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ABSTRACT:

Nylon-6 [-(CH;)s—NHCO-], («NY6) is a synthetic polymer widely used in industrial applications. It

has a planar zigzag conformation. A comprehensive study of the normal modes and their dispersion in «NY6 using
Urey Bradley force field is being reported. Crossing between the various pairs of modes of dispersion curves have been
explained as arising due to internal symmetry in the energy momentum space. The heat capacity derived from the dis-

persion curves via the density-of-states, is in good agreement with the experimental measurements obtained from the

Athas data bank. [doi:10.1295/polymj.PJ2006103]
KEY WORDS

The word Nylon has been accepted as generic term
for synthetic polyamides, Nylon-6 [-(CH;)s—NHCO-],
is one of the most important members of this family. It
is highly useful for industrial applications because of
its high tensile and impact strength, firm stability at
high temperature, good abrasion resistance and self-
lubricating properties. It also retains both tough and
flexible at low temperatures. Commercially it can be
processed by conventional processing methods such
as injection molding, extrusion blow molding, and
special grade of Nylon-6 are available for rotational
molding and thermoforming.

Nylon-6 crystallizes in two different forms namely
a and y forms."? Thermodynamically stable o form
takes on planar zigzag conformation and the molecu-
lar chains are arranged in sheets by means of hydro-
gen bonding between antiparallel chains, while the y
form takes a helical symmetry with the secondary
amide group at 66° with respect to the plane of CH,
zigzag and sheets of parallel chains are joined by hy-
drogen bonds. In both the forms the neighbouring
chains are arranged in sheets of parallel but oppo-
sitely directed molecules. Lattice parameters along
the polymer axis are slightly shorter (b = 16.88 A)?
in the y form as comparison to that of the o form
(b=17.24A).!

Vibrational spectroscopy plays an important role in
the elucidation of polymeric structure. Normal mode
analysis besides identification of various modes pro-
vides an insight into Infrared absorption (IR), Raman
spectra and Inelastic Neutron Scattering (INS). An
overall understanding of vibrational dynamics in a
polymer involves calculation of the dispersion curves.
These curves provide knowledge of degree of uninter-
rupted sequence lengths in an ordered conformation.
The dispersion curves also facilitate correlation of

Nylon-6 / a-Form / Phonon Dispersion / Heat Capacity / Density-of-States /

the microscopic behaviour of the long chain molecule
with the macroscopic properties such as entropy, en-
thalpy, specific heat etc.

We present here a complete normal mode analysis
of aNY6 with phonon dispersion in the first Brillouin
Zone using Urey Bradley force field (UBFF).>* This
polymer has been subjected to several spectroscopic
studies (IR, Raman and INS)>~'? by several workers.
Tadokoro et al.'' have reported normal mode analysis
of aN'Y6 considering methylene group as a point mass
thereby neglecting the interaction between carbon and
hydrogen atoms where as Jakes and Krimm® have
used simple valence force field in their normal mode
calculations. Our calculations are based on UBFF,
which in addition to valence force field accounts for
the non-bonded interactions in the gem and cis config-
uration and the tension terms. In this force field the
potential energy expression does not have quadratic
cross terms. The force constants are supplemented
by the repulsive forces between non-bonded atoms,
which simulate the van der Waals force!® between
them. It gives a better description of intra and inter
unit interactions, and arbitrariness in choosing the
force constants is reduced, thereby enabling us to ar-
rive at a better unique force field.

THEORY

Calculation of Normal Mode Frequencies

Normal mode calculation for a polymeric chain
was carried out using Wilson’s GF matrix method'*
as modified by Higgs!? for an infinite polymeric chain.
The vibrational secular equation to be solved is

IG(OF@) — Al =0 O0=d=m ey

where § is the phase difference between the modes of

"To whom correspondence should be addressed (E-mail: poonam_tandon @hotmail.com).
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adjacent chemical units, G(§) is the inverse kinetic
energy matrix and F(8) is the force field matrix for a
certain phase value. The wavenumber v;(§) in cm™!
are related to eigen values by A;(8) = 47>c2[v;(6)]°.

A plot of v;(§) versus § gives the dispersion curve
for the ith mode. The use of the type of force field
is generally a matter of one’s chemical experience
and intuition.'® In the present work, we have used
Urey-Bradley force field as it is more comprehensive
then valence force field. The Urey-Bradley takes into
account both bonded and non-bonded interactions as
well as internal tensions. Potential energy for this
force field can be written as

r_(m) (m) (m)\2
V=) K (M) + K Ar) 2

m,jk
(m)_ (m) (m)
+ Z Hi il (A1)
m,i,jk
+ Hi,j,k"%)(Aa%)k)z/z
+ Y FLa(Agl)) + Fi( gy /2
moigk
+ KA’ + ) K (Aw)? @
b J

where the symbols have their usual meaning. The
primed quantities are introduced as internal tensions.
Non-bonded interactions involve attraction and repul-
sion of atoms due to the overlap of their electron
shells. These effects are usually expressed by the 6-
exp or 6-12 type potentials. The tension terms are as-
sumed to be all zero.

Recently, spectroscopically effective molecular me-
chanics models have been used for inter and intra mo-
lecular interactions consisting of charges, atomic di-
poles and van der Waals (non bonded) interactions.?

The force constants, including those for the interac-
tion of first and third non-bonded atoms, which give
the “best fit”, are given in the Table I and have been
obtained by least squares fitting. In order to obtain the
“best fit” with the observed wave numbers the follow-
ing procedure is adopted.

Force constants were initially transferred from the
molecules (PCL!7 and B poly (L-valine)'? in the pres-
ent case) having similar groups placed in the similar
environment. Thus starting with the approximate F
matrix F, and observed frequencies Ao, (related
through a constant), one can solve the secular matrix
equation:

GFoLo = Lo 3)

Let A4 = 4;,, — 4;, in the above equation. It can be
shown that in the direct order of approximation

Ad = JAF 4

where J is computed from Ly. We wish to compute
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Table I. Internal coordinates and force
constants for «NY6 (rnydn/;;)

Internal Force Internal Force
Coordinates Constants Coordinates Constants
v (C=0) 7.85 ¢ (C4-Cs5-Cg)  0.470 (.600)
v (C1-Cy) 2.85 ¢ (H-C5-Cg) 0.470 (.220)
v (C,-H) 4.18 ¢ (C5-C4-N) 0.150 (.600)
v (C-C3) 3.24 ¢ (C5-C4-H) 0.440 (.220)
v (C-H) 4.18 ¢ (H-C¢-H) 0.362 (.360)
v (C-O) 2.98 ¢ (H-C-N) 0.245 (.780)
v (Cs5-Cg) 3.28 ¢ (C¢-N-H) 0.292 (.520)
v (C¢-H) 391 ¢ (C-N-C) 0.440 (.540)
v (Ce-N) 2.35 ¢ (H-N-C)) 0.453 (.520)
v (N-H) 5.38 ¢ (N-C=0) 0.890 (.900)
v (N-Cy) 5.75 ¢ (N-C-Cy) 0.400 (.600)
¢ (0=C;-C;) 0.890 (.900) w (N-H) 0.165
¢ (C1-C,-H) 0.406 (.215) o (C=0) 0.519
¢ (H-C,-H) 0.389 (.340) 1t (C1-Cy) 0.010
¢ (H-C,-C3) 0.410 (.215) 7 (Cy-C3) 0.011
¢ (C1-C2-C3)  0.750 (.500) 1t (C5-Cy) 0.009
¢ (C,-C3-H) 0.440 (.230) 7 (C4-Cs) 0.019
¢ (H-C-C) 0.458 (.230) 1t (Cs5-Cg) 0.032
¢ (C2-C35-C4)  0.480 (.500) 1 (Ce-N) 0.011
¢ (H-C-H) 0.392 (.340) t (N-Cy) 0.030
@ (C3-C4-C5)  0.470 (.600)

Note: 1. v, ¢, w and t denote stretch, angle bend, wag and torsion

respectively.

2. Non-bonded force constants are given in parentheses.

the corrections to Fy so that the errors A1 are mini-
mized. We used the theory of least squares and calcu-
late

JPAX = (JPY)AF ®)

where P is the weighting matrix and J' is the transpo-
sition of J. The solution of this equation is obtained by
inverting J'PJ to give

AF = (JP)'JPAX (6)

If the number of frequencies is greater than the
number of F matrix elements, the matrix J'PJ should
be non-singular and be obtain the corrections AF,
which will minimize the sum of the weighted squares
of the residuals. This minimum sum provides the
“best fit”. If the corrections AF are fairly large, the
linear relation between force constant and frequency
term in the matrix eq 3 breaks down. In such a situa-
tion, further refinement using higher order terms in
the Taylor’s series expansion of A4; is needed. King
et al."® developed this procedure.

Calculation of Specific Heat

Dispersion curves can be used to calculate the spe-
cific heat of a polymeric system. For a one-dimension-
al system the density of state function or the frequency
distribution function expresses the way energy is dis-
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Figure 1. One chemical repeat unit of «NY6.

tributed among the various branches of normal modes
in the crystal, is calculated from the relation

gv) = T(3v;/38) " yj5)=j @)

The sum is over all the branches j: considering a
solid as an assembly of harmonic oscillators, the fre-
quency distribution g(v) is equivalent to a partition
function. The constant volume heat capacity can be
calculated using Debye’s relation

C, = 2g(v))KNa(hvj/KT)*
x[exp(hvi/KT)/{exp(hvi/KT) — D}’] (8)

WIth /g(vi)dvi = 1

The constant-volume heat capacity C,, given by the
above equation, can be converted into constant-pres-
sure heat capacity C, using the Nernst-Lindemann
approximation.?’

C, — C, = 3RA\(C,*T/C,Ty,°) 9)

Where Ay is a constant often of a universal value
[6.0 x 1073 (K mol)/J] and T,,° is the estimated equi-
librium melting temperature, which is taken to be
310K.2!

RESULT AND DISCUSSION

One chemical repeat unit of eNY6 (Figure 1) con-
tains 19 atoms, which give rise to 57 dispersion
curves. Initially the force constants for CH, groups
are transferred from poly (e-caprolactone) (PCL)!
and for amide group from B poly (L-valine)'® mole-
cules and later modified to give the “best fit” to the
observed frequencies. Final sets of constants are given
in Table I. The assignments are made on the basis of
potential energy distribution (PED), band profile, line
intensities and the presence/absence of similar groups
in an identical environment in addition to the informa-
tion obtained from photo acoustic-Fourier transform
infrared (PAFTIR-IR)'? (1500-500cm™"), Fourier
transform Raman spectrum’® (3500-500 cm~!), micro
Raman confocal spectra!? (3450-900cm™!) and in-
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Figure 2. Dispersion curves (a) and density states (b) of
aNY6 (0-400cm™1).

elastic neutron spectra®'® (below 900cm™"). The vi-
brational frequencies have been calculated for the val-
ues of § ranging from O to 7 in steps of 0.057. The
optically active modes correspond to those at § =0
and 7. Dispersion curves are plotted in Figure 2(a)
for the modes below 400cm™', because the modes
above this are non dispersive in nature, Heat capaci-
ties are obtained from the dispersion curves via densi-
ty of states and compared with the experimental data
obtained from Athas data bank. Normal mode fre-
quencies are broadly classified under amide modes,
methylene modes and others.

Amide Modes

The amide linkage is one of the most fundamental
and wide spread chemical linkages in nature. Amide
groups of polyamides are strong chromophores in
IR absorption, and these groups give rise to strong
characteristic bands (Amide A, I to VII). Thus amide
modes play a vital role in the vibrational dynamics of
polyamides. The observed and calculated frequencies
along with the PEDs at the zone center and zone boun-
dary are shown in Table II, IIl. A comparison of the
amide modes of aNY6 with those of other S sheet
polypeptides (which also take the planar zig zag con-
formation) is given in Table IV. This table reflects the
spectral differences due to presence of different chem-
ical groups in between amide groups. It would be in-
teresting to compare the amide group modes of PGI?
with those of «NY6. In the former the amide group is
flanked by only one CH, group. But in aNY6 it is
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Table II. Calculated and observed modes of aNY6

Cal. Obs. Freq. Assignment (% PED), § =0 Cal. Obs. Freq. Assignment (% PED), § = n

freq. IR* Raman® INS® IR* Raman® INS®

2936 2932° 2930° — u(Ce-H)(58) + v(C-H)(40) 2936 2932 29308 — w(Ce-H)(58) + v(C-H)(40)

2933 2932 2930° — u(C-H)(66) + v(Ce-H)(26) + v(C,-H)(8) 2933 2932% 29308 — w(C-H)(66) + v(Ce-H)(26) + v(C,-H)(8)

2928 2932° 2930° — v(C-H)(65) + v(C,-H)(24) + v(Ce-H)(10) 2928 2932° 2930° — w(C-H)(65) + v(C,-H)(24) + v(Ce-H)(10)

2924 29328 2930° — w(C,-H)(48) + v(C-H)(47) 2924 2932%  2930° —  v(C,y-H)(48) 4+ v(C-H)(47)

2922 2932 2930° — uw(C-H)(79) + v(C,-H)(18) 2022 29328 29308 — w(C-H)(79) + v(C,-H)(18)

2863 2864° 2855 — u(C-H)97 2863 2864° 2855 — w(C-H)(97)

2860 2864° 2855° — w(C-H)(91) + w(C,-H)(7) 2860 2864° 2855 — w(C-H)(91) + v(Cy-H)(7)

2857 2864° 2855 — v(C-H)(87) + w(Cy-H)(7) 2857 2864% 2855° —  w(C-H)(87) + v(Cy-H)(7) + v(Ce-H)(5)

2854 2864° 2855% v(C,-H)(83) + v(C-H)(16) 2854 2864° 2855 — w(C,-H)(83) + v(C-H)(17)

2852 2864° 2855° — w(Ce-H)(92) + v(C-H)(8) 2852 2864° 2855 — w(Ce-H)(93) + v(C-H)(7)

1482 1486° 1480° — @(H-C-H)(76) + ¢(H-C-C)(11) + 1482 1486° 1480° — @(H-C-H)(76) + ¢(H-C-C)(11) +
©(C2-C3-H)(6) @(C2-C3-H)(6)

1474 1476° 1480° — @(H-C-H)(72) + ¢(H-C-C)(9) 1474 1476° 1480° — @(H-C-H)(70) + ¢(H-C-C)(10)

1464 1458 1468° — @(H-C-H)(66) + ¢(H-C-H)(6) + 1463 1458 1468° — @(H-C-H)(70) + ¢(C,-C3-H)(7) +
©(C2-C3-H)(7) + ¢(H-C-C)(6) (H-C-C)(6)

1459 1458 1468° — @(H-C,-H)(66) + ¢(H-C-H)(11) + 1459 1458° 1468° — @(H-C,-H)(68) + ¢(H-C-H)(9) +
@(H-C2-C3)(7) + ¢(C-Co-H)(7) ©(H-C2-C3)(7) + ¢(C-C2-H)(7)

1451 1448 1443° — @(H-C¢-H)(64) + o(H-C-N)(12) + 1451 14485 1443° — @(H-C4-H)(64) + @(H-C-N)(12) +
©(Cs-Co-H)(6) + (H-C-H)(6) #(Cs-Cs-H)(6) + p(H-C-H)(5)

1393 1393° 1395% — @(H-C-C)(27) + v(C;3-C4)(22) + 1394 1393% 1395% — @(H-C-C)(26) + v(C;3-C4)(20) +
W(Cs-Ce)(14) + p(H-C5-Co)(13) + V(Cs-Co)(15) + (H-Cs5-Co)(13) +
©(C2-C3-H)(10) + (H-C-N)(7) ¢(C2-C3-H)(9) + ¢(H-C-N)(8)

1364 1373™ 1377° — @(H-C-C)(19) + v(C,-C3)(17) + 1371 1373%  1377° —  @(H-C-C)(18) + ¢(C,-C3-H)(18) +
©(C2-C3-H)(16) + v(C1-C2)(9) + w(C3-Cy) + V(C2-C3)(16) + 1(C3-Cy)(10) + v(C;-C2)(10) +
(7)) + oH-Co-C5)(7) + (C-C2-H)(7) e(H-C2-C3)(7) + ¢(C,-C2-H)(6)

1346 13408 1342h — v(C;-Cy)(16) + ¢(H-C-N)(11) + 1326 1340° 1342 — w(C;-Cy)(16) + ¢(H-C-C)(10) +
©(C2-C3-H)(10) + ¢(H-C-C)(9) + (Cs-Ce-H)(10) + ¢(C2-C3-H)(8) +
W(C3-Ca)(7) + 9(Cs-Co-H)(T) + e(H-C-N)(8) + v(C=0)(6) + v(C5-Ce)(5) +
©(Ce-N-H)(6) @(C1-C2-H)(S) + p(H-C2-C5)(5)

1259 1264 1261° — @H-C-C)(31) + ¢(H-Cs5-Cg)(18) + 1255 1264° 12615 — @(H-C-C)(27) + ¢(C,-C3-H)(17) +
©(C2-C3-H)(17) + ¢(H-C-N)(8) + o(H-Cs5-Co)(13) + (H-C-N)(11) +
@(Cs-Cs-H)(6) @(Cs-Ce-H)(10) + v(N-C;)(6)

1236 1239°% 1237° — @(H-C-N)(55) + ¢(Cs-C¢-H)(21) + 1236 1239 1237° — @(H-C-N)(55) + ¢(Cs-Cs-H)(21) +
@(H-C-C)(13) o(H-C-C)(13)

1210 1210™ 1205™ —  ¢(C;-C,-H)(23) + ¢(H-C,-C3)(20) + 1212 1210™ 1205™ —  @(C;-Cy-H)(23) + ¢(H-C,-C3)(21) +
o(H-C-C)(17) + ¢(C,-C5-H)(16) + e(H-C-C)(16) + ¢(C>-C5-H)(14) +
v(N-Cy)(11) v(N-Cy)(11)

1191 1200™ 1200™ — @(H-C-C)(34) + ¢(H-Cs5-C¢)(27) + 1192 1200™ 1200 — @(H-C-C)(35) + ¢(H-Cs-C4)(27) +
©(C2-C3-H)(26) + ¢(Cs-Co-H)(7) ©(C2-C3-H)(26) + ¢(Cs-Ce-H)(6)

1172 1173% 1168™ — @H-C-C)(51) + ¢(C,-C3-H)(37) + 1172 1173% 1168™ — @H-C-C)(51) + ¢(C,-C3-H)(38) +

@(H-C-N)(6)

@(H-C-N)(6)

sandwiched between five CH, groups.

Amide A band arising from N-H stretching is char-
acteristic of its functional group. This mode is highly
sensitive to the strength of N-H..-O=C hydrogen
bonding. We have calculated Amide A frequency at
3301cm™! corresponding to the observed peak at
3300cm™~! in IR\Raman.>®

Amide I mode has significant contribution of C=0
and C-N stretches. This localized mode is calculated
at 1648 cm™! corresponding to the observed band at
1647 cm™! in Raman.’ This mode reflects the hydro-
gen bond strength due to the presence of C=0 stretch
contributions. Its value plays a decisive role to identi-
fy backbone conformation.
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Continued on next page.

Amide II is predominantly a N-H in plane bending
mode. It is calculated at 1554cm™! and assigned to
the peak observed at 1551 cm~! in Raman.>®

Amide III is a combination of N-H in plane bend
and C-N stretch as in amide II but in opposite phase.
This mode has been calculated at 1286cm =" at § = 0
and assigned to the peak observed at 1289\1280 cm™!
in FTIR!'?\Raman.?

Amide IV vibration is associated with the in plane
bending of C=0 band. This mode is calculated at
722cm~! and observed at the peak appearing at
734cm~! in INS.' This mode is quite sensitive to
molecular geometry.

Amide V and Amide VI are mainly asymmetric out

Polym. J., Vol. 39, No. 4, 2007
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Continued.

Cal. Obs. Freq. Assignment (% PED), 6 =0 Cal. Obs. Freq. Assignment (% PED), 6 = n

freq. IR* Raman® INS¢ IR* Raman® INS®

1154 1162™ 1168™ —  @(H-C-C)(45) + ¢(C,-C3-H)(26) + 1153 1162™ 1168™ @(H-C-C)(45) + ¢(C,-C3-H)(26) +
©(H-Cs5-Ce)(15) @(H-C5-Co)(16)

1114 1121™  1123° —  @(H-C5-C3)(44) + ¢(C,-C,-H)(42) + 1114 1121™  1123¢ —  @(H-C,-C3)(44) + ¢(C{-Co-H)(42) +
©(C2-C3-H)(6) @(C2-C3-H)(6)

1070  1067° 1076 —  1(Ce-N)(32) + v(C5-Cy)(14) + 1054 1067 1076° —  W(C3-Cy)(24) + v(Cy-C3)(21) 4+ W(Ce-N)(11) +
V(C2-C3)(13) 9(Ca-C3-C4)(8) + 9(C3-C4-Cs)(8) +

@(C1-Ca-C3)(6) + ¢(C4-Cs5-Co)(5)

1028 1028° — —  1(Ce-N)(43) + v(C2-C3)(12) + 1047 1028° — —  W(C¢-N)(62) + v(C,-C3)(6)
V(Cs5-Cs)(12) + 1(C3-C4)(8)

1003 — 1001 —  W(C5-C6)(30) + v(C3-Cy)(18) + 1004 1001% V(C5-Cg)(49) + 1(C3-C4)(16) + ¢(Cs5-Co-H)(7)
V(C2-C3)(9) + ¢(Cs5-Co-H)(6) +
@(Cs5-C6-N)(6) + ¢(C4-C5-Cg)(5)

987  980™ 989™ —  @(H-C-C)(27) 4+ ¢(C,-C3-H)(26) + 981 980™ 989™ —  @(H-C-C)(28) + ¢(C,-C3-H)(28) +
©(H-Cs5-Co)(14) + o(Cs-Co-H)(11) + (H-C5-Co)(15) + ¢(Cs5-Co-H)(10) +
@(H-C-N)(9) + ¢(C-C,-H)(6) @(H-C-N)(10) + ¢(C;-C,-H)(7)

982  973™ 980™ —  1(C3-Cy)(48) + v(Cs-Ce)(15) + 979  973™ 980™ —  W(C3-C4)(52) + v(C,-C5)(10) +
9(H-C-C)(9) + v(C2-C3)(5) V(Cs-C)(10) + (H-C-C)(10)

949  955™ 955% —  W(C3-Cy)(41) + v(Cyr-C3)(17) + 947  955™ 955% —  W(C3-Cy)(44) + v(Cy-C3)(12) + v(C-Cp)(12) +
©(C2-C3-H)(8) + w(C5-Co)(8) + ©(C2-C3-H)(7) + ¢(H-C-C)(7)

V(Ci-Co)(7) + o(H-C-C)(6)

929  927° 930™  934° v(C;-C1)(30) + v(C3-Cy4)(18) + 938  927° 930™ 934  w(C;-Cy)(25) + 1(C3-Cy)(12) + v(C=0)(11) +
v(C=0)(12) + v(N-C;)(8) + @(C1-Co-H)(8) + v(N-C1)(7) + v(C2-C3)(6) +
¢(C1-Co-H)(6) o(H-C5-G5)(5)

897  887* 898Y —  @(H-C-O)(31) + ¢(Cs-C6-H)(18) + 912  887* 398" —  @(H-C-C)(27) + ¢(Cs5-Cs-H)(19) +
©(C-C2-H)(14) + (H-C-N)(12) + @(C1-Co-H)(12) + ¢(H-C-C3)(11) +
©(C2-C3-H)(10) + (H-C,-C5)(9) 9(H-C-N)(9) + ¢(C2-C3-H)(9) + o(C=0)(7)

837  834° 835% —  @H-C-O)(31) + ¢(Cs-Cc-H)(18) + 827  834° 835V —  9(Cs5-C¢-H)(31) + ¢(H-Cs-C4)(23) +
@(C1-Cy-H)(14) + ¢(H-C-N)(12) + 7(C5-Ce)(11) 4+ ¢(H-C-C)(10) + ¢(H-C-N)(8)
©(C2-C3-H)(10) + (H-C2-C5)(9)

806 — — 814*  @(H-C-C)(34) + ¢(C,-C3-H)(13) + 802 — — 814°  @(H-C-C)(38) + ¢(C,-C3-H)(19) +
9(H-C5-Co)(11) + t(Cs-C6)(9) + e(H-C5-C5)(13) + ¢(C1-Co-H)(8) +
9(H-C2-C5)(8) + t(C4-C5)(8) (Cy-Cs)(7)

749  736° 743°  743%  ¢(Cy-C3-H)(34) + ¢(H-C-C)(28) + 753 736° 7435 T736°  @(Cy-C3-H)(34) + ¢(H-C-C)(27) +
o(H-C,-C5)(13) ¢(H-C5-C5)(12) + o(C=0)(7) +

w(N-H)(6)

531  523™ — 524%  @(C3-C4-Cs)(18) + ¢(C4-Cs5-Cg)(17) + 504 523™ — 5245 o(N-C;-Cy)(18) + ¢(Cy-C3-Cy)(16) +
@(N-C;-Co)(15) + ¢(C1-C2-C3)(8) + @(Cs-Ce-N)(13) + ¢(C4-C5-Co)(11) +
©(O=C;-Co)(7) + o(C-N-C)(7) 9(0=C;-C2)(9) + ¢(C5-C4-C5)(9)

431 429™ — 4355 @(Cy-C3-C4)(26) + ¢(C4-Cs5-C)(18) + 424 429™ — 4355 D(C3-C4-Cs)(25) + ¢(C4-Cs5-Co)(21) +
9(Cs-Ce-N)(17) + ¢(C3-C4-Cs5)(12) + 9(0=C;-C2)(9) + ¢(N-C=0)(9) +
(H-C-C)(6) @(C1-C2-G3)(8) + ¢(C-N-C)(7)

Note: 1. ?Ref. 5, 6, 11, 12, PRef. 7, 8, 12, Ref 9, 10.

2. All freq. are in cm™'.

3. s = strong, sh = shoulder = medium, w = weak.

of plane wag of N-H and C=O bonds respectively.
These vibrational modes are calculated at 698 cm™!
and 584 cm~! respectively corresponding to the ob-
served peaks at 701 and 580 cm~! in INS spectra.'®
A comparison of aNY6 and polyethylene shows
that the dispersive behaviour of normal modes in
aNY6 should resemble those in PE. The perturbation
caused by the Amide groups cannot totally delocalize
the modes and hence they should continue to display
in dispersion. The perturbation would affect most
(C-N) torsion because both (C-C) torsion (C-N) will
get mixed up. This is what happen to the potential
energy distribution. The mode at 217 cm~! is a mix-
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ture of 7 (Cs5-Cg)(60)% + v (N-C)(14)% + 1 (C4-
Cs5)(8)% + ¢ (C-C-C)(5)%.

As for the vibrations of the amide groups, in S-poly
(L-Ornithine),”* B-poly (O-Acetyl, L-Serine),** pg-
polyglycine 1?2 and poly (L-Serine)® the amide modes
of all these polymers are in the same wave number
range. The minor differences are because of the num-
ber of intervening CH, groups that affect the long
range interaction.

Methylene Modes
The aNY6 molecule has five methylene groups that
are flanked by the rigid amide groups. This linear
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Table III. Amide modes of aNY6
Mode Freq Obs. Freq. Potential Energy Freq Obs. Freq. Potential Energy
(Calc.) [R* Raman® INS¢ Distribution at § =0 (Calc.) IR* Raman® INS¢ Distribution at § =

Amide A 3301 3300 3300 —  v(N-H)(99) 3301 3300 3300 —  v(N-H)(99)

Amide I 1648 1646 1635 —  v(C=0)(57) + v(N-C})(24) 1648 1646 1635 —  v(C=0)(57) + v(N-C)(24)

Amide IT 1554 1556 1543 —  @(H-N-C))(36) + 1554 1556 1543 —  @(H-N-C1)(35) + ¢(Cs-N-H)
@(Ce-N-H)(26) + v(N-C;)(21) (26) + v(N-C;)(21)

Amide IIT 1286 1280 1280 —  ¢(Cs5-Co-H)(19) + ¢(H-C-N) 1300 1280 1280 —  @(H-C-C)(19) + ¢(H-C-N)
(19) + (H-C-C)(13) + (18) + ¢(Cs-Co-H)(14) +
©(C2-C3-H)(10) + v(C=0)(7) ©(C2-C5-H)(12) + v(N-C1)(5)
+ v(N-C)(7)

Amide IV 722 736 — 725 9(0=C;-C2)(23) + ¢(N-C=0) 728 736 — 725  @(0=C;-C;)(20) +
+ w(Ci-C2)(12) + ¢(Ci-Co-C3) ©(N-C=0)(19) + v(C-C2)(13)
(11) + w(Cs-N)(6) + ¢(C-N-C)(6) + (C-Co-C5)(12) +

@(C-N-C)(7)

Amide V 698 693 — 701  w(N-H)(57) + ¢(C;-C2-H)(9) + 698 693 — 701 o(N-H)(57) + ¢(C;-C2-H)(9) +
T(N-C(8) + o(C=0)(8) + o(C=0)(8) + t(N-C{)(8) +
@(H-C>-C3)(6) @(H-C,-C3)(6)

Amide VI 584 580 — 580 w(C=0)(56) + w(N-H)(12) + 584 580 — 580  w(C=0)(55) + w(N-H)(12) +
7(C-C2)(10) + T(N-C1)(8) + 7(C1-C2)(10) + =(N-C)(8) +
#(Ci-Co-H)(6) #(C1-C2-H)(6)

Amide VII 222 220 — 218  1(Cs5-Cg)(60) + ©(N-Cy)(14) + 232 220 — 218  1(C5-C6)(53) 4+ t(N-Cy)(15) +

7(C4-Cs)(8) + p(H-C-C)(5)

7(C3-Cy)(7) + ©(C4-C5)7)

Note: 1. %Ref. 5, 6, 11, 12, PRef. 7, 8, 12, °Ref 10.

2. All freq. are in cm™!.

Table IV. Comparison of Amide modes of aNY6 (a-form) with other B-sheet polypeptides
Nylon-6 B-PLO B-PALS B-PG1 B-PLS
Modes §=0 d=m 8=0 b=m =0 é=7x 66=0 6= 66=0 éS=m
Amide A 3301 3301 3286 3286 3303 3303 3274 3274 3318 3318
Amide [ 1648 1648 1649 1645 1640 1637 1642 1634 1637 1628
Amide II 1554 1554 1533 1528 1521 1517 1520 1520 1532 1537
Amide IIT 1286 1299 1275 1228 1229 1217 1306 1287 1249 1270
Amide IV 722 729 510 — 600 — 630 711 533 773
Amide V 698 699 702 705 695 718 720 745 713 685
Amide VI 584 584 594 547 4438 515 570 634 533 647

Note: All frequencies are in cm™!.

PLO = Poly(L-Ornithine).??

PALS = Poly(O-Acetyl, L-Serine).?*
PG1 = Polyglycine 1.7

PLS = Poly(L-Serine).?

chain of CH; groups has selection rules different from
those for an infinite chain. They are related to the dis-
persion of a given normal mode of an infinite chain
and the absorption/scattering occurs at the phase val-
ues given by the following relation

§=kr/(m+1) (10)

Where m denotes the number of CH, groups in the
linear chain linkage and k = 1,2...5. Thus the al-
lowed & for a given mode, would give rise to wave
numbers on the corresponding dispersion curve for
an infinite system which is polyethylene (PE)?¢ in this
case. The wave numbers thus obtained are given in
Table IV. The calculated CH, group frequencies of
aNY6 are in good agreement with those calculated

364

from the dispersion curves of PE. Small deviations
arise because of the intra and inter chain interactions
of CH; group with the amide group in aNY6.

The skeletal structure of «NY6 consists of the five-
methylene groups, which are flanked by amide group
at both the ends. Because of such anchoring, a com-
parison of the wave numbers obtained from the dis-
persion curves of PE, corresponding to phase values
given by eq 1 is in order in case of CH, group modes
except for the skeletal modes. These modes in poly-
ethylene mostly consist of coupled motions of ¢(C-
C-C) and t(C-C) and are spread over the entire chain.
In PE, these modes are acoustical in nature whereas in
aNY6, the skeletal modes of (-CH,-)s fragments are
optical in nature and thus a comparison would not be

Polym. J., Vol. 39, No. 4, 2007
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in order. Similar phenomena have been observed in
PCL.!” The origin of such optical phonon is explained
by the splitting of the longitudinal acoustic phonon
band of PE chain into several optical bands due to a
periodic perturbation (the presence of the heavier
amide groups-NHCO). It is similar to the role played
by the (-COO-) end groups in PCL [-(CH;)s-COO-].
The CH; group modes are in order and in agreement
with the modes sequence of CH, groups of PCL
(Table V). Because of more or less identical situa-
tions, the agreement of the CH, segmental and others
modes with PCL is almost total.

Dispersion Curves

Dispersion curves and frequency distribution func-
tion are important for an understanding of thermody-
namical and elastic properties of solids. Besides pro-
viding knowledge of density-of-states, dispersion
curves give information on the extent of the coupling
of a mode along the chain in the ordered state. Also a
study of these is necessary to appreciate the origin of
both symmetry independent and symmetry dependent
spectral features. The dispersion curves and the corre-
sponding density of states of «aNY6 below 400cm™!
are shown in Figure 2(a) and 2(b). The lower two
branches (v =0 at § = 0 & § = m) correspond to four
acoustic modes. Two of them are at the zone center
and two are at the zone boundary. They represent
three translations (one parallel and two perpendicular
to the axis) and one free rotation about the chain axis.

The mode calculated at 357 cm™! observed at 354
cm™! (INS studies)'” at § = 0 disperses by 44 wave
numbers and thus it is calculated at 313cm ™' at § = 7
and observed at 295 cm™!. This mode has prominent
contributions from angle bends ¢ (Cs-Cg-N), ¢ (N-
C1-Cy) & ¢ (C3-C4-Cs). But beyond § = 0.70m, the
contribution of ¢ (C3-C4-Cs) dominates. The wave
number of the mode calculated at 2900cm™! at zone
center decreases to 229 cm ™! at § = 0.75x. This mode
involves mainly (C-C-C) bending, (C-N-C) bending
and (C=O0) in plane bending. As the value of § in-
creases, the contribution of (C=0) in plane bending
decreases and at the zone boundary this mode appears
at 252cm™! [p (Cs5-Ce-N) (28)% + ¢ (Cr-C3-Cy)
(21)%]. The modes calculated at 148 and 107 cm™!
are pure torsional mode at § = 0 these modes disperse
by 42 & 18 wave numbers respectively at the zone
boundary. The vibrational mode calculated at 57 cm™!
at 6 =0 is in plane deformation mode with PED
[p (C1-Co-C3) + ¢ (C2-C3-Cy) + ¢ (C3-C4-Cs) + ¢
(C4-C5-Cg)]. It is a highly disperssive mode and
reaches 195 cm™! at the zone boundary. It is assigned
to the observed frequency at 195cm™! in IR spectra.’
In its journey from the zone center towards zone
boundary it crosses three torsional modes (107, 148 &

Polym. J., Vol. 39, No. 4, 2007

Table V. Comparison of CH, modes of «NY6 with PCL

Calculated by aNY6 Freq
Modes selection rule from Freq Freq (PCL)"
PE° dispersion curves (calc.) (obs.)¢
2936 2930
CH; 2933 2930
asymmetric 2919* 2938 2930 2916
stretch 2924 2930
2922 2930
2863 2855
CH, 2860 2855
symmetric  2848* 2857 2855 2866
stretch 2854 2855
2852 2855
CH, 1482 1486
scissoring 1473 1476 1470
1473 1464 1458 1439
1440 1459 1458
1451 1448
CH, wag 1390 1393 1393 1400
1360 1364 1364 1367
1310 1346 1340 1340
1260 1259 1264 1303
1210 1210 1210 1195
CH; twist 1300 — 1289 1303
1280 1287 1239 1280
1247 1236 1199 1240
1195 1191 1168 1195
— 1171,1153 1123 1170
— 1114 — —
CH; rock 1005 987 955 —
935 897 887 930
835 837 842 835
770 806 814 770
740 749 734 734
C-C stretch 1069 1071 1076 1107
1040 1027 1028 1063
1040 1002 1001 1033
1010 981 980 956
995 950 955 912
490 531 524 523
C-C-C 420 431 435 451
bend 290 357 354 370
240 290 290 315
60 57 — 260
C-C 178 175 173 215
torsion 165 148 141 197
110 107 — 172
90 30 — 110
30 22 24 —

Note: 1. All frequencies are in cm™'.

2. * marked frequencies are observed in the spectra of poly-
ethylene.
3. PRef. 17, Ref. 26, ‘Ref. 5-12.

175cm™! calculated at § = 0) at § = 0.341x, 0.4527
& 0.6127 respectively. Similar phenomenon is ob-
served for another in plane deformation vibrational
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mode calculated at 50cm~! at § = 0 with the excep-

tion that the mode initially decreases by 7 wave num-
ber till § = 0.107. It rises again and crosses the two
torsional mode (107cm~! and 148cm™! calculated
at § = 0) at § = 0.4267 and § = 0.6127 respectively.

When the approaching modes belong to different
symmetry species then they can crossover. Since
aNY6 has a mirror plane of symmetry along the chain
axis, hence crossings are permissible. All such modes
showing crossover are given in Table VI, along with
the PED and the § values at witch these features occur.
Further since the PED of these two modes remains the
same before and after intersection, it confirms that
they do not repel.

The intersection of the acoustic and lowest optical
modes at § = 0.0727 § = 0.1137 can be similarly in-
terpreted as two collisions in the (g, p) space. A sim-
ilar feature is observed in the case of PCL. The disper-
sive behaviour of «NY6 is almost the same as in PCL

in the low frequency region (0-300) cm™!.

Frequency Distribution Function and Heat Capacity
A study of dispersion curves provides us with an

understanding of the origin of both symmetry depend-
ent and symmetry independent spectral features. The
profiles of these curves also assist in determining the
thermodynamic behaviour of the polymer. We have
calculated the heat capacity of «NY6 in the tempera-
ture range (70-310K) (Figure 3) using density-of-
states via dispersion curves using Debye’s formalism.
The calculated frequency distribution function (densi-
ty-of-states) as a function of frequency is shown in
Figure 2(b). The flat region in the frequency distribu-
tion curves correspond to regions of high density-of-
state (Von Hove type singularities), These peaks de-
note the observed frequencies. The calculated heat ca-
pacity data is shown to be in good agreement with the
experimental measurements as obtained from the
ATHAS data bank 199327 updated.

As our calculations have been made for an isolated
molecular chain, the interpretation of IR\Raman spec-
tra and theoretical calculations are subject to certain
limitations. A complete interpretation of the spectra
requires calculations for a three dimensional system
where interactions play an important role. Special
mention may be made of interactions between the

Table VI. Crossing between the pair of modes of aNY6

Bfriqb 8w 8w freq. P.E.D before crossing 8/m freq. P.E.D after crossing

290 0792 0.75 231 1(Cs-C6)(53) + ©(N-C)(15) + ©(C4-Cs)(7) + 0.80 232 ¢(Cs-Cs-N)(6) + ¢(C3-C3-C4)(21) + ¢(C-N-C)(9) +
©(C3-Ca)(7) U(C3-C4)(8) + ¢(C-C,-C3)(6)

222 0.792 0.75 229 @(Cs-Ce-N)(21) + ¢(C5-C3-C4)(17) + ¢(C-N-C)(12) 0.80 231 7(Cs5-C)(53) + ©(N-Cy)(15) + ©(Cs-Cs)(7) +

+ 9(C1-Co-C3)(11) + (C3-C4-Cs)(6) + v(C3-C4)(5)

(C3-C)(7)

290 0.709 0.70 236 @(C;-C2-C3)(16) + ¢(C-N-C)(14) + ¢(C5-Ce-N)(12)  0.75 231  7(Cs-C)(53) + t(N-C;)(15) + 7(C4-Cs)(7) +
+ 9(C2-C3-C4)(9) + 9(C3-C4-C5)(9) + (C3-C)(7)
9(C4-Cs5-Ce)(8)
222 0.709 0.70 230 t(C5-Cg)(54) + t(N-C{)(15) + t(C4-Cs5)(7) + 0.75 229 ¢(Cs5-C¢-N)(21) + ¢(Cp-C3-C4)(17) + (C-N-C)(12) +
7(C3-Cy)(6) 9(C1-Co-C3)(11) + ¢(C3-C4-Cs)(6) + v(C3-Cy)(5)
175 0.612 0.60 177 1(C4-Cs5)(50) + (Co-N)(18) + 7(C{-C1)(8) + 0.65 186  ¢(C4-C5-Cg)(13) + ¢(Cy-C3-C4)(10) 4+ ¢(Cs5-C4-N)(10)
(C5-C4)(8) + ©(Co-G3)(7) + U(C5-C4)(8) + p(C3-C4-Cs5)(7) + ¢(Ci-C2-C3)(7) +
U(Ce-N)(7) + p(N-C1-C2)(6) + ¢(O=C;-C2)(5)
57 0.612 0.60 174 @(C4-Cs5-Cg)(12) 4+ ¢(Cy-C3-Cy)(11) + 0.65 177  t©(C4-Cs5)(50) + 1(Ce-N)(18) + (C;-C1)(9) +
9(C5-C-N)(11) + v(C3-C4)(9) + v(Ce-N)(7) + (C3-C)(B) + (Ca-C3)(7)
9(C3-C4-Cs)(6) + ¢(C1-Co-C3)(6) + ¢(N-C1-C2)(6)
+ v(C-Co)(5)
148 0.612 0.60 126 w(C5-C4)(24) 4+ ©(C1-Cy)(21) + T(N-Cy)(15) + 0.65 130 @(C-C3-C3)(16) + ¢(C-N-C)(13) + ¢(C3-C4-Cs)(12) +
7(C2-C3)(12) + 7(Cs-Ce)(10) #(Cs-C6-N)(12) + ¢(C2-C3-C4)(11) + ¢(C4-Cs-Ce)(8)
50 0.612 0.60 124 ¢(C;-C5-C3)(16) + ¢(C-N-C)(13) + 0.65 122 1(C3-C4)(23) + 1(C1-C)(21) + ©(N-Cy)(14) +
@(C3-C4-Cs)(12) + ¢(Cs5-Co-N)(12) + 7(C2-C5)(13) + 7(Cs-Co)(11)
@(Cy-C3-Cy)(11) + ¢(C4-C5-Ce)(8)
148 0.452 045 135 t(C3-C4)(29) + 7(C1-C1)(22) + t(N-Cy)(15) + 0.50 147  @(Cy-C3-Cy)(13) + ¢(C5-C6-N)(12) +
(C2-C3)(10) + ©(Cs-Co)(7) 9(C4-C5-Ce)(12) + v(C3-C4)(9) +
U(Ce-N)(7) + v(C1-C2)(6) + 9(C3-C4-C5)(5) +
®(N-C-C2)(5) + ¢(C1-Ca-C3)(5)
57 0.452 045 134 @(Cy-C3-Cy)(13) + ¢(Cs-Ce-N)(12) + 0.50 132 7(C5-C4)(27) 4+ ©(C;-C5)(22) + t(N-Cy)(15) +
9(C4-C5-C6)(12) + U(C5-C4)(9) + v(Co-N)(7) + 7(C2-C3)(11) + 7(Cs-Co)(8)
U(Ci-C2)(6) + ¢(N-C1-C2)(5) + ¢(C3-C4-Cs)(5)
107 0426 040 102 t(Ce-N)(35) + t(C12-C3)(29) + t(C;-Cy)(16) + 0.45 104 o(C;-Co-C3)(17) + ¢(C3-C4-Cs)(13) +
T(N-Cy)(14) 9(C-N-C)(13) + ¢(Cs-Cs-N)(12) +
©(Ca-C3-C4)(10) + ¢(C4-Cs5-Ce)(8)
Continued on next page.
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Continued.
freq. 2 b . b :
5=0 8/ 8 /m freq. P.E.D before crossing 8°/m  freq. P.E.D after crossing
50 0.426 040 98 @(C-C2-C3)(17) + ¢(C3-C4-Cs)(14) + 045 100 t(Ce-N)(35) + t(C2-C3)(29) + ©(C;-Cy)(16) +
@(C-N-C)(13) + ¢(C5-Cs-N)(12) + ©(N-C;)(14)
@(C2-C5-C4)(10) + (C4-Cs5-Co)(8)
107 0.341 030 103 (Ce-N)(35) 4+ 1(C2-C3)(29) + ©(Ci-Co)(17) + 035 106  @(Cy-C3-C4)(17) + ¢(C4-Cs-Co)(13) +
T(N-C)(14) 9(C5-C6-N)(12) + v(C3-C4)(8) + v(Ce-N)(7) +
@(N-C;-C2)(6) + v(Cy-C2)(6)
57 0.341 030 101  @(Cy-C3-Cy)(18) + ¢(C4-Cs5-Ce)(13) + 035 103 t(Ce-N)(35) + t(C2-C3)(29) + ©(C-Co)(17) +
@(C5-Co-N)(12) + v(C3-C)(8) + u(Ce-NX(T) + (N-C)(14)
®(N-C1-Co)(7) + v(Cy-C2)(6)
23 0335 030 24 1(Cy-C3)(26) + ©(Cs-N)(19) + (C4-Cs)(16) + 0.35 23 @(Cs5-Co-N)(17) + ¢(C5-C3-C4)(12) +
T(N-C1)(13) + (C;-C2)(10) + (C5-C4)(8) #(C3-C4-Cs)(11) + ¢(C4-Cs5-Co)(11) +
@(C-N-O)(11) + ¢(C;-Co-C3)(11) + ¢(N-C;-C2)(6)
0 0.335 030 24 @(Cs-Ce-N)(17) 4+ ¢(Cy-C3-C4)(12) + 0.035 25 1(C3-C3)(26) + ©(Ce-N)(19) + t(C4-Cs)(16) +
@(C3-C4-Cs5)(11) + 9(C4-C5-Co)(11) + tN-C)(13) + (C;-C)(A1D) + ©(C5-C4)(8)
@(C-N-C)(11) + ¢(C;-C2-C3)(11) + ¢(N-C;-C2)(6)
30 0.176 0.15 38 @(Cs-Ce-N)(25) + ¢(C3-C4-Cs)(12) 4+ (C,-C3-Cy4)(11)  0.20 38  1(C3-C4)(23) + t(N-Cy)(11) 4+ ©(C4-C5)(9) +
+ o(N-C;-C)(8) + ¢(C,-Co-C3)(7) + 7(Ce-N)(8) + 7(C2-C3)(8) + (Ci-C2)(8) +
@(C4-Cs5-Co)(7) + ¢(C-N-C)(7) 7(Cs-Co)(7) + w(N-H)(6) + ¢(H-C-C)(5)
0 0.176 0.15 35 ©(C3-C4)(23) + t(C4-Cs)(10) + t(N-C;)(10) + 7(C¢-N) 0.20 35 @(Cs5-Ce-N)(25) + ¢(C3-C4-Cs)(12) + (C2-C3-Cy)(11)
9) + 1(C2-C3)(8) + (Cs-Co)(8) + (Ci-Co)(7) + + (N-C,-C2)(8) + @(C1-Co-C3)(7) +
o(N-H)(6) + ¢(H-C-C)(6) ©(C4-Cs5-Co)(7) + ¢(C-N-C)(7)
30 0.113 0.10 33 (C3-C4)(23) + (C4-Cs5)(12) + 7(Ce-N)(11) + 0.15 38  @(Cs-Cs-N)(25) + ¢(C3-C4-C5)(12) +
7(C2-C3)(8) + 1(Cs5-Co)(8) + T(N-C1)(8) + 9(C2-C3-Cy)(11) + @(N-C-C)(8) +
@(H-C-C)(6) + w(N-H)(5) @(C1-Co-C3)(7) + ¢(C4-C5-Co)(7) + ¢(C-N-C)(7)
0 0.113 0.10 29 @(Cs-Ce-N)(18) + ¢(C3-C4-Cs)(11) + v(C3-C4)(8) +  0.15 35 1(C3-C4)(23) + 1(C4-C5)(10) + ©(N-C)(10) +
P(C1-Co-C3)(8) + @(Ca-C3-Ca)(7) + v(Cy-C2)(6) + 7(Ce-N)(9) + 7(C2-C5)(8) + 1(Cs5-Co)(8) +
u(Ce-N)(6) 7(C1-C2)(7) + o(N-H)(6) + ¢(H-C-C)(6)
23 0.072 0.05 22 (N-C;)(20) + ©(C;-C2)(18) + (C,-C3)(16) + 0.10 29 @(Cs5-Ce-N)(18) + ¢(C3-C4-Cs)(11) + v(C3-C4)(8) +
(C=0)(10) + o(N-H)(9) + (C-N)(7) 9(C1-C2-C3)(8) + (C2-C5-Ca)(7) + v(Ci-Co)(6) +
u(Cs-N)(6)
0 0.072 0.05 15 @(Cs-Ce-N)(15) + ¢(C3-C4-Cs5)(10) + ¢(C-C»-C3)(9)  0.10 21 ©(N-C))(18) + t(Cy-C3)(17) + t(C-Cp)(14) +
+ U(C3-C4)(9) + @(Co-C3-C4)(T) + v(Cy-C2)(6) + 7(C6-N)(9) + w(N-H)(9) + «(C=0)(8) +
u(Co-N)(6) + p(C4-Cs-Co)(6) 7(C3-C4)(6) + ©(C4-C5)(5)
Note: 1. * marked 8§ corresponds to crossing point.

2. ® marked 8 corresponds to points before/after crossing.
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Figure 3. Variation of heat capacity of «NY6 as a function of temperature. [Theoretical values (—) and experimental data (@)]
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neighbouring amide groups. This can be treated on the
basis of perturbation theory using the ‘intramolecular
interactions’?® between the adjacent peptide groups in
the same chain and similar interchain peptide interac-
tions in the neighbouring chains. As a consequence of
these interactions the separation of v (0,7) and v
(,0) modes is not very large. It is approximately
20-25 wave numbers. These crystal field splittings
do not have significant change on dispersion profiles.
Intermolecular interactions are important in another
way. They give rise to low frequency lattice modes
which have to be considered in the evaluation of heat
capacity. This would involve calculation of the disper-
sion curves for a three-dimensional unit cell. The 3D
system can be treated in an analogous manner. Even
for this the calculation for an isolated chain are very
important. Apart from lattice modes, the heat capacity
is also very sensitive to skeletal and torsional modes
which have been considered in the present work. Con-
sideration of 3D problem would increase the dimen-
sionality of the problem manifold and would also ren-
der the visualization of the force field very difficult. In
spite of the above unavoidable limitations, the present
work using the isolated chain provides a good deal of
information on the vibrational dynamics of aNY6.
These studies may also prove useful for study of other
Nylon derivatives.

CONCLUSION

All the characteristic features of the dispersion
curves such as region of high density of states, cross-
ing between the various pairs of modes have been well
interpreted from the vibrationl dynamics of Nylon-6
(eNY6). In addition the heat capacity as a function
of temperature in the region 70 to 310K is in good
agreement with the experimental data.
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