2 ðB:3Þ

where GðRpjup; tpÞ (p ¼ 1; 2) is the conditional distribution

function (or the Green’s function) of the vector distance Rp

from the broken point to the terminal end of the pth subchain of

contour length tp with the unit vector up tangent to the pth

contour at the broken point (see Figure 2) being fixed,7 and

�ðRÞ is the three-dimensional Dirac delta function. In eq B·3,R 0 � � � du1du2 means the integrations over u1 and u2 with �

being fixed. From eq B·1 with eq B·3, we have for Iðk; t1; t2; �Þ,

Iðk; t1; t2; �Þ ¼
1

8�2

Z 0
I�ðkju1; t1ÞIðkju2; t2Þdu1du2 ðB:4Þ

where Iðkjup; tpÞ is the characteristic function of GðRpjup; tpÞ
and the asterisk indicates the complex conjugate.

The characteristic function Iðkjup; tpÞ may be expanded in

terms of the (normalized) spherical harmonics Ym
l as follows,

Iðkjup; tpÞ

¼ ð4�Þ1=2
X1
l¼0

Ilðk; tpÞ
Xl

m¼�l

Ym�
l ð�p; �pÞYm

l ð	; !Þ
ðB:5Þ

where Ilðk; tpÞ is the expansion coefficient and up ¼ ð1; �p; �pÞ
and k ¼ ðk; 	; !Þ in spherical polar coordinates in an external

Cartesian coordinate system. We note that the above expres-

sion for Iðkju; tÞ is essentially identical with eq 5 of ref 15 and

the coefficient Ilðk; tÞ in eq B·5 is identical with I
00;00
0ll ðk; tÞ in

eq 5 of ref 15, although the direction of up was chosen to

coincide with the z-axis of the external system in ref 15. In

order to perform the integrations on the right-hand side of

eq B·4 over u1 and u2 with � being fixed, we introduce a

Cartesian coordinate system associated with u1 and u2 such

that up becomes equal to (1; ~��p; 0) in spherical polar coordinates

in it with ~��1 ¼ 0 and ~��2 ¼ �. Let � ¼ ð�0; �0;  0Þ be the Euler

angles defining the orientation of the Cartesian coordinate

system with respect to the external one. Then the integrationR 0 � � � du1du2 may be replaced by
R
� � � d� (d� ¼

sin �0d�0d�0d 0) and Ym
l ð�p; �pÞ may be written in terms of � as

Ym
l ð�p; �pÞ ¼ ð�1ÞðmþjmjÞ=2 8�2

2lþ 1

� �1=2

	
Xl

j¼�l

ð�1Þð jþj jjÞ=2D
mj
l ð�ÞY j

l ð ~��p; 0Þ
ðB:6Þ

where D
mj
l ð�Þ is the (normalized) Wigner function of �.26

Substituting eq B·5 with eq B·6 into eq B·4 and performing the

integration over �, we obtain

Iðk; t1; t2; �Þ ¼ ð4�Þ�1
X1
l¼0

ð2lþ 1ÞI�
l ðk; t1ÞIlðk; t2ÞPlðcos �Þ

ðB:7Þ
where we have used the relations,Z

D
mj�
l ð�ÞDm0 j0

l0 ð�Þd� ¼ �ll0�mm0�jj0 ðB:8Þ

Xl

m¼�l

Ym�
l ð	; !Þ Ym

l ð	; !Þ ¼
2lþ 1

4�
ðB:9Þ

Ym
l ð0; 0Þ ¼ �m0

2lþ 1

4�

� �1=2

ðB:10Þ

Y0
l ð�; 0Þ ¼

2lþ 1

4�

� �1=2

Plðcos �Þ ðB:11Þ

and PlðxÞ is the Legendre polynomial.

The asymptotic form for Ilðk; tpÞ in the case of tp � 1 may

be obtained in the Daniels approximation,7,12–14 and its general

expression [for the helical wormlike (HW) chain7] is given by

eq 44 of ref 14 with l1 ¼ 0, l2 ¼ l3 ¼ l, m1 ¼ m2 ¼ 0, and

j1 ¼ j2 ¼ 0. On retaining terms up to Oðtp�2Þ (i.e., the second

Daniels approximation), the necessary Ilðk; tpÞ’s with l ¼
0; 1; . . . ; 4 can be straightforwardly evaluated to be

Ilðk; tpÞ ¼ ð4�Þ1=2ð2lþ 1Þ�1e�tpk
2=6ðikÞlglðk; tpÞ ðB:12Þ

with i the imaginary unit and

g0ðk; tpÞ ¼ 1þ
1

12
k2 þ

107

6480
�

11

1080
tp

� �
k4

�
607

272160
tpk

6 þ
121

2332800
tp
2k8

g1ðk; tpÞ ¼
1

2
þ

13

180
k2 �

11

2160
tpk

4

g2ðk; tpÞ ¼
1

18
þ

85

9072
k2 �

11

19440
tpk

4

g3ðk; tpÞ ¼
1

360

g4ðk; tpÞ ¼
1

12600
ðB:13Þ

The asymptotic form for Ilðk; tpÞ in the case of tp � 1, on

the other hand, may be obtained by the � method,7,15,16 and its

general expression (for the HW chain) is given by eq 10 of

ref 16. On retaining terms up to Oðtp2Þ, the necessary Ilðk; tpÞ’s
with l ¼ 0; 1; . . . ; 4 may be explicitly written in the form,

Ilðk; tpÞ ¼ ð4�Þ1=2il
�
ð1þ h�liÞjlðktpÞ

�
1

2
ktpðh�i þ h�l�iÞjlþ1ðktpÞ

þ
1

8
ðktpÞ2h�2i jlþ2ðktpÞ

�
ðB:14Þ

where jlðxÞ is the spherical Bessel function of the first kind and

� and �l are relative deviations of the square end-to-end
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distance Rp
2 and of the quantity Rp

lY0
l ð�p; �pÞY0

l ð�p;�pÞ
with Rp ¼ ðRp;�p;�pÞ in spherical polar coordinates in the

external system, respectively, of the KP subchain p, from the

respective rod-limiting values. We note that �l is identical

with �00;000ll defined for the HW chain by eq 4 of ref 16. The

equilibrium averages h�i, h�2i, h�li, and h�l�i in eq B·14

are given by eqs 5, 6, and 7 of ref 16 and are explicitly given

by

h�i ¼ �
2

3
tp þ

1

3
tp
2

h�2i ¼
28

45
tp
2

h�li ¼ 4�hRp
lY0

l ð�p; �pÞY
0
l ð�p;�pÞitp�l � 1

h�l�i ¼ 4�hRp
lþ2Y0

l ð�p; �pÞY
0
l ð�p;�pÞitp�l�2

�ð1þ h�i þ h�liÞ ðB:15Þ
The moments hRp

lY0
l Y

0
l i and hRlþ2

p Y0
l Y

0
l i in eqs B·15 may be

evaluated analytically by the use of the operational method.7,27

Although the details of rather lengthy calculations are omitted

here, we can finally obtain

I0ðk; tpÞ ¼ ð4�Þ1=2 j0ðktpÞ �
1

6
tp
2ðtp � 2Þkj1ðktpÞ þ

7

90
tp
4k2 j2ðktpÞ

� �

I1ðk; tpÞ ¼ ð4�Þ1=2i
2

3
tp
2 � tp þ 1

� �
j1ðktpÞ �

1

30
tp
2ð19tp � 10Þkj2ðktpÞ þ

7

90
tp
4k2 j3ðktpÞ

� �

I2ðk; tpÞ ¼ ð4�Þ1=2 �
13

3
tp
2 �

8

3
tp þ 1

� �
j2ðktpÞ þ

1

90
tp
2ð127tp � 30Þkj3ðktpÞ �

7

90
tp
4k2 j4ðktpÞ

� �

I3ðk; tpÞ ¼ ð4�Þ1=2i �
73

5
tp
2 � 5tp þ 1

� �
j3ðktpÞ þ

1

6
tp
2ð15tp � 2Þkj4ðktpÞ �

7

90
tp
4k2 j5ðktpÞ

� �

I4ðk; tpÞ ¼ ð4�Þ1=2
221

5
tp
2 � 8tp þ 1

� �
j4ðktpÞ �

1

30
tp
2ð117tp � 10Þkj5ðktpÞ þ

7

90
tp
4k2 j6ðktpÞ

� �
ðB:16Þ

Substituting eq B·7 with Ilðk; t1Þ and Ilðk; t2Þ, both given by eq B·12 with eq B·13, into eq B·2 and performing the integration

over k, we have for the asymptotic form for hR�1ðt1; t2; �Þi in the case of t1 � 1 and t2 � 1

hR�1ðt1; t2; �Þi ¼
6

�ðt1 þ t2Þ

� �1=2�
1�

1

40ðt1 þ t2Þ
�

73

4480ðt1 þ t2Þ2

þ
1

4ðt1 þ t2Þ
þ

49

160ðt1 þ t2Þ2

� �
ð1þ cos �Þ �

1

40ðt1 þ t2Þ2
ð1� cos2 �Þ

�

ðt1 � 1; t2 � 1Þ ðB:17Þ

If we use Ilðk; t2Þ given by eq B·16 in the above calculation, we have the asymptotic form in the case of t1 � 1 and t2 � 1

hR�1ðt1; t2; �Þi ¼
6

�t1

� �1=2�
1�

1

40t1
�

t2

2t1
�

73

4480t12
þ

3t2

80t12
þ

3t2
2

8t12

þ
1

2t1
�

3

80t 21

� �
ðt2 � t 22 Þð1þ cos �Þ �

3t2
2

20t12
ð1� cos2 �Þ

�

ðt1 � 1; t2 � 1Þ ðB:18Þ

Considering the fact that hR2ðt1; t2; �Þi given by eq 19 may be expanded in the above two cases as follows,

hR2ðt1; t2; �Þi¼ t1 þ t2 �
1

2
�

1

2
ð1þ cos �Þ ðt1 � 1; t2 � 1Þ

¼ t1 þ t2 �
1

2
� ðt2 � t2

2Þð1þ cos �Þ ðt1 � 1; t2 � 1Þ ðB:19Þ

the expressions for hR2ðt1; t2; �Þi in the two cases given by

eqs B·17 and B·18 may be rewritten as those given by eqs 16 and

17, respectively.

As for the asymptotic form in the case of t1 � 1 and t2 � 1,

we have applied the � method directly to hR�1ðt1; t2; �Þi and

derived the expression given by eq 18, which is valid up to

Oðt12Þ, Oðt22Þ, and Oðt1t2Þ. We note that in the derivation � has

been chosen to be the relative deviation of R2 from hR2i given
by eq 19.

APPENDIX C: ASYMPTOTIC FORM FOR THE
INTRINSIC VISCOSITY OF THE
REGULAR THREE-ARM STAR IN
THE ROD LIMIT

In this appendix, we derive the asymptotic solution in the

limit of L=db ! 1 (thin or long rod limit) for ½�� of the KP

regular three-arm star in the rod limit. In the thin rod limit, ½��E

½�� of Wormlike Regular Three-Arm Stars
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may be ignored, so that we only consider ½��KR given by eq 2.

Further, the distance between the adjacent beads, i.e., db for the

touched-bead model, becomes very small compared to L, so

that we may convert the sums in eqs 2 and 4 to integrals. Eq 2

with eq 4 may then be rewritten in the form,

½�� ¼
3NAL

M

Z 1

0

 0ðx; xÞdx ðC:1Þ

where  0ðx; yÞ is the solution of the set of integral equations,Z 1

0

½K0ðx; 
Þ 0ð
; yÞ þ 2K1ðx; 
Þ 1ð
; yÞ�d
 ¼ g0ðx; yÞ

Z 1

0

½K0ðx; 
Þ 1ð
; yÞ þ K1ðx; 
Þ 0ð
; yÞ þ K1ðx; 
Þ 1ð
; yÞ�d


¼ g1ðx; yÞ ðC:2Þ
In eq C·2, K0ðx; yÞ and K1ðx; yÞ are the continuous versions of

the mean reciprocal of the distance between the centers of two

beads on the same arm and on different ones, respectively, and

g0ðx; yÞ and g1ðx; yÞ are those of �hSi � Sji for the centers of two
beads on the same arm and on different ones, respectively.

They are explicitly given by

K0ðx; yÞ¼
3

L
jx� yj�1 for jx� yj 
 3db=L

¼ 0 for jx� yj < 3db=L ðC:3Þ

K1ðx; yÞ ¼
3

L
ðx2 þ y2 þ xyÞ�1=2 ðC:4Þ

g0ðx; yÞ ¼
�L

9
xy ðC:5Þ

g1ðx; yÞ ¼ �
�L

18
xy ðC:6Þ

Now we expand  0ðx; yÞ,  1ðx; yÞ, g0ðx; yÞ, and g1ðx; yÞ in

terms of the shifted Legendre polynomial ~PPlðxÞ as, for example,

 0ðx; yÞ ¼
X1
i¼0

X1
j¼0

 0;ij
~PPiðxÞ ~PPjðyÞ ðC:7Þ

where ~PPlðxÞ (l ¼ 0; 1; 2; . . .) is defined by

~PPlðxÞ ¼ ð�1ÞlPlð2x� 1Þ ðC:8Þ

We note that ~PPlðxÞ satisfies the following orthogonality

relation, Z 1

0

~PPlðxÞ ~PPl0 ðxÞdx ¼
�ll0

2lþ 1
ðC:9Þ

Then eq C·1 may be written in terms of the expansion

coefficients  0;ij as

½�� ¼
3NAL

M

X1
i¼0

 0;ii

2iþ 1
ðC:10Þ

and the integral equations C·2 may be converted to a set of

linear simultaneous equations, which may be written in the

following matrix form,

K �  ¼ g ðC:11Þ

The three matrices K,  , and g in eq C·11 have the same

structure composed of 9 submatrices and may be explicitly

written as, for example,

K ¼
K0 K1 K1

K1 K0 K1

K1 K1 K0

0
B@

1
CA ðC:12Þ

whereK0 and K1 are the symmetric matrices whose ij elements

are given by

Kk;ij ¼
Z 1

0

Z 1

0

Kkðx; yÞ ~PPiðxÞ ~PPjðyÞdxdy ðk ¼ 0; 1Þ ðC:13Þ

Similarly,  (g) is composed of  0 and  1 (g0 and g1) whose ij

elements are the expansion coefficients  0;ij and  1;ij (g0;ij and

g1;ij), respectively.

It can be shown in the limit of L=db ! 1 that the diagonal

elements K0;ii of K are proportional to L�1 lnðL=dbÞ while the

off-diagonal ones K0;ij (i 6¼ j) and K1;ij are of OðL�1½lnðL=dbÞ�0Þ
at most. Further the elements g0;ij and g1;ij of g0 and g1,

respectively, may be calculated to be

g0;ij ¼
1

36
�Lð2iþ 1Þð2jþ 1Þ �i0 �

1

3
�i1

� �
�j0 �

1

3
�j1

� �
ðC:14Þ

g1;ij ¼ �
1

72
�Lð2iþ 1Þð2jþ 1Þ �i0 �

1

3
�i1

� �
�j0 �

1

3
�j1

� �

ðC:15Þ

Then we have

 ii ¼
�L

36ð2iþ 1Þ
½�i0K �1

0;00 þ �i1K
�1
0;11 þOðL½lnðL=dbÞ��2Þ�

ðC:16Þ

and ½�� may be written in the form

lim
L=db!1

½�� ¼
�NAL

2

12M
K �1
0;00 þ

1

9
K �1
0;11

� �
ðC:17Þ

The necessary elements K0;00 and K0;11 of K are calculated to

be

K0;00 ¼ 6 lnðL=dbÞ=L
K0;11 ¼ 2 lnðL=dbÞ=L ðC:18Þ

Substitution of eqs C·18 into eq C·17 leads to eq 34.
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