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A Monte Carlo (MC) study is made of the second virial coefficient A2 along with the mean-square radius of gyration hS2i for
regular three-arm star and linear freely rotating chains of bond angles � ranging from 109� (typical flexible chain) to 175�

(typical semiflexible or stiff chain) with the Lennard–Jones 6-12 potentials between beads corresponding to a good solvent

system, in the range of the total number n of bonds from 30 to 900. On the basis of the MC values of A2 so obtained, an

examination is made of effects of chain stiffness on the ratio gA2
of A2 of the star chain to that of the linear one, both chains

having the same n and �. It is then found that gA2
is rather insensitive to change in � (chain stiffness) in contrast to the cases of

the ratios gS and g� related to hS2i and the intrinsic viscosity ½��, respectively, which remarkably decrease with increasing �.
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In previous papers,1,2 we have examined effects of chain

stiffness on the intrinsic viscosity ½�� of unperturbed regular

three-arm star polymer chains by Monte Carlo (MC) simu-

lations1 or on the basis of the Kirkwood–Riseman theory.2–4

The ratio g� of ½�� of an unperturbed regular three-arm star

chain to that of an unperturbed linear one, both having the

same molecular weight and chain stiffness, has been shown

to become remarkably smaller than the value ca. 0.9 in the

random-coil limit5,6 as the chains become stiffer, as in the case

of the ratio gS of the mean-square radius of gyration hS2i of the
former chain to that of the latter.7 We note that gS becomes 7/9

in the random-coil limit.8 Since ½�� and hS2i are measures of

the average chain dimension, the above-mentioned results

for g� and gS indicate that the average dimension of the

unperturbed regular three-arm star chain becomes much

smaller than that of the corresponding linear one as the chains

become stiffer.

In good solvents (perturbed state), short-ranged repulsive

interactions work between segments constituting the polymer

chains, expanding the individual chains and yielding an

effective volume VE excluded to one chain by the presence

of another. The volume VE is another measure of the average

chain dimension, although well-defined only in a good

solvent system or in the perturbed state. The quantity VE

may be defined from the second virial coefficient A2 as

follows,4

A2 ¼ 4NAVE=M
2 ð1Þ

where NA is the Avogadro constant and M is the molecular

weight. It is then interesting to examine the effects of chain

stiffness on the ratio gA2
of A2 of a regular three-arm star chain

to that of the corresponding linear one. In this paper, we make

an MC study of gA2
as a necessary continuation of the previous

papers.1,2

An available theoretical value of gA2
for the regular three-

arm star chain is 0.968 in the random-coil limit obtained by

Douglas and Freed9 on the basis of the polymer renormaliza-

tion group (RG) theory, being nearly equal to unity. Then the

main question we must answer in this paper is whether or not

gA2
becomes remarkably smaller than unity as the chains

become stiffer, as in the cases of g� and gS.

MODELS AND METHODS

The MC models used in this study are the same as those

used in the previous one1 except for the value of a parameter of

interactions between segments (beads).

The star chain model is the regular three-arm star freely

rotating chain, each arm composed of m successive bonds of

length unity, so that it is composed of 3m (¼ n) bonds, in total,

and 3mþ 1 beads whose centers are located at 3m� 3

junctions of two successive bonds on the arms, at the three

terminal ends, and at the branch point (center) (see Figure 1 of

ref 1). The angle between each pair of the bonds connected to

the center is fixed to be 120�, so that those bonds are on the

same plane. For convenience, the three arms are designated the

first, second, and third ones and the beads on the ith arm

(i ¼ 1; 2; 3) are numbered ði� 1Þmþ 1; ði� 1Þmþ 2; � � � ; im
from the center to the end, with the center bead numbered 0.

The ith bond vector (1 � i � 3m; i 6¼mþ 1, 2mþ 1) connects

the centers of the ði� 1Þth and ith beads with its direction from

the ði� 1Þth to ith bead, and the ðmþ 1Þth and ð2mþ 1Þth bond
vectors are from the 0th to the ðmþ 1Þth and ð2mþ 1Þth beads,

respectively. All the 3m� 3 bond angles � (not supplement)

except for those around the center are fixed, so that the

configuration of the entire chain may be specified by the set

of 3m� 3 rotation angles f�3m�3g ¼ ð�1; � � � ; �m�1; �mþ1; � � � ;
�2m�1; �2mþ1; � � � ; �3m�1Þ apart from its position and orientation
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in an external Cartesian coordinate system, where �i is the

internal rotation angle around the ith bond vector.

The linear chain model, the counterpart of the above star one,

is the freely rotating chain composed of n bonds of length unity

and nþ 1 beads, whose centers are located at the n� 1

junctions of two successive bonds and at the two terminal ends.

We set n equal to 3m. The beads are numbered 0; 1; 2; � � � ; n
from one end to the other, and the ith bond vector (i ¼
1; 2; � � � ; n) connects the centers of the ði� 1Þth and ith beads

with its direction from the ði� 1Þth to the ith bead. All the n� 1

bond angles are fixed at �, so that the configuration of the linear

chain may be specified by the set of n� 2 internal rotation

angles f�n�2g ¼ ð�2; �3; � � � ; �n�1Þ apart from its position and

orientation in the external Cartesian coordinate system.

The total potential energy U of the regular three-arm star

chain as a function of f�3m�3g may be given by

Uðf�3m�3gÞ ¼
X1
i¼0

X2
j¼iþ1

Xm
k;l¼1

hðk þ l� 4Þ uðRðimþkÞð jmþlÞÞ

þ
X2
i¼0

Xm�4

j¼1

Xm
k¼jþ4

uðRðimþjÞðimþkÞÞ

þ
X2
i¼0

Xm
j¼4

uðR0ðimþjÞÞ

(regular three-arm star) ð2Þ

and that of the linear one as a function of f�n�2g by

Uðf�n�2gÞ ¼
Xn�4

i¼0

Xn
j¼iþ4

uðRijÞ (linear) ð3Þ

where hðxÞ is a unit step function such that hðxÞ ¼ 1 for x � 0

and hðxÞ ¼ 0 for x < 0 and Rij is the distance between the

centers of the ith and jth beads. We note that in eqs 2 and 3 the

interactions between the third-neighbor beads along the chain

have been neglected, since they seem to make the chain locally

take the cis conformation to excess.

Similarly, the total intermolecular (excluded-volume) po-

tential energy U12ð1; 2Þ between two chains 1 and 2 as a

function of all the coordinates of chains 1 and 2 may be given

by

U12ð1; 2Þ ¼
Xn
i1¼0

Xn
i2¼0

uðRi1i2 Þ ð4Þ

where Ri1i2 is the distance between the centers of the i1th bead

of chain 1 and of the i2th one of chain 2. We note that we use

the McMillan–Mayer symbolism4,10 to formulate A2, here and

hereafter. Then the ith bead (i ¼ 0; 1; 2; � � � ; n) of chain �

(� ¼ 1; 2) is labeled as i�, and the symbol (�) (� ¼ 1; 2)

denotes all the coordinates (external and internal) of chain �.

We adopt as the pair potential uðRÞ (of mean force) the cutoff

version of the Lennard–Jones (LJ) 6-12 potential given by

uðRÞ¼ 1 for 0 � R < c�

¼ uLJðRÞ for c� � R < 3�

¼ 0 for 3� � R ð5Þ
where uLJðRÞ is the LJ potential11 given by

uLJðRÞ ¼ 4�
�

R

� �12

�
�

R

� �6
" #

ð6Þ

with � and � the collision diameter and the depth of the

potential well at the minimum of uLJðRÞ, respectively. We note

that uðRÞ given by eq 5 is the LJ potential cut off at the upper

bound 3�. The lower bound c� in eq 5 has been introduced for

numerical convenience; the factor c is properly chosen so that

the Boltzmann factor e�uLJ=kBT may be regarded as numerically

vanishing compared to unity, where kB is the Boltzmann

constant and T is the absolute temperature. In practice, in

double-precision computation, we put

c ¼ ½2=ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 36T�

p
Þ�1=6 ð7Þ

so that e�uLJ=kBT . 2� 10�16 for 0 � R < c�, where T� is the

reduced temperature defined by T� ¼ kBT=�. Further, we put

� ¼ 1 for simplicity, as previously1 done. We note that the

value 3.72 of T� corresponds to the � temperature and 8.0 to a

good solvent system.12,13

The mean-square radius of gyration hS2i, i.e., the ensemble

average of the square radius of gyration S2 may be evaluated

from

hS2i ¼ Ns
�1

X
f�kg

S2ðf�kgÞ ð8Þ

where the sum is taken over Ns sample configurations f�kg with
k being equal to 3m� 3 for the star chain and n� 2 for the
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Figure 1. Double-logarithmic plots of hS2i=n against n at T � ¼ 8:0 (good
solvent system). The open and closed symbols represent the MC
values for the regular three-arm star and linear freely rotating
chains, respectively, of � ¼ 109� ( , ), 120� ( , ), 135� ( ,
), 165� ( , ), and 175� ( , ). The solid and dashed curves

represent the theoretical values for the ideal regular three-arm star
and linear freely rotating chains, respectively, with the indicated
values of �.
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linear one, f�kg generated in an MC run by an application of

the pivot algorithm14,15 and the Metropolis method of impor-

tance sampling16 as done in the previous MC studies.1,12 For

each sample configuration, S2 as a function of f�kg may be

calculated from

S2 ¼
1

nþ 1

Xn
i¼0

jri � rc.m.j2 ð9Þ

with ri the vector position of the center of the ith bead and

rc.m. the vector position of the center of mass of the chain given

by

rc.m. ¼
1

nþ 1

Xn
i¼0

ri ð10Þ

In every MC run, an initial configuration is generated by trial

and error so that all the distances between the centers of beads

are greater than or equal to c. (Note that � ¼ 1.) One

configuration is sampled at every Mnom (nominal) pivot steps,

so that Ns �Mnom pivot steps are required to obtain a set of Ns

sample configurations. The number of Mnom has been chosen to

be ca. 10n for the regular three-arm star chains and ca. 2n for

the linear ones.

As for the second virial coefficient A2, it may be evaluated

from

A2 ¼
2�NA

M2

Z 1

0

1� exp �
U12ðrÞ
kBT

� �� �
r2dr ð11Þ

where U12ðrÞ is the averaged intermolecular potential as a

function of the distance r ¼ jrj between the centers of mass of

chains 1 and 2 defined by

U12ðrÞ ¼ �kBT ln exp �
U12ð1; 2Þ
kBT

� �� 	
r

ð12Þ

In eq 12, h� � �ir indicates the conditional equilibrium average

taken over the configurations of the two chains with r fixed by

the use of the single-chain distribution function for each with

the intramolecular excluded-volume potential for the star and

linear chains given by eqs 2 and 3, respectively. In practice, the

conditional average may be calculated by the use of a set of Ns

sample configurations f�kg generated above, as follows. First,

we randomly sample a pair of sample configurations (chains 1

and 2) from the set and calculate the intermolecular potential

U12 from eq 4 at given r after randomizing the orientations

of the two configurations in the external coordinate system.

Numerical evaluation of U12 may be carried out following the

procedure used in the previous study13 of A2 with the use of the

‘‘zippering’’ method.17,18 Then the average on the right-hand

side of eq 12 may be evaluated from

exp �
U12ð1; 2Þ
kBT

� �� 	
r

¼ Np
�1
X
ð1;2Þ

0
exp �

U12ð1; 2Þ
kBT

� �
ð13Þ

where
P0

ð1;2Þ indicates summation over Np pairs of sample

configurations (1,2) at given r. With the values of U12ðrÞ so
evaluated for various values of r at given T�, the quantity A2M

2

for given n may then be calculated from eq 11 by numerical

integration with the use of the trapezoidal rule formula.

In the practical evaluation of hS2i and A2 for the regular

three-arm star and linear freely rotating chains at T� ¼ 8:0

(good solvent system), we have generated 10 sets of 105 (¼ Ns)

sample configurations for n ¼ 30, 60, 90, 150, and 300, 5 sets

of those for n ¼ 600, and 2 sets of those for n ¼ 900. In the

evaluation of U12 (and A2), 10
6 or 107 (¼ Np) sample pairs

have been taken from each set. Then the total number of

sample pairs is equal to the number Np of sample pairs in each

set multiplied by the number of sets.

All the numerical work has been done by the use of a

personal computer with an Intel Core2 Duo E6600 CPU. A

source program coded in C has been compiled by the GNU C

compiler version 3.4.6 with real variables of double precision.

For a generation of pseudorandom numbers, the subroutine

package MT19937 supplied by Matsumoto and Nishimura19

has been used instead of the subroutine RAND included in the

standard C library.

RESULTS AND DISCUSSION

Mean-Square Radius of Gyration

We have carried out MC runs to generate sample config-

urations for the regular three-arm star and linear freely rotating

chains with n (¼ 3m) ¼ 30, 60, 90, 150, 300, 600, and 900

and � ¼ 109�, 120�, 135�, 165�, and 175� at T� ¼ 8:0 (good

solvent system). The chain of � ¼ 109� corresponds to a typical

flexible chain, and the chain becomes stiffer with increasing �

from 109� to 175�.

The MC values of hS2i=n for the star and linear chains are

given in the second and fourth columns, respectively, of

Table I, the number in the parentheses attached to each value

indicating its statistical error. The hS2i=n value and its error for

each chain are the mean and the standard deviation, respec-

tively, of independent MC results.

Figure 1 shows double-logarithmic plots of hS2i=n against n

at T� ¼ 8:0 (good solvent system). The open and closed

symbols represent the MC values for the star and linear chains,

respectively, of � ¼ 109� ( , ), 120� ( , ), 135� ( , ),

165� ( , ), and 175� ( , ). The solid and dashed curves

represent the theoretical values of hS2i=n for the ideal regular

three-arm star and linear freely rotating chains, respectively,

without interactions between beads, which have been calcu-

lated from

hS2i ¼
7

54

1� cos �

1þ cos �
nþ

1

54

31þ 90 cos � � 13 cos2 �

ð1þ cos �Þ2

þ
1

18

19þ 49 cos � þ 71 cos2 � þ 5 cos3 �

ð1þ cos �Þ3
1

nþ 1

�
2ð1þ 2 cos �Þ
ð1þ cos �Þ3

1� ð� cos �Þn=3þ1

nþ 1

þ
1

27

ð1� cos �Þð37� 16 cos � þ cos2 �Þ
ð1þ cos �Þ3

1

ðnþ 1Þ2

�
2ð2þ cos2 �Þ
ð1þ cos �Þ4

1� ð� cos �Þn=3þ1

ðnþ 1Þ2
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þ
3

ð1þ cos �Þ4
½1� ð� cos �Þn=3þ1�2

ðnþ 1Þ2

(regular three-arm star) ð14Þ
and

hS2i ¼
1

6

1� cos �

1þ cos �
nþ

1

6

1þ 6 cos � � cos2 �

ð1þ cos �Þ2

þ
1

6

�1� 7 cos � þ 7 cos2 � þ cos3 �

ð1þ cos �Þ3
1

nþ 1

�
2 cos2 �

ð1þ cos �Þ4
1� ð� cos �Þnþ1

ðnþ 1Þ2
(linear) ð15Þ

respectively, with the indicated values of �. We note that eq 14

is a special case of the theoretical expression obtained by

Guenza et al.20 for the regular f -arm star freely rotating chain.

In the cases of � ¼ 109�, 120� and 135�, the MC values for

both the star and linear chains deviate upward from the

corresponding ideal-chain ones because of the intramolecular

excluded-volume effect and also of the effect of the inter-

actions between beads on the unperturbed chain dimension

through the short-range interference.12,21,22 In the cases of � ¼
165� and 175�, on the other hand, the MC values for both the

star and linear chains are almost identical with the correspond-

ing ideal-chain values, because the effects of the intramolecular

interactions between beads become negligibly small for a

Table I. Values of hS2i=n and A2Mb
2=NA at T � ¼ 8:0 (good solvent system)

n
three-arm star linear

hS2i=n (error%) A2M
2
b =NA (error%) hS2i=n (error%) A2M

2
b =NA (error%)

� ¼ 109�

30 0.3020 (0.1) 0.2515 (0.1) 0.3893 (0.1) 0.2615 (0.2)

60 0.3407 (0.1) 0.2034 (0.1) 0.4433 (0.1) 0.2134 (0.2)

90 0.3661 (0.1) 0.1818 (0.1) 0.4773 (0.1) 0.1915 (0.1)

150 0.4004 (0.1) 0.1590 (0.1) 0.5234 (0.1) 0.1684 (0.1)

300 0.4515 (0.1) 0.1336 (0.1) 0.5915 (0.1) 0.1421 (0.1)

600 0.5088 (0.1) 0.1131 (0.1) 0.6677 (0.1) 0.1203 (0.2)

900 0.5458 (0.1) 0.1025 (0.0) 0.7169 (0.1) 0.1095 (0.1)

� ¼ 120�

30 0.3794 (0.1) 0.2859 (0.1) 0.5009 (0.1) 0.3011 (0.2)

60 0.4311 (0.1) 0.2414 (0.1) 0.5659 (0.1) 0.2529 (0.2)

90 0.4622 (0.1) 0.2189 (0.1) 0.6048 (0.1) 0.2298 (0.1)

150 0.5026 (0.1) 0.1942 (0.1) 0.6560 (0.1) 0.2050 (0.1)

300 0.5613 (0.1) 0.1659 (0.2) 0.7326 (0.1) 0.1757 (0.1)

600 0.6260 (0.1) 0.1418 (0.1) 0.8173 (0.1) 0.1505 (0.2)

900 0.6675 (0.0) 0.1293 (0.1) 0.8723 (0.0) 0.1375 (0.0)

� ¼ 135�

30 0.5537 (0.1) 0.3274 (0.2) 0.7901 (0.1) 0.3362 (0.2)

60 0.6635 (0.1) 0.2873 (0.3) 0.9079 (0.2) 0.2973 (0.1)

90 0.7201 (0.1) 0.2684 (0.1) 0.9666 (0.2) 0.2788 (0.2)

150 0.7829 (0.1) 0.2463 (0.2) 1.036 (0.1) 0.2569 (0.2)

300 0.8626 (0.1) 0.2190 (0.1) 1.127 (0.1) 0.2294 (0.1)

600 0.9414 (0.1) 0.1935 (0.1) 1.224 (0.1) 0.2031 (0.1)

900 0.9904 (0.0) 0.1797 (0.0) 1.285 (0.1) 0.1887 (0.0)

� ¼ 165�

30 1.109 (0.0) 0.3556 (0.4) 2.185 (0.0) 0.3524 (0.4)

60 1.886 (0.0) 0.3307 (0.3) 3.571 (0.0) 0.3314 (0.4)

90 2.516 (0.0) 0.3233 (0.4) 4.561 (0.1) 0.3236 (0.6)

150 3.461 (0.0) 0.3161 (0.3) 5.851 (0.1) 0.3177 (0.2)

300 4.823 (0.1) 0.3100 (0.3) 7.378 (0.1) 0.3116 (0.3)

600 5.951 (0.1) 0.3044 (0.1) 8.428 (0.1) 0.3075 (0.1)

900 6.444 (0.1) 0.3030 (0.1) 8.829 (0.0) 0.3052 (0.3)

� ¼ 175�

30 1.226 (0.0) 0.3543 (0.3) 2.605 (0.0) 0.3438 (0.6)

60 2.292 (0.0) 0.3279 (0.4) 4.936 (0.0) 0.3201 (0.8)

90 3.330 (0.0) 0.3191 (0.5) 7.164 (0.0) 0.3118 (0.5)

150 5.328 (0.0) 0.3109 (0.3) 11.34 (0.0) 0.3073 (0.8)

300 9.900 (0.0) 0.3041 (0.5) 20.34 (0.0) 0.3029 (0.5)

600 17.53 (0.1) 0.3018 (0.3) 33.74 (0.1) 0.2999 (0.9)

900 23.59 (0.1) 0.2997 (0.5) 43.03 (0.1) 0.2970 (0.6)
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typical stiff chain if its total contour length is not very long.

We note that the ring-closure or intramolecular-contact

probability approaches zero in the rigid-rod limit and therefore

the intramolecular excluded-volume effect vanishes in the

limit.

Figure 2 shows plots of gS against log n at T� ¼ 8:0 (good

solvent system), where gS is the ratio of hS2i of the regular

three-arm star chain to that of the corresponding linear one.

The symbols represent the MC values of gS calculated from the

values of hS2i=n given in the second and fourth columns in

Table I for � ¼ 109� ( ), 120� ( ), 135� ( ), 165� ( ), and

175� ( ). The solid curves represent the theoretical values for

the ideal chains calculated from eqs 14 and 15. The upper and

lower dotted horizontal lines represent the asymptotic values

7/9 in the ideal (unperturbed) random-coil limit8 and 4/9 in the

rigid-rod limit,7 respectively.

In the case of � ¼ 109� (typical flexible chain), the MC

value 0.76 of gS for n ¼ 900 is somewhat (ca. 2%) smaller than

the value 7/9 (¼ 0:778) in the ideal random-coil limit. The

available experimental values of gS for regular f -arm star

polystyrenes (PS) in good solvents obtained by Khasat et al.23

for f ¼ 3 and by Okumoto et al.24,25 for f ¼ 4 and 6 are 0.79,

0.61, and 0.45, respectively, and are in good agreement with

the respective ideal random-coil limiting values 7/9 (¼ 0:778),

5/8 (¼ 0:625), and 4/9 (¼ 0:444), which have been calculated

from gS ¼ ð3 f � 2Þ= f 2.8 The available theoretical values of gS
obtained by Douglas and Freed9 on the bases of the polymer

RG theory for the regular three-, four-, and six-arm stars in the

perturbed random-coil limit are 0.778, 0.631, and 0.453,

respectively, and are consistent with the experimental ones.

Then the present MC result for long flexible chains is

consistent with the above-mentioned experimental and theo-

retical results.

As a natural consequence of the results shown in Figure 1,

the MC value of gS becomes almost identical with the ideal

chain value as the chain becomes stiffer. The ratio gS, on the

whole, remarkably depends on the chain stiffness but scarcely

on the intramolecular excluded volume.

Second Virial Coefficient

We have numerically evaluated A2M
2=NA from eqs 11–13

on the basis of the sets of sample configurations generated in

the above-mentioned MC evaluation of hS2i. The MC values of

A2Mb
2=NA with Mb ¼ M=n so obtained for the star and linear

chains are given in the third and fifth columns, respectively, of

Table I, the number in the parentheses attached to each value

indicating its statistical error. The A2Mb
2=NA value and its

error for each chain are the mean and the standard deviation,

respectively, of independent MC results.

Figure 3 shows double-logarithmic plots of A2Mb
2=NA

against n at T� ¼ 8:0 (good solvent system), where all the

open and closed symbols have the same meaning as those in

Figure 1. In the case of � ¼ 109� (typical flexible chain), the

value for the regular three-arm star is somewhat (6% at most)

smaller than the corresponding value for the linear chain. For

both the star and linear chains, A2 decreases with increasing n

and the slopes of the plots become almost identical with the

asymptotic value �0:2 for very large n. The difference in the

value of A2 between the two chains becomes small and the

slopes become gentle, as � (chain stiffness) is increased. In

the case of � ¼ 175� (typical semiflexible or stiff chain), A2

becomes almost independent of n for n � 100, as in the case of

the rigid rod.

It is interesting to note that the value of A2 for the chain of

� ¼ 175� is smaller than that of � ¼ 165� over the whole range

of n examined. It may be regarded as arising from the fact that

two chains with the LJ potential (having the attractive

interaction), which are close to each other, prefer to be parallel

rather than perpendicular to each other when their stiffness

becomes large and their A2 may therefore be suppressed,26 as
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Figure 2. Plots of gS against log n at T � ¼ 8:0 (good solvent system) for the
freely rotating chains of � ¼ 109� ( ), 120� ( ), 135� ( ), 165�

( ), and 175� ( ). The solid curves represent the theoretical
values for the ideal freely rotating chains with the indicated values
of �. The upper and lower dotted horizontal lines represent the
asymptotic values 7/9 in the ideal random-coil limit and 4/9 in the
rigid-rod limit, respectively.
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Figure 3. Double-logarithmic plots of A2Mb
2=NA against n at T � ¼ 8:0 (good

solvent system). All the symbols have the same meaning as those
in Figure 1.
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discussed by Schoot and Odijk27 in the case of long rigid rods

with a van der Waals-type potential.

Figure 4 shows plots of gA2
against log n at T� ¼ 8:0 (good

solvent system). The symbols, which have the same meaning as

those in Figure 2, represent the MC values of gA2
calculated

from the values of A2Mb
2=NA given in the third and fifth

columns in Table I. We note that from the defining eq 1 for the

effective intermolecular excluded volume VE, gA2
may be

written in terms of VE as follows,

gA2
¼

A2ðstarÞ
A2ðlinearÞ

¼
VEðstarÞ
VEðlinearÞ

ð16Þ

In the case of � ¼ 109� (typical flexible chain), gA2
slightly

decreases with increasing n and then seems to approach a

constant independent of n. The asymptotic value of gA2
in the

limit of n ! 1 may be estimated to be 0.94 which is the mean

of the three MC values 0.940, 0.940, and 0.936 for n ¼ 300,

600, and 900, respectively. The gA2
value so obtained is rather

in good agreement with the RG theory value9 0.968 represented

by the dotted horizontal line segment in Figure 4. In this

connection, we refer to literature experimental and theoretical

values of gA2
for regular stars. The former values are 0.89 and

0.79 for the regular four- and six-arm star PSs,24,25 respectively,

and they are rather in good agreement with the corresponding

RG theory values9 0.923 and 0.808. Strictly speaking, the RG

theory values are somewhat (ca. 3%) larger than the corre-

sponding experimental and present MC values.

It is more important to see in Figure 4 that gA2
slightly

increases with increasing � (chain stiffness) in the range of �

from 109� to 165� and it becomes almost identical with unity

for � ¼ 165� and 175� in the range of n & 100. We note that

gA2
in the cases of � ¼ 165� and 175� approaches, of course,

the above-mentioned asymptotic value in the limit of n ! 1.

In contrast to the cases of gS and g�, gA2
is rather insensitive to

change in � (chain stiffness). Such characteristic behavior of

gA2
may be regarded as arising from the fact that in terms of the

(classical) perturbation theory,4 effects of the multiple inter-

molecular contact become negligibly small, if any, in the rigid-

rod limit. The decreases in A2 of the star and linear chains

due to the attractive interaction in the LJ potential may be

considered to cancel out with each other in gA2
.

Finally, we consider the apparent interpenetration function

�ap defined by28

A2 ¼ 4�3=2NA

hS2i3=2

M2
�ap ð17Þ

from the whole A2 including effects of chain ends.29,30 Figure 5

shows double-logarithmic plots of �ap against n at T� ¼ 8:0

(good solvent system). The open and closed symbols, which

have the same meaning as those in Figures 1 and 3, represent

the MC values for the star and linear chains, respectively,

calculated from eq 17 with the values of hS2i=n and A2Mb
2=NA

given in Table I.

In the case of � ¼ 109� (typical flexible chain), �ap for both

the star and linear chains slightly decreases with increasing n

and then seems to approach the asymptotic values 0.34 and

0.24, respectively, which are the means of the three �ap values

for n ¼ 300, 600, and 900, although �ap is appreciably larger

for the star chain than for the linear one. The two asymptotic

values are in good agreement with the literature MC values

0.35 for the star chain and 0.235 for the linear one obtained by

Ohno et al.31 and Barrett,32 respectively, by the use of self-

avoiding chains on the simple cubic lattice. In Figure 5, the two

literature values for the star and linear chains are represented

by the solid and dashed horizontal line segments, respectively.

We note that the RG theory values9 0.384 and 0.269 of �ap for

the perturbed flexible regular three-arm star and linear

chains, respectively, are somewhat (ca. 10%) larger than the

above-mentioned present and literature MC values. As � (chain

stiffness) is increased from 109� to 175�, �ap decreases

monotonically.
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Figure 4. Plots of gA2
against log n at T � ¼ 8:0 (good solvent system). All

the symbols have the same meaning as those in Figure 2. The
dotted horizontal line segment represents the RG theory value9

0.968.
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Figure 5. Double-logarithmic plots of �ap against n at T � ¼ 8:0 (good
solvent system). All the symbols have the same meaning as those
in Figure 1. The solid horizontal line segment represents the
asymptotic value 0.35 in the random-coil limit obtained by Ohno et
al.31 for the self-avoiding regular three-arm star chain on the
simple cubic lattice and the dashed one the corresponding value
0.235 obtained by Barrett32 for the self-avoiding linear chain on the
same lattice.
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From eqs 16 and 17, gA2
may be written in the form,

gA2
¼ gS

3=2g� ð18Þ

where g� is the ratio of �ap of the regular three-arm star chain

to that of the corresponding linear one. Figure 6 shows plots of

g� against log n at T� ¼ 8:0 (good solvent system), where all

the symbols have the same meaning as those in Figures 2

and 4. It is seen that g� remarkably increases with increasing

� (chain stiffness). From eq 18 with the results shown in

Figures 2, 4, and 6, it may be said that the increase in g�
compensates the decrease in gS

3=2 and therefore gA2
is

insensitive to change in � (chain stiffness).

CONCLUSION

We have examined the effects of chain stiffness on the

ratio gA2
of A2 of the regular three-arm star chain to that of

the corresponding linear one on the basis of the MC results

for A2 and hS2i of the freely rotating chains with the LJ 6-12

potential corresponding to a good solvent system. It is found

that gA2
is rather insensitive to change in chain stiffness in

contrast to the cases of the ratios gS and g� related to hS2i
and ½��, respectively, which remarkably decrease with

increasing chain stiffness. Such characteristic behavior of

gA2
may be regarded as arising from the fact that in terms

of the (classical) perturbation theory,4 the effects of the

multiple intermolecular contact become negligibly small, if

any, in the rigid-rod limit, or in other words, the increase in

the ratio g� related to �ap compensates the decrease in

gS
3=2.
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