# Normal Modes and Their Dispersion in $\alpha$ Form of Nylon-6 ( $\alpha$ NY6) 

Sandeep Kumar Shukla, Naresh Kumar, Abhishek Kumar Mishra, Poonam TANDON ${ }^{\dagger}$, and Vishwambhar Dayal Gupta

Physics Department, Lucknow University, Lucknow 226 007, India
(Received August 28, 2006; Accepted January 12, 2007; Published March 5, 2007)


#### Abstract

Nylon-6 [-( $\left.\left.\mathrm{CH}_{2}\right)_{5}-\mathrm{NHCO}-\right]_{\mathrm{n}}(\alpha \mathrm{NY} 6)$ is a synthetic polymer widely used in industrial applications. It has a planar zigzag conformation. A comprehensive study of the normal modes and their dispersion in $\alpha$ NY6 using Urey Bradley force field is being reported. Crossing between the various pairs of modes of dispersion curves have been explained as arising due to internal symmetry in the energy momentum space. The heat capacity derived from the dispersion curves via the density-of-states, is in good agreement with the experimental measurements obtained from the Athas data bank. [doi:10.1295/polymj.PJ2006103]

KEY WORDS Nylon-6 / $\alpha$-Form / Phonon Dispersion / Heat Capacity / Density-of-States /


The word Nylon has been accepted as generic term for synthetic polyamides, Nylon-6 $\left[-\left(\mathrm{CH}_{2}\right)_{5}-\mathrm{NHCO}-\right]_{\mathrm{n}}$ is one of the most important members of this family. It is highly useful for industrial applications because of its high tensile and impact strength, firm stability at high temperature, good abrasion resistance and selflubricating properties. It also retains both tough and flexible at low temperatures. Commercially it can be processed by conventional processing methods such as injection molding, extrusion blow molding, and special grade of Nylon-6 are available for rotational molding and thermoforming.

Nylon-6 crystallizes in two different forms namely $\alpha$ and $\gamma$ forms. ${ }^{1,2}$ Thermodynamically stable $\alpha$ form takes on planar zigzag conformation and the molecular chains are arranged in sheets by means of hydrogen bonding between antiparallel chains, while the $\gamma$ form takes a helical symmetry with the secondary amide group at $66^{\circ}$ with respect to the plane of $\mathrm{CH}_{2}$ zigzag and sheets of parallel chains are joined by hydrogen bonds. In both the forms the neighbouring chains are arranged in sheets of parallel but oppositely directed molecules. Lattice parameters along the polymer axis are slightly shorter $(b=16.88 \AA)^{2}$ in the $\gamma$ form as comparison to that of the $\alpha$ form $(b=17.24 \AA) .{ }^{1}$

Vibrational spectroscopy plays an important role in the elucidation of polymeric structure. Normal mode analysis besides identification of various modes provides an insight into Infrared absorption (IR), Raman spectra and Inelastic Neutron Scattering (INS). An overall understanding of vibrational dynamics in a polymer involves calculation of the dispersion curves. These curves provide knowledge of degree of uninterrupted sequence lengths in an ordered conformation. The dispersion curves also facilitate correlation of
the microscopic behaviour of the long chain molecule with the macroscopic properties such as entropy, enthalpy, specific heat etc.

We present here a complete normal mode analysis of $\alpha$ NY6 with phonon dispersion in the first Brillouin Zone using Urey Bradley force field (UBFF). ${ }^{3,4}$ This polymer has been subjected to several spectroscopic studies (IR, Raman and INS) ${ }^{5-12}$ by several workers. Tadokoro et al. ${ }^{11}$ have reported normal mode analysis of $\alpha$ NY 6 considering methylene group as a point mass thereby neglecting the interaction between carbon and hydrogen atoms where as Jakes and Krimm ${ }^{5}$ have used simple valence force field in their normal mode calculations. Our calculations are based on UBFF, which in addition to valence force field accounts for the non-bonded interactions in the gem and cis configuration and the tension terms. In this force field the potential energy expression does not have quadratic cross terms. The force constants are supplemented by the repulsive forces between non-bonded atoms, which simulate the van der Waals force ${ }^{13}$ between them. It gives a better description of intra and inter unit interactions, and arbitrariness in choosing the force constants is reduced, thereby enabling us to arrive at a better unique force field.

## THEORY

## Calculation of Normal Mode Frequencies

Normal mode calculation for a polymeric chain was carried out using Wilson's GF matrix method ${ }^{14}$ as modified by Higgs ${ }^{15}$ for an infinite polymeric chain. The vibrational secular equation to be solved is

$$
\begin{equation*}
|\mathbf{G}(\delta) \mathbf{F}(\delta)-\lambda(\delta) \mathbf{I}|=0 \quad 0 \leq \delta \leq \pi \tag{1}
\end{equation*}
$$

where $\delta$ is the phase difference between the modes of

[^0]adjacent chemical units, $\mathbf{G}(\delta)$ is the inverse kinetic energy matrix and $\mathbf{F}(\delta)$ is the force field matrix for a certain phase value. The wavenumber $\overline{v_{i}}(\delta)$ in $\mathrm{cm}^{-1}$ are related to eigen values by $\lambda_{\mathrm{i}}(\delta)=4 \pi^{2} c^{2}\left[\bar{v}_{i}(\delta)\right]^{2}$.

A plot of $\overline{v_{i}}(\delta)$ versus $\delta$ gives the dispersion curve for the $i$ th mode. The use of the type of force field is generally a matter of one's chemical experience and intuition. ${ }^{16}$ In the present work, we have used Urey-Bradley force field as it is more comprehensive then valence force field. The Urey-Bradley takes into account both bonded and non-bonded interactions as well as internal tensions. Potential energy for this force field can be written as

$$
\begin{align*}
V= & \sum_{m, j, k} K_{j, k}^{\prime} r_{j, k}^{(m)}\left(\Delta r_{j, k}^{(m)}\right)+K_{j, k}\left(\Delta r_{j, k}^{(m)}\right)^{2} / 2 \\
& +\sum_{m, i, j, k} H_{i, j, k}^{\prime} r_{i, j}^{(m)} r_{j, k}^{(m)}\left(\Delta \alpha_{i, j, k}^{(m)}\right) \\
& +H_{i, j, k}^{(m)} r_{j, k}^{(m)}\left(\Delta \alpha_{i, j, k}^{(m)}\right)^{2} / 2 \\
& +\sum_{m, i, j, k} F_{i, k}^{\prime} q_{i, k}^{(m)}\left(\Delta q_{i, k}^{(m)}\right)+F_{i, k}\left(\Delta q_{i, k}^{(m)}\right)^{2} / 2 \\
& +\sum_{j} K_{j}^{\tau}\left(\Delta \tau_{j}\right)^{2}+\sum_{j} K_{j}^{\omega}\left(\Delta \omega_{j}\right)^{2} \tag{2}
\end{align*}
$$

where the symbols have their usual meaning. The primed quantities are introduced as internal tensions. Non-bonded interactions involve attraction and repulsion of atoms due to the overlap of their electron shells. These effects are usually expressed by the 6exp or 6-12 type potentials. The tension terms are assumed to be all zero.

Recently, spectroscopically effective molecular mechanics models have been used for inter and intra molecular interactions consisting of charges, atomic dipoles and van der Waals (non bonded) interactions. ${ }^{13}$

The force constants, including those for the interaction of first and third non-bonded atoms, which give the "best fit", are given in the Table I and have been obtained by least squares fitting. In order to obtain the "best fit" with the observed wave numbers the following procedure is adopted.

Force constants were initially transferred from the molecules ( $\mathrm{PCL}^{17}$ and $\beta$ poly (L-valine) ${ }^{18}$ in the present case) having similar groups placed in the similar environment. Thus starting with the approximate F matrix $\mathrm{F}_{\mathrm{o}}$ and observed frequencies $\lambda_{\text {obs }}$ (related through a constant), one can solve the secular matrix equation:

$$
\begin{equation*}
\mathbf{G F}_{0} \mathbf{L}_{0}=\mathbf{L}_{0} \lambda_{0} \tag{3}
\end{equation*}
$$

Let $\Delta \lambda_{\mathrm{i}}=\lambda_{\mathrm{i}_{\text {obs }}}-\lambda_{\mathrm{i}_{0}}$ in the above equation. It can be shown that in the direct order of approximation

$$
\begin{equation*}
\Delta \lambda=\mathbf{J} \Delta \mathbf{F} \tag{4}
\end{equation*}
$$

where $\mathbf{J}$ is computed from $\mathbf{L}_{0}$. We wish to compute

Table I. Internal coordinates and force constants for $\alpha$ NY6 (mydn/ $\AA$ )

| Internal | Force | Internal | Force |
| :--- | :--- | :--- | :--- |
| Coordinates | Constants | Coordinates | Constants |
| $v(\mathrm{C}=\mathrm{O})$ | 7.85 | $\varphi\left(\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)$ | $0.470(.600)$ |
| $v\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)$ | 2.85 | $\varphi\left(\mathrm{H}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)$ | $0.470(.220)$ |
| $v\left(\mathrm{C}_{2}-\mathrm{H}\right)$ | 4.18 | $\varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}\right)$ | $0.150(.600)$ |
| $v\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)$ | 3.24 | $\varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{H}\right)$ | $0.440(.220)$ |
| $v(\mathrm{C}-\mathrm{H})$ | 4.18 | $\varphi\left(\mathrm{H}-\mathrm{C}_{6}-\mathrm{H}\right)$ | $0.362(.360)$ |
| $v(\mathrm{C}-\mathrm{C})$ | 2.98 | $\varphi(\mathrm{H}-\mathrm{C}-\mathrm{N})$ | $0.245(.780)$ |
| $v\left(\mathrm{C}_{5}-\mathrm{C}_{6}\right)$ | 3.28 | $\varphi\left(\mathrm{C}_{6}-\mathrm{N}-\mathrm{H}\right)$ | $0.292(.520)$ |
| $v\left(\mathrm{C}_{6}-\mathrm{H}\right)$ | 3.91 | $\varphi(\mathrm{C}-\mathrm{N}-\mathrm{C})$ | $0.440(.540)$ |
| $v\left(\mathrm{C}_{6}-\mathrm{N}\right)$ | 2.35 | $\varphi\left(\mathrm{H}-\mathrm{N}-\mathrm{C}_{1}\right)$ | $0.453(.520)$ |
| $v(\mathrm{~N}-\mathrm{H})$ | 5.38 | $\varphi(\mathrm{~N}-\mathrm{C}=\mathrm{O})$ | $0.890(.900)$ |
| $v\left(\mathrm{~N}-\mathrm{C}_{1}\right)$ | 5.75 | $\varphi\left(\mathrm{~N}-\mathrm{C}_{1}-\mathrm{C}_{2}\right)$ | $0.400(.600)$ |
| $\varphi\left(\mathrm{O}=\mathrm{C}_{1}-\mathrm{C}_{2}\right)$ | $0.890(.900)$ | $\omega(\mathrm{N}-\mathrm{H})$ | 0.165 |
| $\varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{H}\right)$ | $0.406(.215)$ | $\omega(\mathrm{C}=\mathrm{O})$ | 0.519 |
| $\varphi\left(\mathrm{H}-\mathrm{C}_{2}-\mathrm{H}\right)$ | $0.389(.340)$ | $\tau\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)$ | 0.010 |
| $\varphi\left(\mathrm{H}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)$ | $0.410(.215)$ | $\tau\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)$ | 0.011 |
| $\varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)$ | $0.750(.500)$ | $\tau\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)$ | 0.009 |
| $\varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)$ | $0.440(.230)$ | $\tau\left(\mathrm{C}_{4}-\mathrm{C}_{5}\right)$ | 0.019 |
| $\varphi\left(\mathrm{H}-\mathrm{C}^{2}-\mathrm{C}\right)$ | $0.458(.230)$ | $\tau\left(\mathrm{C}_{5}-\mathrm{C}_{6}\right)$ | 0.032 |
| $\varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}\right)$ | $0.480(.500)$ | $\tau\left(\mathrm{C}_{6}-\mathrm{N}\right)$ | 0.011 |
| $\varphi\left(\mathrm{H}-\mathrm{C}-\mathrm{H}^{2}\right)$ | $0.392(.340)$ | $\tau\left(\mathrm{N}-\mathrm{C}_{1}\right)$ | 0.030 |
| $\varphi\left(\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}\right)$ | $0.470(.600)$ |  |  |

Note: 1. $\nu, \varphi, \omega$ and $\tau$ denote stretch, angle bend, wag and torsion respectively.
2. Non-bonded force constants are given in parentheses.
the corrections to $\mathbf{F}_{0}$ so that the errors $\overline{\Delta \lambda}$ are minimized. We used the theory of least squares and calculate

$$
\begin{equation*}
\mathbf{J}^{\prime} \mathbf{P} \overline{\Delta \lambda}=\left(\mathbf{J}^{\prime} \mathbf{P J}\right) \overline{\Delta \mathbf{F}} \tag{5}
\end{equation*}
$$

where $\mathbf{P}$ is the weighting matrix and $\mathbf{J}^{\prime}$ is the transposition of $\mathbf{J}$. The solution of this equation is obtained by inverting $\mathbf{J}^{\prime} \mathbf{P J}$ to give

$$
\begin{equation*}
\overline{\Delta \mathbf{F}}=\left(\mathbf{J}^{\prime} \mathbf{P J}\right)^{-1} \mathbf{J}^{\prime} \mathbf{P} \overline{\Delta \lambda} \tag{6}
\end{equation*}
$$

If the number of frequencies is greater than the number of $\mathbf{F}$ matrix elements, the matrix $\mathbf{J}^{\prime} \mathbf{P J}$ should be non-singular and be obtain the corrections $\Delta \mathbf{F}$, which will minimize the sum of the weighted squares of the residuals. This minimum sum provides the "best fit". If the corrections $\Delta \mathbf{F}$ are fairly large, the linear relation between force constant and frequency term in the matrix eq 3 breaks down. In such a situation, further refinement using higher order terms in the Taylor's series expansion of $\Delta \lambda_{i}$ is needed. King et al. ${ }^{19}$ developed this procedure.

## Calculation of Specific Heat

Dispersion curves can be used to calculate the specific heat of a polymeric system. For a one-dimensional system the density of state function or the frequency distribution function expresses the way energy is dis-


Figure 1. One chemical repeat unit of $\alpha$ NY6.
tributed among the various branches of normal modes in the crystal, is calculated from the relation

$$
\begin{equation*}
\left.g(\nu)=\Sigma\left(\partial v_{\mathrm{j}} / \partial \delta\right)^{-1}\right]_{\nu \mathrm{vj}(\delta)=\nu \mathrm{j}} \tag{7}
\end{equation*}
$$

The sum is over all the branches j : considering a solid as an assembly of harmonic oscillators, the frequency distribution $g(v)$ is equivalent to a partition function. The constant volume heat capacity can be calculated using Debye's relation

$$
\begin{align*}
C_{v}= & \Sigma g\left(v_{\mathrm{j}}\right) K N_{\mathrm{A}}\left(h \nu_{\mathrm{j}} / K T\right)^{2} \\
& \left.\times\left[\exp \left(h \nu_{\mathrm{j}} / K T\right) /\left\{\exp \left(h \nu_{\mathrm{j}} / K T\right)-1\right)\right\}^{2}\right] \tag{8}
\end{align*}
$$

With $\int g\left(v_{\mathrm{i}}\right) \mathrm{d} \nu_{\mathrm{i}}=1$
The constant-volume heat capacity $C_{v}$, given by the above equation, can be converted into constant-pressure heat capacity $C_{p}$ using the Nernst-Lindemann approximation. ${ }^{20}$

$$
\begin{equation*}
C_{p}-C_{v}=3 R A_{0}\left(C_{p}{ }^{2} T / C_{v} T_{\mathrm{m}}{ }^{0}\right) \tag{9}
\end{equation*}
$$

Where $A_{0}$ is a constant often of a universal value $\left[6.0 \times 10^{-3}(\mathrm{~K} \mathrm{~mol}) / \mathrm{J}\right]$ and $T_{\mathrm{m}}{ }^{\circ}$ is the estimated equilibrium melting temperature, which is taken to be 310 K. ${ }^{21}$

## RESULT AND DISCUSSION

One chemical repeat unit of $\alpha$ NY6 (Figure 1) contains 19 atoms, which give rise to 57 dispersion curves. Initially the force constants for $\mathrm{CH}_{2}$ groups are transferred from poly ( $\varepsilon$-caprolactone) (PCL) ${ }^{17}$ and for amide group from $\beta$ poly (L-valine) ${ }^{18}$ molecules and later modified to give the "best fit" to the observed frequencies. Final sets of constants are given in Table I. The assignments are made on the basis of potential energy distribution (PED), band profile, line intensities and the presence/absence of similar groups in an identical environment in addition to the information obtained from photo acoustic-Fourier transform infrared (PAFTIR-IR) ${ }^{12}\left(1500-500 \mathrm{~cm}^{-1}\right)$, Fourier transform Raman spectrum ${ }^{7,8}\left(3500-500 \mathrm{~cm}^{-1}\right)$, micro Raman confocal spectra ${ }^{12}$ ( $3450-900 \mathrm{~cm}^{-1}$ ) and in-


Figure 2. Dispersion curves (a) and density states (b) of $\alpha$ NY6 ( $0-400 \mathrm{~cm}^{-1}$ ).
elastic neutron spectra ${ }^{9}{ }^{90}$ (below $900 \mathrm{~cm}^{-1}$ ). The vibrational frequencies have been calculated for the values of $\delta$ ranging from 0 to $\pi$ in steps of $0.05 \pi$. The optically active modes correspond to those at $\delta=0$ and $\pi$. Dispersion curves are plotted in Figure 2(a) for the modes below $400 \mathrm{~cm}^{-1}$, because the modes above this are non dispersive in nature, Heat capacities are obtained from the dispersion curves via density of states and compared with the experimental data obtained from Athas data bank. Normal mode frequencies are broadly classified under amide modes, methylene modes and others.

## Amide Modes

The amide linkage is one of the most fundamental and wide spread chemical linkages in nature. Amide groups of polyamides are strong chromophores in IR absorption, and these groups give rise to strong characteristic bands (Amide A, I to VII). Thus amide modes play a vital role in the vibrational dynamics of polyamides. The observed and calculated frequencies along with the PEDs at the zone center and zone boundary are shown in Table II, III. A comparison of the amide modes of $\alpha$ NY6 with those of other $\beta$ sheet polypeptides (which also take the planar zig zag conformation) is given in Table IV. This table reflects the spectral differences due to presence of different chemical groups in between amide groups. It would be interesting to compare the amide group modes of $\mathrm{PGI}^{22}$ with those of $\alpha$ NY6. In the former the amide group is flanked by only one $\mathrm{CH}_{2}$ group. But in $\alpha \mathrm{NY} 6$ it is

Table II. Calculated and observed modes of $\alpha$ NY6

| Cal. | Obs. Freq. |  |  | Assignment (\% PED), $\delta=0$ | Cal. | Obs. Freq. |  |  | Assignment (\% PED), $\delta=\pi$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| freq. | $\mathrm{IR}^{\text {a }}$ | Raman ${ }^{\text {b }}$ | INS ${ }^{\text {c }}$ |  |  | $\mathrm{IR}^{\text {a }}$ | Raman ${ }^{\text {b }}$ | INS ${ }^{\text {c }}$ |  |
| 2936 | 2932 ${ }^{\text {s }}$ | $2930{ }^{\text {s }}$ | - | $v\left(\mathrm{C}_{6}-\mathrm{H}\right)(58)+\nu(\mathrm{C}-\mathrm{H})(40)$ | 2936 | 2932 ${ }^{\text {s }}$ | $2930{ }^{\text {s }}$ | - | $\nu\left(\mathrm{C}_{6}-\mathrm{H}\right)(58)+\nu(\mathrm{C}-\mathrm{H})(40)$ |
| 2933 | 2932 ${ }^{\text {s }}$ | $2930^{\text {s }}$ | - | $v(\mathrm{C}-\mathrm{H})(66)+v\left(\mathrm{C}_{6}-\mathrm{H}\right)(26)+\nu\left(\mathrm{C}_{2}-\mathrm{H}\right)(8)$ | 2933 | 2932 ${ }^{\text {s }}$ | $2930{ }^{\text {s }}$ | - | $v(\mathrm{C}-\mathrm{H})(66)+v\left(\mathrm{C}_{6}-\mathrm{H}\right)(26)+v\left(\mathrm{C}_{2}-\mathrm{H}\right)(8)$ |
| 2928 | 2932 ${ }^{\text {s }}$ | $2930^{\text {s }}$ | - | $\nu(\mathrm{C}-\mathrm{H})(65)+\nu\left(\mathrm{C}_{2}-\mathrm{H}\right)(24)+\nu\left(\mathrm{C}_{6}-\mathrm{H}\right)(10)$ | 2928 | 2932 ${ }^{\text {s }}$ | $2930{ }^{\text {s }}$ | - | $\nu(\mathrm{C}-\mathrm{H})(65)+\nu\left(\mathrm{C}_{2}-\mathrm{H}\right)(24)+\nu\left(\mathrm{C}_{6}-\mathrm{H}\right)(10)$ |
| 2924 | 2932 ${ }^{\text {8 }}$ | $2930{ }^{\text {s }}$ | - | $\nu\left(\mathrm{C}_{2}-\mathrm{H}\right)(48)+\nu(\mathrm{C}-\mathrm{H})(47)$ | 2924 | 2932 ${ }^{\text {s }}$ | $2930{ }^{\text {s }}$ | - | $\nu\left(\mathrm{C}_{2}-\mathrm{H}\right)(48)+\nu(\mathrm{C}-\mathrm{H})(47)$ |
| 2922 | 2932 ${ }^{\text {s }}$ | $2930{ }^{\text {s }}$ | - | $v(\mathrm{C}-\mathrm{H})(79)+v\left(\mathrm{C}_{2}-\mathrm{H}\right)(18)$ | 2922 | 2932 ${ }^{\text {s }}$ | $2930{ }^{\text {s }}$ | - | $v(\mathrm{C}-\mathrm{H})(79)+v\left(\mathrm{C}_{2}-\mathrm{H}\right)(18)$ |
| 2863 | $2864{ }^{\text {s }}$ | $2855^{\text {s }}$ | - | $\nu(\mathrm{C}-\mathrm{H}) 97$ | 2863 | $2864^{\text {s }}$ | $2855^{\text {s }}$ | - | $\nu(\mathrm{C}-\mathrm{H})(97)$ |
| 2860 | $2864{ }^{\text {s }}$ | $2855{ }^{\text {s }}$ | - | $\nu(\mathrm{C}-\mathrm{H})(91)+\nu\left(\mathrm{C}_{2}-\mathrm{H}\right)(7)$ | 2860 | 2864 ${ }^{\text {s }}$ | $2855^{\text {s }}$ | - | $\nu(\mathrm{C}-\mathrm{H})(91)+\nu\left(\mathrm{C}_{2}-\mathrm{H}\right)(7)$ |
| 2857 | $2864{ }^{\text {s }}$ | $2855^{\text {s }}$ | - | $\nu(\mathrm{C}-\mathrm{H})(87)+\nu\left(\mathrm{C}_{2}-\mathrm{H}\right)(7)$ | 2857 | $2864{ }^{\text {s }}$ | $2855^{\text {s }}$ | - | $v(\mathrm{C}-\mathrm{H})(87)+v\left(\mathrm{C}_{2}-\mathrm{H}\right)(7)+v\left(\mathrm{C}_{6}-\mathrm{H}\right)(5)$ |
| 2854 | 2864 ${ }^{\text {s }}$ | $2855{ }^{\text {s }}$ |  | $v\left(\mathrm{C}_{2}-\mathrm{H}\right)(83)+\nu(\mathrm{C}-\mathrm{H})(16)$ | 2854 | 2864 ${ }^{\text {s }}$ | $2855^{\text {s }}$ | - | $\nu\left(\mathrm{C}_{2}-\mathrm{H}\right)(83)+v(\mathrm{C}-\mathrm{H})(17)$ |
| 2852 | $2864{ }^{\text {s }}$ | $2855{ }^{\text {s }}$ | - | $\nu\left(\mathrm{C}_{6}-\mathrm{H}\right)(92)+\nu(\mathrm{C}-\mathrm{H})(8)$ | 2852 | $2864{ }^{\text {s }}$ | $2855^{\text {s }}$ | - | $\nu\left(\mathrm{C}_{6}-\mathrm{H}\right)(93)+\nu(\mathrm{C}-\mathrm{H})(7)$ |
| 1482 | $1486{ }^{\text {s }}$ | $1480{ }^{\text {s }}$ | - | $\begin{aligned} & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{H})(76)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(11)+ \\ & \varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(6) \end{aligned}$ | 1482 | $1486{ }^{\text {s }}$ | $1480{ }^{\text {s }}$ | - | $\begin{aligned} & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{H})(76)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(11)+ \\ & \varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(6) \end{aligned}$ |
| 1474 | $1476{ }^{\text {s }}$ | $1480^{\text {s }}$ | - | $\varphi(\mathrm{H}-\mathrm{C}-\mathrm{H})(72)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(9)$ | 1474 | $1476{ }^{\text {s }}$ | $1480{ }^{\text {s }}$ | - | $\varphi(\mathrm{H}-\mathrm{C}-\mathrm{H})(70)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(10)$ |
| 1464 | $1458{ }^{\text {s }}$ | $1468^{\text {s }}$ | - | $\begin{aligned} & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{H})(66)+\varphi\left(\mathrm{H}-\mathrm{C}_{2}-\mathrm{H}\right)(6)+ \\ & \varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(7)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(6) \end{aligned}$ | 1463 | $1458{ }^{\text {s }}$ | $1468{ }^{\text {s }}$ | - | $\begin{aligned} & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{H})(70)+\varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(7)+ \\ & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(6) \end{aligned}$ |
| 1459 | $1458^{\text {s }}$ | $1468^{\text {s }}$ | - | $\begin{aligned} & \varphi\left(\mathrm{H}-\mathrm{C}_{2}-\mathrm{H}\right)(66)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{H})(11)+ \\ & \varphi\left(\mathrm{H}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(7)+\varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{H}\right)(7) \end{aligned}$ | 1459 | $1458^{\text {s }}$ | $1468{ }^{\text {s }}$ | - | $\begin{aligned} & \varphi\left(\mathrm{H}-\mathrm{C}_{2}-\mathrm{H}\right)(68)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{H})(9)+ \\ & \varphi\left(\mathrm{H}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(7)+\varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{H}\right)(7) \end{aligned}$ |
| 1451 | $1448{ }^{\text {s }}$ | $1443{ }^{\text {s }}$ | - | $\begin{aligned} & \varphi\left(\mathrm{H}_{-} \mathrm{C}_{6}-\mathrm{H}\right)(64)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{N})(12)+ \\ & \varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{H}\right)(6)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{H})(6) \end{aligned}$ | 1451 | $1448{ }^{\text {s }}$ | $1443{ }^{\text {s }}$ | - | $\begin{aligned} & \varphi\left(\mathrm{H}_{-} \mathrm{C}_{6}-\mathrm{H}\right)(64)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{N})(12)+ \\ & \varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{H}\right)(6)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{H})(5) \end{aligned}$ |
| 1393 | $1393{ }^{\text {s }}$ | $1395{ }^{\text {w }}$ | - | $\begin{aligned} & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(27)+\nu\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(22)+ \\ & \nu\left(\mathrm{C}_{5}-\mathrm{C}_{6}\right)(14)+\varphi\left(\mathrm{H}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(13)+ \\ & \varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(10)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{N})(7) \end{aligned}$ | 1394 | $1393{ }^{\text {s }}$ | $1395{ }^{\text {w }}$ | - | $\begin{aligned} & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(26)+\nu\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(20)+ \\ & v\left(\mathrm{C}_{5}-\mathrm{C}_{6}\right)(15)+\varphi\left(\mathrm{H}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(13)+ \\ & \varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(9)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{N})(8) \end{aligned}$ |
| 1364 | $1373{ }^{\text {m }}$ | $1377^{\text {s }}$ | - | $\begin{aligned} & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(19)+v\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)(17)+ \\ & \varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(16)+\nu\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(9)+v\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)+ \\ & (7)+\varphi\left(\mathrm{H}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(7)+\varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{H}\right)(7) \end{aligned}$ | 1371 | $1373{ }^{\text {s }}$ | $1377{ }^{\text {s }}$ | - | $\begin{aligned} & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(18)+\varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(18)+ \\ & \nu\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)(16)+v\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(10)+v\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(10)+ \\ & \varphi\left(\mathrm{H}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(7)+\varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{H}\right)(6) \end{aligned}$ |
| 1346 | $1340^{\text {s }}$ | $1342^{\text {sh }}$ | - | $\begin{aligned} & \nu\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(16)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{N})(11)+ \\ & \varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(10)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(9)+ \\ & \nu\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(7)+\varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{H}\right)(7)+ \\ & \varphi\left(\mathrm{C}_{6}-\mathrm{N}-\mathrm{H}\right)(6) \end{aligned}$ | 1326 | $1340^{\text {s }}$ | $1342^{\text {sh }}$ | - | $\begin{aligned} & \nu\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(16)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(10)+ \\ & \varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{H}\right)(10)+\varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(8)+ \\ & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{N})(8)+\nu(\mathrm{C}=\mathrm{O})(6)+\nu\left(\mathrm{C}_{5}-\mathrm{C}_{6}\right)(5)+ \\ & \varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{H}\right)(5)+\varphi\left(\mathrm{H}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(5) \end{aligned}$ |
| 1259 | $1264^{\text {s }}$ | $1261{ }^{\text {s }}$ | - | $\begin{aligned} & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(31)+\varphi\left(\mathrm{H}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(18)+ \\ & \varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(17)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{N})(8)+ \\ & \varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{H}\right)(6) \end{aligned}$ | 1255 | $1264{ }^{\text {s }}$ | $1261{ }^{\text {s }}$ | - | $\begin{aligned} & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(27)+\varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(17)+ \\ & \varphi\left(\mathrm{H}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(13)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{N})(11)+ \\ & \varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{H}\right)(10)+\nu\left(\mathrm{N}-\mathrm{C}_{1}\right)(6) \end{aligned}$ |
| 1236 | $1239^{\text {s }}$ | $1237^{\text {s }}$ | - | $\begin{aligned} & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{N})(55)+\varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{H}\right)(21)+ \\ & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(13) \end{aligned}$ | 1236 | $1239^{\text {s }}$ | $1237{ }^{\text {s }}$ | - | $\begin{aligned} & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{N})(55)+\varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{H}\right)(21)+ \\ & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(13) \end{aligned}$ |
| 1210 | $1210^{\mathrm{m}}$ | $1205^{\text {m }}$ | - | $\begin{aligned} & \varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{H}\right)(23)+\varphi\left(\mathrm{H}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(20)+ \\ & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(17)+\varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(16)+ \\ & \nu\left(\mathrm{N}-\mathrm{C}_{1}\right)(11) \end{aligned}$ | 1212 | $1210{ }^{\text {m }}$ | $1205^{\text {m }}$ | - | $\begin{aligned} & \varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{H}\right)(23)+\varphi\left(\mathrm{H}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(21)+ \\ & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(16)+\varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(14)+ \\ & \nu\left(\mathrm{N}-\mathrm{C}_{1}\right)(11) \end{aligned}$ |
| 1191 | $1200^{\mathrm{m}}$ | $1200^{\text {m }}$ | - | $\begin{aligned} & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(34)+\varphi\left(\mathrm{H}^{2}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(27)+ \\ & \varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(26)+\varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{H}\right)(7) \end{aligned}$ | 1192 | $1200{ }^{\text {m }}$ | $1200^{\text {m }}$ | - | $\begin{aligned} & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(35)+\varphi\left(\mathrm{H}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(27)+ \\ & \varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(26)+\varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{H}\right)(6) \end{aligned}$ |
| 1172 | $1173{ }^{\text {w }}$ | $1168^{\text {m }}$ | - | $\begin{aligned} & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(51)+\varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(37)+ \\ & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{N})(6) \end{aligned}$ | 1172 | $1173{ }^{\text {w }}$ | $1168^{\text {m }}$ | - | $\begin{aligned} & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(51)+\varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(38)+ \\ & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{N})(6) \end{aligned}$ |

Continued on next page.
sandwiched between five $\mathrm{CH}_{2}$ groups.
Amide A band arising from N-H stretching is characteristic of its functional group. This mode is highly sensitive to the strength of $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bonding. We have calculated Amide A frequency at $3301 \mathrm{~cm}^{-1}$ corresponding to the observed peak at $3300 \mathrm{~cm}^{-1}$ in IR $\backslash$ Raman. ${ }^{5-8}$

Amide I mode has significant contribution of $\mathrm{C}=\mathrm{O}$ and C-N stretches. This localized mode is calculated at $1648 \mathrm{~cm}^{-1}$ corresponding to the observed band at $1647 \mathrm{~cm}^{-1}$ in Raman. ${ }^{5}$ This mode reflects the hydrogen bond strength due to the presence of $\mathrm{C}=\mathrm{O}$ stretch contributions. Its value plays a decisive role to identify backbone conformation.

Amide II is predominantly a $\mathrm{N}-\mathrm{H}$ in plane bending mode. It is calculated at $1554 \mathrm{~cm}^{-1}$ and assigned to the peak observed at $1551 \mathrm{~cm}^{-1}$ in Raman. ${ }^{5,6}$

Amide III is a combination of N-H in plane bend and C-N stretch as in amide II but in opposite phase. This mode has been calculated at $1286 \mathrm{~cm}^{-1}$ at $\delta=0$ and assigned to the peak observed at $1289 \backslash 1280 \mathrm{~cm}^{-1}$ in FTIR $^{12} \backslash$ Raman. ${ }^{8}$
Amide IV vibration is associated with the in plane bending of $\mathrm{C}=\mathrm{O}$ band. This mode is calculated at $722 \mathrm{~cm}^{-1}$ and observed at the peak appearing at $734 \mathrm{~cm}^{-1}$ in INS. ${ }^{10}$ This mode is quite sensitive to molecular geometry.
Amide V and Amide VI are mainly asymmetric out

| Cal. | Obs. Freq. |  |  | Assignment (\% PED), $\delta=0$ | Cal. | Obs. Freq. |  |  | Assignment (\% PED), $\delta=\pi$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| freq. | $\mathrm{IR}^{\text {a }}$ | Raman ${ }^{\text {b }}$ | $\mathrm{INS}^{\text {c }}$ |  |  | $\mathrm{IR}^{\text {a }}$ | Raman ${ }^{\text {b }}$ | INS ${ }^{\text {c }}$ |  |
| 1154 | $1162^{\text {m }}$ | $1168^{\text {m }}$ | - | $\begin{aligned} & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(45)+\varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(26)+ \\ & \varphi\left(\mathrm{H}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(15) \end{aligned}$ | 1153 | $1162^{\text {m }}$ | $1168^{\text {m }}$ | - | $\begin{aligned} & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(45)+\varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(26)+ \\ & \varphi\left(\mathrm{H}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(16) \end{aligned}$ |
| 1114 | $1121^{\text {m }}$ | $1123{ }^{\text {s }}$ | - | $\begin{aligned} & \varphi\left(\mathrm{H}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(44)+\varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{H}\right)(42)+ \\ & \varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(6) \end{aligned}$ | 1114 | $1121^{\text {m }}$ | $1123{ }^{\text {s }}$ | - | $\begin{aligned} & \varphi\left(\mathrm{H}_{-}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(44)+\varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{H}\right)(42)+ \\ & \varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(6) \end{aligned}$ |
| 1070 | $1067{ }^{\text {s }}$ | $1076{ }^{\text {s }}$ | - | $\begin{aligned} & v\left(\mathrm{C}_{6}-\mathrm{N}\right)(32)+v\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(14)+ \\ & v\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)(13) \end{aligned}$ | 1054 | $1067{ }^{\text {s }}$ | $1076{ }^{\text {s }}$ | - | $\begin{aligned} & \nu\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(24)+\nu\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)(21)+\nu\left(\mathrm{C}_{6}-\mathrm{N}\right)(11)+ \\ & \varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}\right)(8)+\varphi\left(\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}\right)(8)+ \\ & \varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(6)+\varphi\left(\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(5) \end{aligned}$ |
| 1028 | $1028^{\text {s }}$ | - | - | $\begin{aligned} & v\left(\mathrm{C}_{6}-\mathrm{N}\right)(43)+v\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)(12)+ \\ & v\left(\mathrm{C}_{5}-\mathrm{C}_{6}\right)(12)+v\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(8) \end{aligned}$ | 1047 | $1028^{\text {s }}$ | - | - | $\nu\left(\mathrm{C}_{6}-\mathrm{N}\right)(62)+\nu\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)(6)$ |
| 1003 | - | $1001{ }^{\text {w }}$ | - | $\begin{aligned} & v\left(\mathrm{C}_{5}-\mathrm{C}_{6}\right)(30)+v\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(18)+ \\ & v\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)(9)+\varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{H}\right)(6)+ \\ & \varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}\right)(6)+\varphi\left(\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(5) \end{aligned}$ | 1004 |  | $1001^{\text {w }}$ |  | $\nu\left(\mathrm{C}_{5}-\mathrm{C}_{6}\right)(49)+\nu\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(16)+\varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{H}\right)(7)$ |
| 987 | $980^{\text {m }}$ | $989^{\text {m }}$ | - | $\begin{aligned} & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(27)+\varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(26)+ \\ & \varphi\left(\mathrm{H}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(14)+\varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{H}\right)(11)+ \\ & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{N})(9)+\varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{H}\right)(6) \end{aligned}$ | 981 | $980^{\text {m }}$ | $989^{\text {m }}$ | - | $\begin{aligned} & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(28)+\varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(28)+ \\ & \varphi\left(\mathrm{H}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(15)+\varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{H}\right)(10)+ \\ & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{N})(10)+\varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{H}\right)(7) \end{aligned}$ |
| 982 | $973{ }^{\text {m }}$ | $980^{\text {m }}$ | - | $\begin{aligned} & v\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(48)+v\left(\mathrm{C}_{5}-\mathrm{C}_{6}\right)(15)+ \\ & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(9)+v\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)(5) \end{aligned}$ | 979 | $973{ }^{\text {m }}$ | $980^{\text {m }}$ | - | $\begin{aligned} & v\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(52)+v\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)(10)+ \\ & v\left(\mathrm{C}_{5}-\mathrm{C}_{6}\right)(10)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(10) \end{aligned}$ |
| 949 | $955^{\text {m }}$ | $955{ }^{\text {w }}$ | - | $\begin{aligned} & v\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(41)+v\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)(17)+ \\ & \varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(8)+v\left(\mathrm{C}_{5}-\mathrm{C}_{6}\right)(8)+ \\ & v\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(7)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(6) \end{aligned}$ | 947 | $955{ }^{\text {m }}$ | $955{ }^{\text {w }}$ | - | $\begin{aligned} & v\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(44)+\nu\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)(12)+\nu\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(12)+ \\ & \varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(7)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(7) \end{aligned}$ |
| 929 | $927^{\text {s }}$ | $930^{\text {m }}$ | $934{ }^{\text {s }}$ | $\begin{aligned} & v\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(30)+v\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(18)+ \\ & v(\mathrm{C}=\mathrm{O})(12)+v\left(\mathrm{~N}-\mathrm{C}_{1}\right)(8)+ \\ & \varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{H}\right)(6) \end{aligned}$ | 938 | $927^{\text {s }}$ | $930^{\text {m }}$ | 934 | $\begin{aligned} & v\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(25)+v\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(12)+v(\mathrm{C}=\mathrm{O})(11)+ \\ & \varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{H}\right)(8)+v\left(\mathrm{~N}-\mathrm{C}_{1}\right)(7)+v\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)(6)+ \\ & \varphi\left(\mathrm{H}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(5) \end{aligned}$ |
| 897 | $887^{\text {s }}$ | $898{ }^{\text {w }}$ | - | $\begin{aligned} & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(31)+\varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{H}\right)(18)+ \\ & \varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{H}\right)(14)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{N})(12)+ \\ & \varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(10)+\varphi\left(\mathrm{H}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(9) \end{aligned}$ | 912 | $887^{\text {s }}$ | $898{ }^{\text {w }}$ | - | $\begin{aligned} & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(27)+\varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{H}\right)(19)+ \\ & \varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{H}\right)(12)+\varphi\left(\mathrm{H}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(11)+ \\ & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{N})(9)+\varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(9)+\omega(\mathrm{C}=\mathrm{O})(7) \end{aligned}$ |
| 837 | $834{ }^{\text {s }}$ | $835^{\text {w }}$ | - | $\begin{aligned} & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(31)+\varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{H}\right)(18)+ \\ & \varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{H}\right)(14)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{N})(12)+ \\ & \varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(10)+\varphi\left(\mathrm{H}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(9) \end{aligned}$ | 827 | $834{ }^{\text {s }}$ | $835{ }^{\text {w }}$ | - | $\begin{aligned} & \varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{H}\right)(31)+\varphi\left(\mathrm{H}_{-} \mathrm{C}_{5}-\mathrm{C}_{6}\right)(23)+ \\ & \tau\left(\mathrm{C}_{5}-\mathrm{C}_{6}\right)(11)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(10)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{N})(8) \end{aligned}$ |
| 806 | - | - | $814^{\text {s }}$ | $\begin{aligned} & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(34)+\varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(13)+ \\ & \varphi\left(\mathrm{H}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(11)+\tau\left(\mathrm{C}_{5}-\mathrm{C}_{6}\right)(9)+ \\ & \varphi\left(\mathrm{H}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(8)+\tau\left(\mathrm{C}_{4}-\mathrm{C}_{5}\right)(8) \end{aligned}$ | 802 | - | - | $814^{\text {s }}$ | $\begin{aligned} & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(38)+\varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(19)+ \\ & \varphi\left(\mathrm{H}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(13)+\varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{H}\right)(8)+ \\ & \tau\left(\mathrm{C}_{4}-\mathrm{C}_{5}\right)(7) \end{aligned}$ |
| 749 | $736^{\text {s }}$ | $743^{\text {s }}$ | $743^{\text {s }}$ | $\begin{aligned} & \varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(34)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(28)+ \\ & \varphi\left(\mathrm{H}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(13) \end{aligned}$ | 753 | $736{ }^{\text {s }}$ | $743^{\text {s }}$ | $736{ }^{\text {s }}$ | $\begin{aligned} & \varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(34)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(27)+ \\ & \varphi\left(\mathrm{H}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(12)+\omega(\mathrm{C}=\mathrm{O})(7)+ \\ & \omega(\mathrm{N}-\mathrm{H})(6) \end{aligned}$ |
| 531 | $523^{\mathrm{m}}$ | - | $524^{\text {s }}$ | $\begin{aligned} & \varphi\left(\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}\right)(18)+\varphi\left(\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(17)+ \\ & \varphi\left(\mathrm{N}-\mathrm{C}_{1}-\mathrm{C}_{2}\right)(15)+\varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(8)+ \\ & \varphi\left(\mathrm{O}=\mathrm{C}_{1}-\mathrm{C}_{2}\right)(7)+\varphi(\mathrm{C}-\mathrm{N}-\mathrm{C})(7) \end{aligned}$ | 504 | $523{ }^{\text {m }}$ | - | $524{ }^{\text {s }}$ | $\begin{aligned} & \varphi\left(\mathrm{N}-\mathrm{C}_{1}-\mathrm{C}_{2}\right)(18)+\varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}\right)(16)+ \\ & \varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}\right)(13)+\varphi\left(\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(11)+ \\ & \varphi\left(\mathrm{O}=\mathrm{C}_{1}-\mathrm{C}_{2}\right)(9)+\varphi\left(\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}\right)(9) \end{aligned}$ |
| 431 | $429^{\text {m }}$ | - | $435^{\text {s }}$ | $\begin{aligned} & \varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}\right)(26)+\varphi\left(\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(18)+ \\ & \varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}\right)(17)+\varphi\left(\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}\right)(12)+ \\ & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(6) \end{aligned}$ | 424 | $429^{\text {m }}$ | - | $435{ }^{\text {s }}$ | $\begin{aligned} & \Phi\left(\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}\right)(25)+\varphi\left(\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(21)+ \\ & \varphi\left(\mathrm{O}=\mathrm{C}_{1}-\mathrm{C}_{2}\right)(9)+\varphi(\mathrm{N}-\mathrm{C}=\mathrm{O})(9)+ \\ & \varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(8)+\varphi(\mathrm{C}-\mathrm{N}-\mathrm{C})(7) \end{aligned}$ |

Note: 1. ${ }^{\text {a }}$ Ref. 5, 6, 11, 12, ${ }^{\mathrm{b}}$ Ref. 7, 8, 12, ${ }^{\mathrm{c}} \operatorname{Ref} 9,10$.
2. All freq. are in $\mathrm{cm}^{-1}$.
3. $\mathrm{s}=$ strong, $\mathrm{sh}=$ shoulder $=$ medium, $\mathrm{w}=$ weak.
of plane wag of $\mathrm{N}-\mathrm{H}$ and $\mathrm{C}=\mathrm{O}$ bonds respectively. These vibrational modes are calculated at $698 \mathrm{~cm}^{-1}$ and $584 \mathrm{~cm}^{-1}$ respectively corresponding to the observed peaks at 701 and $580 \mathrm{~cm}^{-1}$ in INS spectra. ${ }^{10}$

A comparison of $\alpha$ NY 6 and polyethylene shows that the dispersive behaviour of normal modes in $\alpha$ NY6 should resemble those in PE. The perturbation caused by the Amide groups cannot totally delocalize the modes and hence they should continue to display in dispersion. The perturbation would affect most (C-N) torsion because both (C-C) torsion (C-N) will get mixed up. This is what happen to the potential energy distribution. The mode at $217 \mathrm{~cm}^{-1}$ is a mix-
ture of $\tau\left(\mathrm{C}_{5}-\mathrm{C}_{6}\right)(60) \%+\tau\left(\mathrm{N}-\mathrm{C}_{1}\right)(14) \%+\tau\left(\mathrm{C}_{4}-\right.$ $\left.\mathrm{C}_{5}\right)(8) \%+\varphi(\mathrm{C}-\mathrm{C}-\mathrm{C})(5) \%$.

As for the vibrations of the amide groups, in $\beta$-poly (L-Ornithine), ${ }^{23} \beta$-poly (O-Acetyl, L-Serine), ${ }^{24} \beta$ polyglycine $\mathrm{I}^{22}$ and poly (L-Serine) ${ }^{25}$ the amide modes of all these polymers are in the same wave number range. The minor differences are because of the number of intervening $\mathrm{CH}_{2}$ groups that affect the long range interaction.

## Methylene Modes

The $\alpha$ NY6 molecule has five methylene groups that are flanked by the rigid amide groups. This linear

Table III. Amide modes of $\alpha$ NY 6

| Mode | Freq(Calc.) | Obs. Freq. |  |  | Potential Energy <br> Distribution at $\delta=0$ | Freq (Calc.) | Obs. Freq. |  |  | Potential Energy <br> Distribution at $\delta=\pi$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{IR}^{\text {a }}$ | Raman ${ }^{\text {b }}$ | INS ${ }^{\text {c }}$ |  |  | $\mathrm{IR}^{\text {a }}$ | Raman ${ }^{\text {b }}$ | INS ${ }^{\text {c }}$ |  |
| Amide A | 3301 | 3300 | 3300 | - | $\nu(\mathrm{N}-\mathrm{H})(99)$ | 3301 | 3300 | 3300 | - | $\nu(\mathrm{N}-\mathrm{H})(99)$ |
| Amide I | 1648 | 1646 | 1635 | - | $\nu(\mathrm{C}=\mathrm{O})(57)+\nu\left(\mathrm{N}-\mathrm{C}_{1}\right)(24)$ | 1648 | 1646 | 1635 | - | $\nu(\mathrm{C}=\mathrm{O})(57)+\nu\left(\mathrm{N}-\mathrm{C}_{1}\right)(24)$ |
| Amide II | 1554 | 1556 | 1543 | - | $\begin{aligned} & \varphi\left(\mathrm{H}-\mathrm{N}-\mathrm{C}_{1}\right)(36)+ \\ & \varphi\left(\mathrm{C}_{6}-\mathrm{N}-\mathrm{H}\right)(26)+\nu\left(\mathrm{N}-\mathrm{C}_{1}\right)(21) \end{aligned}$ | 1554 | 1556 | 1543 | - | $\begin{aligned} & \varphi\left(\mathrm{H}-\mathrm{N}-\mathrm{C}_{1}\right)(35)+\varphi\left(\mathrm{C}_{6}-\mathrm{N}-\mathrm{H}\right) \\ & (26)+v\left(\mathrm{~N}-\mathrm{C}_{1}\right)(21) \end{aligned}$ |
| Amide III | 1286 | 1280 | 1280 | - | $\begin{aligned} & \varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{H}\right)(19)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{N}) \\ & (19)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(13)+ \\ & \varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(10)+\nu(\mathrm{C}=\mathrm{O})(7) \\ & +\nu\left(\mathrm{N}-\mathrm{C}_{1}\right)(7) \end{aligned}$ | 1300 | 1280 | 1280 | - | $\begin{aligned} & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(19)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{N}) \\ & (18)+\varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{H}\right)(14)+ \\ & \varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{H}\right)(12)+\nu\left(\mathrm{N}^{2}-\mathrm{C}_{1}\right)(5) \end{aligned}$ |
| Amide IV | 722 | 736 | - | 725 | $\begin{aligned} & \varphi\left(\mathrm{O}=\mathrm{C}_{1}-\mathrm{C}_{2}\right)(23)+\varphi(\mathrm{N}-\mathrm{C}=\mathrm{O}) \\ & +\nu\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(12)+\varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}\right) \\ & (11)+\nu\left(\mathrm{C}_{6}-\mathrm{N}\right)(6)+\varphi(\mathrm{C}-\mathrm{N}-\mathrm{C})(6) \end{aligned}$ | 728 | 736 | - | 725 | $\begin{aligned} & \varphi\left(\mathrm{O}=\mathrm{C}_{1}-\mathrm{C}_{2}\right)(20)+ \\ & \varphi(\mathrm{N}-\mathrm{C}=\mathrm{O})(19)+v\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(13) \\ & +\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(12)+ \\ & \varphi(\mathrm{C}-\mathrm{N}-\mathrm{C})(7) \end{aligned}$ |
| Amide V | 698 | 693 | - | 701 | $\begin{aligned} & \omega(\mathrm{N}-\mathrm{H})(57)+\varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{H}\right)(9)+ \\ & \tau\left(\mathrm{N}-\mathrm{C}_{1}\right)(8)+\omega(\mathrm{C}=\mathrm{O})(8)+ \\ & \varphi\left(\mathrm{H}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(6) \end{aligned}$ | 698 | 693 | - | 701 | $\begin{aligned} & \omega(\mathrm{N}-\mathrm{H})(57)+\varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{H}\right)(9)+ \\ & \omega(\mathrm{C}=\mathrm{O})(8)+\tau\left(\mathrm{N}-\mathrm{C}_{1}\right)(8)+ \\ & \varphi\left(\mathrm{H}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(6) \end{aligned}$ |
| Amide VI | 584 | 580 | - | 580 | $\begin{aligned} & \omega(\mathrm{C}=\mathrm{O})(56)+\omega(\mathrm{N}-\mathrm{H})(12)+ \\ & \tau\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(10)+\tau\left(\mathrm{N}-\mathrm{C}_{1}\right)(8)+ \\ & \varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{H}\right)(6) \end{aligned}$ | 584 | 580 | - | 580 | $\begin{aligned} & \omega(\mathrm{C}=\mathrm{O})(55)+\omega(\mathrm{N}-\mathrm{H})(12)+ \\ & \tau\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(10)+\tau\left(\mathrm{N}-\mathrm{C}_{1}\right)(8)+ \\ & \varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{H}\right)(6) \end{aligned}$ |
| Amide VII | 222 | 220 | - | 218 | $\begin{aligned} & \tau\left(\mathrm{C}_{5}-\mathrm{C}_{6}\right)(60)+\tau\left(\mathrm{N}-\mathrm{C}_{1}\right)(14)+ \\ & \tau\left(\mathrm{C}_{4}-\mathrm{C}_{5}\right)(8)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(5) \end{aligned}$ | 232 | 220 | - | 218 | $\begin{aligned} & \tau\left(\mathrm{C}_{5}-\mathrm{C}_{6}\right)(53)+\tau\left(\mathrm{N}-\mathrm{C}_{1}\right)(15)+ \\ & \left.\tau\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(7)+\tau\left(\mathrm{C}_{4}-\mathrm{C}_{5}\right) 7\right) \end{aligned}$ |

Note: 1. ${ }^{\text {a Ref. }} 5,6,11,12,{ }^{\text {b }}$ Ref. 7, 8, 12, ${ }^{\mathrm{c}}$ Ref 10.
2. All freq. are in $\mathrm{cm}^{-1}$.

Table IV. Comparison of Amide modes of $\alpha$ NY6 ( $\alpha$-form) with other $\beta$-sheet polypeptides

| Nylon-6 |  | $\beta$-PLO |  |  | $\beta$-PALS |  | $\beta$-PG1 |  | $\beta$-PLS |  |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Modes | $\delta=0$ | $\delta=\pi$ |
| Amide A | 3301 | 3301 | 3286 | 3286 | 3303 | 3303 | 3274 | 3274 | 3318 | 3318 |
| Amide I | 1648 | 1648 | 1649 | 1645 | 1640 | 1637 | 1642 | 1634 | 1637 | 1628 |
| Amide II | 1554 | 1554 | 1533 | 1528 | 1521 | 1517 | 1520 | 1520 | 1532 | 1537 |
| Amide III | 1286 | 1299 | 1275 | 1228 | 1229 | 1217 | 1306 | 1287 | 1249 | 1270 |
| Amide IV | 722 | 729 | 510 | - | 600 | - | 630 | 711 | 533 | 773 |
| Amide V | 698 | 699 | 702 | 705 | 695 | 718 | 720 | 745 | 713 | 685 |
| Amide VI | 584 | 584 | 594 | 547 | 448 | 515 | 570 | 634 | 533 | 647 |

```
Note: All frequencies are in cm
PLO = Poly(L-Ornithine). .23
PALS = Poly(O-Acetyl, L-Serine)..
PG1 = Polyglycine I. }\mp@subsup{}{}{22
PLS = Poly(L-Serine). }\mp@subsup{}{}{25
```

chain of $\mathrm{CH}_{2}$ groups has selection rules different from those for an infinite chain. They are related to the dispersion of a given normal mode of an infinite chain and the absorption/scattering occurs at the phase values given by the following relation

$$
\begin{equation*}
\delta=k \pi /(m+1) \tag{10}
\end{equation*}
$$

Where $m$ denotes the number of $\mathrm{CH}_{2}$ groups in the linear chain linkage and $k=1,2 \ldots 5$. Thus the allowed $\delta$ for a given mode, would give rise to wave numbers on the corresponding dispersion curve for an infinite system which is polyethylene ( PE$)^{26}$ in this case. The wave numbers thus obtained are given in Table IV. The calculated $\mathrm{CH}_{2}$ group frequencies of $\alpha$ NY6 are in good agreement with those calculated
from the dispersion curves of PE. Small deviations arise because of the intra and inter chain interactions of $\mathrm{CH}_{2}$ group with the amide group in $\alpha \mathrm{NY} 6$.

The skeletal structure of $\alpha$ NY 6 consists of the fivemethylene groups, which are flanked by amide group at both the ends. Because of such anchoring, a comparison of the wave numbers obtained from the dispersion curves of PE , corresponding to phase values given by eq 1 is in order in case of $\mathrm{CH}_{2}$ group modes except for the skeletal modes. These modes in polyethylene mostly consist of coupled motions of $\varphi(\mathrm{C}$ -$\mathrm{C}-\mathrm{C})$ and $\tau(\mathrm{C}-\mathrm{C})$ and are spread over the entire chain. In PE, these modes are acoustical in nature whereas in $\alpha$ NY6, the skeletal modes of $\left(-\mathrm{CH}_{2}-\right)_{5}$ fragments are optical in nature and thus a comparison would not be
in order. Similar phenomena have been observed in PCL. ${ }^{17}$ The origin of such optical phonon is explained by the splitting of the longitudinal acoustic phonon band of PE chain into several optical bands due to a periodic perturbation (the presence of the heavier amide groups-NHCO). It is similar to the role played by the (-COO-) end groups in PCL [-( $\left.\mathrm{CH}_{2}\right)_{5}$-COO-]. The $\mathrm{CH}_{2}$ group modes are in order and in agreement with the modes sequence of $\mathrm{CH}_{2}$ groups of PCL (Table V). Because of more or less identical situations, the agreement of the $\mathrm{CH}_{2}$ segmental and others modes with PCL is almost total.

## Dispersion Curves

Dispersion curves and frequency distribution function are important for an understanding of thermodynamical and elastic properties of solids. Besides providing knowledge of density-of-states, dispersion curves give information on the extent of the coupling of a mode along the chain in the ordered state. Also a study of these is necessary to appreciate the origin of both symmetry independent and symmetry dependent spectral features. The dispersion curves and the corresponding density of states of $\alpha$ NY 6 below $400 \mathrm{~cm}^{-1}$ are shown in Figure 2(a) and 2(b). The lower two branches ( $\nu=0$ at $\delta=0 \& \delta=\pi$ ) correspond to four acoustic modes. Two of them are at the zone center and two are at the zone boundary. They represent three translations (one parallel and two perpendicular to the axis) and one free rotation about the chain axis.

The mode calculated at $357 \mathrm{~cm}^{-1}$ observed at 354 $\mathrm{cm}^{-1}$ (INS studies) ${ }^{10}$ at $\delta=0$ disperses by 44 wave numbers and thus it is calculated at $313 \mathrm{~cm}^{-1}$ at $\delta=\pi$ and observed at $295 \mathrm{~cm}^{-1}$. This mode has prominent contributions from angle bends $\varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}\right), \varphi(\mathrm{N}-$ $\left.\mathrm{C}_{1}-\mathrm{C}_{2}\right) \& \varphi\left(\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}\right)$. But beyond $\delta=0.70 \pi$, the contribution of $\varphi\left(\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}\right)$ dominates. The wave number of the mode calculated at $290 \mathrm{~cm}^{-1}$ at zone center decreases to $229 \mathrm{~cm}^{-1}$ at $\delta=0.75 \pi$. This mode involves mainly ( $\mathrm{C}-\mathrm{C}-\mathrm{C}$ ) bending, ( $\mathrm{C}-\mathrm{N}-\mathrm{C}$ ) bending and $(\mathrm{C}=\mathrm{O})$ in plane bending. As the value of $\delta$ increases, the contribution of $(\mathrm{C}=\mathrm{O})$ in plane bending decreases and at the zone boundary this mode appears at $252 \mathrm{~cm}^{-1}\left[\varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}\right)(28) \%+\varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}\right)\right.$ $(21) \%$ ]. The modes calculated at 148 and $107 \mathrm{~cm}^{-1}$ are pure torsional mode at $\delta=0$ these modes disperse by $42 \& 18$ wave numbers respectively at the zone boundary. The vibrational mode calculated at $57 \mathrm{~cm}^{-1}$ at $\delta=0$ is in plane deformation mode with PED $\left[\varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)+\varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}\right)+\varphi\left(\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}\right)+\varphi\right.$ $\left(\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)$. It is a highly disperssive mode and reaches $195 \mathrm{~cm}^{-1}$ at the zone boundary. It is assigned to the observed frequency at $195 \mathrm{~cm}^{-1}$ in IR spectra. ${ }^{5}$ In its journey from the zone center towards zone boundary it crosses three torsional modes (107, 148 \&

Table V. Comparison of $\mathrm{CH}_{2}$ modes of $\alpha$ NY6 with PCL

| Modes | Calculated by selection rule from $\mathrm{PE}^{\mathrm{c}}$ dispersion curves | $\alpha$ NY6 |  | Freq <br> (PCL) ${ }^{\text {b }}$ |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Freq (calc.) | Freq (obs.) ${ }^{\text {d }}$ |  |
| $\mathrm{CH}_{2}$ <br> asymmetric stretch | $2919{ }^{\text {a }}$ | 2936 | 2930 | 2916 |
|  |  | 2933 | 2930 |  |
|  |  | 2938 | 2930 |  |
|  |  | 2924 | 2930 |  |
|  |  | 2922 | 2930 |  |
|  |  | 2863 | 2855 |  |
| $\mathrm{CH}_{2}$ <br> symmetric stretch | $2848{ }^{\text {a }}$ | 2860 | 2855 | 2866 |
|  |  | 2857 | 2855 |  |
|  |  | 2854 | 2855 |  |
|  |  | 2852 | 2855 |  |
| $\mathrm{CH}_{2}$ <br> scissoring |  | 1482 | 1486 |  |
|  |  | 1473 | 1476 | 1470 |
|  | $1473$ | 1464 | 1458 | 1439 |
|  | $1440$ | 1459 | 1458 |  |
|  |  | 1451 | 1448 |  |
| $\mathrm{CH}_{2}$ wag | 1390 | 1393 | 1393 | 1400 |
|  | 1360 | 1364 | 1364 | 1367 |
|  | 1310 | 1346 | 1340 | 1340 |
|  | 1260 | 1259 | 1264 | 1303 |
|  | 1210 | 1210 | 1210 | 1195 |
| $\mathrm{CH}_{2}$ twist | 1300 | - | 1289 | 1303 |
|  | 1280 | 1287 | 1239 | 1280 |
|  | 1247 | 1236 | 1199 | 1240 |
|  | 1195 | 1191 | 1168 | 1195 |
|  | - | 1171,1153 | 1123 | 1170 |
|  | - | 1114 | - | - |
| $\mathrm{CH}_{2}$ rock | 1005 | 987 | 955 | - |
|  | 935 | 897 | 887 | 930 |
|  | 835 | 837 | 842 | 835 |
|  | 770 | 806 | 814 | 770 |
|  | 740 | 749 | 734 | 734 |
| C-C stretch | 1069 | 1071 | 1076 | 1107 |
|  | 1040 | 1027 | 1028 | 1063 |
|  | 1040 | 1002 | 1001 | 1033 |
|  | 1010 | 981 | 980 | 956 |
|  | 995 | 950 | 955 | 912 |
|  | 490 | 531 | 524 | 523 |
| C-C-C | 420 | 431 | 435 | 451 |
| bend | 290 | 357 | 354 | 370 |
|  | 240 | 290 | 290 | 315 |
|  | 60 | 57 | - | 260 |
| C-C | 178 | 175 | 173 | 215 |
| torsion | 165 | 148 | 141 | 197 |
|  | 110 | 107 | - | 172 |
|  | 90 | 30 | - | 110 |
|  | 30 | 22 | 24 | - |

Note: 1. All frequencies are in $\mathrm{cm}^{-1}$.
2. ${ }^{\text {a }}$ marked frequencies are observed in the spectra of polyethylene.
3. ${ }^{\mathrm{b}}$ Ref. 17, ${ }^{\mathrm{c}}$ Ref. 26, ${ }^{\mathrm{d}}$ Ref. 5-12.
$175 \mathrm{~cm}^{-1}$ calculated at $\delta=0$ ) at $\delta=0.341 \pi, 0.452 \pi$ $\& 0.612 \pi$ respectively. Similar phenomenon is observed for another in plane deformation vibrational
mode calculated at $50 \mathrm{~cm}^{-1}$ at $\delta=0$ with the exception that the mode initially decreases by 7 wave number till $\delta=0.10 \pi$. It rises again and crosses the two torsional mode $\left(107 \mathrm{~cm}^{-1}\right.$ and $148 \mathrm{~cm}^{-1}$ calculated at $\delta=0$ ) at $\delta=0.426 \pi$ and $\delta=0.612 \pi$ respectively.

When the approaching modes belong to different symmetry species then they can crossover. Since $\alpha$ NY6 has a mirror plane of symmetry along the chain axis, hence crossings are permissible. All such modes showing crossover are given in Table VI, along with the PED and the $\delta$ values at witch these features occur. Further since the PED of these two modes remains the same before and after intersection, it confirms that they do not repel.

The intersection of the acoustic and lowest optical modes at $\delta=0.072 \pi \delta=0.113 \pi$ can be similarly interpreted as two collisions in the ( $\varepsilon, \mathrm{p}$ ) space. A similar feature is observed in the case of PCL. The dispersive behaviour of $\alpha$ NY6 is almost the same as in PCL in the low frequency region $(0-300) \mathrm{cm}^{-1}$.

## Frequency Distribution Function and Heat Capacity

A study of dispersion curves provides us with an
understanding of the origin of both symmetry dependent and symmetry independent spectral features. The profiles of these curves also assist in determining the thermodynamic behaviour of the polymer. We have calculated the heat capacity of $\alpha$ NY 6 in the temperature range ( $70-310 \mathrm{~K}$ ) (Figure 3) using density-ofstates via dispersion curves using Debye's formalism. The calculated frequency distribution function (densi-ty-of-states) as a function of frequency is shown in Figure 2(b). The flat region in the frequency distribution curves correspond to regions of high density-ofstate (Von Hove type singularities), These peaks denote the observed frequencies. The calculated heat capacity data is shown to be in good agreement with the experimental measurements as obtained from the ATHAS data bank $1993{ }^{27}$ updated.

As our calculations have been made for an isolated molecular chain, the interpretation of IR $\backslash$ Raman spectra and theoretical calculations are subject to certain limitations. A complete interpretation of the spectra requires calculations for a three dimensional system where interactions play an important role. Special mention may be made of interactions between the

Table VI. Crossing between the pair of modes of $\alpha$ NY6

| freq. $\delta=0$ | $\delta^{\text {a }} / \pi$ | $\delta^{\mathrm{b}} / \pi$ | freq. | P.E.D before crossing | $\delta^{\mathrm{b}} / \pi$ | freq. | P.E.D after crossing |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 290 | 0.792 | 0.75 | 231 | $\begin{aligned} & \tau\left(\mathrm{C}_{5}-\mathrm{C}_{6}\right)(53)+\tau\left(\mathrm{N}-\mathrm{C}_{1}\right)(15)+\tau\left(\mathrm{C}_{4}-\mathrm{C}_{5}\right)(7)+ \\ & \tau\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(7) \end{aligned}$ | 0.80 | 232 | $\begin{aligned} & \varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}\right)(6)+\varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}\right)(21)+\varphi(\mathrm{C}-\mathrm{N}-\mathrm{C})(9)+ \\ & v\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(8)+\varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(6) \end{aligned}$ |
| 222 | 0.792 | 0.75 | 229 | $\begin{aligned} & \varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}\right)(21)+\varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}\right)(17)+\varphi(\mathrm{C}-\mathrm{N}-\mathrm{C})(12) \\ & +\varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(11)+\varphi\left(\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}\right)(6)+v\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(5) \end{aligned}$ | 0.80 | 231 | $\begin{aligned} & \tau\left(\mathrm{C}_{5}-\mathrm{C}_{6}\right)(53)+\tau\left(\mathrm{N}-\mathrm{C}_{1}\right)(15)+\tau\left(\mathrm{C}_{4}-\mathrm{C}_{5}\right)(7)+ \\ & \tau\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(7) \end{aligned}$ |
| 290 | 0.709 | 0.70 | 236 | $\begin{aligned} & \varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(16)+\varphi(\mathrm{C}-\mathrm{N}-\mathrm{C})(14)+\varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}\right)(12) \\ & +\varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}\right)(9)+\varphi\left(\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}\right)(9)+ \\ & \varphi\left(\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(8) \end{aligned}$ | 0.75 | 231 | $\begin{aligned} & \tau\left(\mathrm{C}_{5}-\mathrm{C}_{6}\right)(53)+\tau\left(\mathrm{N}-\mathrm{C}_{1}\right)(15)+\tau\left(\mathrm{C}_{4}-\mathrm{C}_{5}\right)(7)+ \\ & \tau\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(7) \end{aligned}$ |
| 222 | 0.709 | 0.70 | 230 | $\begin{aligned} & \tau\left(\mathrm{C}_{5}-\mathrm{C}_{6}\right)(54)+\tau\left(\mathrm{N}-\mathrm{C}_{1}\right)(15)+\tau\left(\mathrm{C}_{4}-\mathrm{C}_{5}\right)(7)+ \\ & \tau\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(6) \end{aligned}$ | 0.75 | 229 | $\begin{aligned} & \varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}\right)(21)+\varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}\right)(17)+\varphi(\mathrm{C}-\mathrm{N}-\mathrm{C})(12)+ \\ & \varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(11)+\varphi\left(\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}\right)(6)+v\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(5) \end{aligned}$ |
| 175 | 0.612 | 0.60 | 177 | $\begin{aligned} & \tau\left(\mathrm{C}_{4}-\mathrm{C}_{5}\right)(50)+\tau\left(\mathrm{C}_{6}-\mathrm{N}\right)(18)+\tau\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(8)+ \\ & \tau\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(8)+\tau\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)(7) \end{aligned}$ | 0.65 | 186 | $\begin{aligned} & \varphi\left(\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(13)+\varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}\right)(10)+\varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}\right)(10) \\ & +v\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(8)+\varphi\left(\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}\right)(7)+\varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(7)+ \\ & v\left(\mathrm{C}_{6}-\mathrm{N}\right)(7)+\varphi\left(\mathrm{N}-\mathrm{C}_{1}-\mathrm{C}_{2}\right)(6)+\varphi\left(\mathrm{O}=\mathrm{C}_{1}-\mathrm{C}_{2}\right)(5) \end{aligned}$ |
| 57 | 0.612 | 0.60 | 174 | $\begin{aligned} & \varphi\left(\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(12)+\varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}\right)(11)+ \\ & \varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}\right)(11)+v\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(9)+v\left(\mathrm{C}_{6}-\mathrm{N}\right)(7)+ \\ & \varphi\left(\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}\right)(6)+\varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(6)+\varphi\left(\mathrm{N}-\mathrm{C}_{1}-\mathrm{C}_{2}\right)(6) \\ & +v\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(5) \end{aligned}$ | 0.65 | 177 | $\begin{aligned} & \tau\left(\mathrm{C}_{4}-\mathrm{C}_{5}\right)(50)+\tau\left(\mathrm{C}_{6}-\mathrm{N}\right)(18)+\tau\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(9)+ \\ & \tau\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(8)+\tau\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)(7) \end{aligned}$ |
| 148 | 0.612 | 0.60 | 126 | $\begin{aligned} & \tau\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(24)+\tau\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(21)+\tau\left(\mathrm{N}-\mathrm{C}_{1}\right)(15)+ \\ & \tau\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)(12)+\tau\left(\mathrm{C}_{5}-\mathrm{C}_{6}\right)(10) \end{aligned}$ | 0.65 | 130 | $\begin{aligned} & \varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(16)+\varphi(\mathrm{C}-\mathrm{N}-\mathrm{C})(13)+\varphi\left(\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}\right)(12)+ \\ & \varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}\right)(12)+\varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}\right)(11)+\varphi\left(\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(8) \end{aligned}$ |
| 50 | 0.612 | 0.60 | 124 | $\begin{aligned} & \varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(16)+\varphi(\mathrm{C}-\mathrm{N}-\mathrm{C})(13)+ \\ & \varphi\left(\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}\right)(12)+\varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}\right)(12)+ \\ & \varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}\right)(11)+\varphi\left(\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(8) \end{aligned}$ | 0.65 | 122 | $\begin{aligned} & \tau\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(23)+\tau\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(21)+\tau\left(\mathrm{N}-\mathrm{C}_{1}\right)(14)+ \\ & \tau\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)(13)+\tau\left(\mathrm{C}_{5}-\mathrm{C}_{6}\right)(11) \end{aligned}$ |
| 148 | 0.452 | 0.45 | 135 | $\begin{aligned} & \tau\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(29)+\tau\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(22)+\tau\left(\mathrm{N}-\mathrm{C}_{1}\right)(15)+ \\ & \tau\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)(10)+\tau\left(\mathrm{C}_{5}-\mathrm{C}_{6}\right)(7) \end{aligned}$ | 0.50 | 147 | $\begin{aligned} & \varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}\right)(13)+\varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}\right)(12)+ \\ & \varphi\left(\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(12)+v\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(9)+ \\ & v\left(\mathrm{C}_{6}-\mathrm{N}\right)(7)+v\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(6)+\varphi\left(\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}\right)(5)+ \\ & \varphi\left(\mathrm{N}-\mathrm{C}_{1}-\mathrm{C}_{2}\right)(5)+\varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(5) \end{aligned}$ |
| 57 | 0.452 | 0.45 | 134 | $\begin{aligned} & \varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}\right)(13)+\varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}\right)(12)+ \\ & \varphi\left(\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(12)+v\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(9)+v\left(\mathrm{C}_{6}-\mathrm{N}\right)(7)+ \\ & v\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(6)+\varphi\left(\mathrm{N}-\mathrm{C}_{1}-\mathrm{C}_{2}\right)(5)+\varphi\left(\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}\right)(5) \end{aligned}$ | 0.50 | 132 | $\begin{aligned} & \tau\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(27)+\tau\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(22)+\tau\left(\mathrm{N}-\mathrm{C}_{1}\right)(15)+ \\ & \tau\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)(11)+\tau\left(\mathrm{C}_{5}-\mathrm{C}_{6}\right)(8) \end{aligned}$ |
| 107 | 0.426 | 0.40 | 102 | $\begin{aligned} & \tau\left(\mathrm{C}_{6}-\mathrm{N}\right)(35)+\tau\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)(29)+\tau\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(16)+ \\ & \tau\left(\mathrm{N}-\mathrm{C}_{1}\right)(14) \end{aligned}$ | 0.45 | 104 | $\begin{aligned} & \varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(17)+\varphi\left(\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}\right)(13)+ \\ & \varphi(\mathrm{C}-\mathrm{N}-\mathrm{C})(13)+\varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}\right)(12)+ \\ & \varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}\right)(10)+\varphi\left(\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(8) \end{aligned}$ |

Continued.

| freq. $\delta=0$ | $\delta^{\text {a }} / \pi$ | $\delta^{\mathrm{b}} / \pi$ | freq. | P.E.D before crossing | $\delta^{\mathrm{b}} / \pi$ | freq. | P.E.D after crossing |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 50 | 0.426 | 0.40 | 98 | $\begin{aligned} & \varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(17)+\varphi\left(\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}\right)(14)+ \\ & \varphi(\mathrm{C}-\mathrm{N}-\mathrm{C})(13)+\varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}\right)(12)+ \\ & \varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}\right)(10)+\varphi\left(\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(8) \end{aligned}$ | 0.45 | 100 | $\begin{aligned} & \tau\left(\mathrm{C}_{6}-\mathrm{N}\right)(35)+\tau\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)(29)+\tau\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(16)+ \\ & \tau\left(\mathrm{N}-\mathrm{C}_{1}\right)(14) \end{aligned}$ |
| 107 | 0.341 | 0.30 | 103 | $\begin{aligned} & \tau\left(\mathrm{C}_{6}-\mathrm{N}\right)(35)+\tau\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)(29)+\tau\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(17)+ \\ & \tau\left(\mathrm{N}-\mathrm{C}_{1}\right)(14) \end{aligned}$ | 0.35 | 106 | $\begin{aligned} & \varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}\right)(17)+\varphi\left(\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(13)+ \\ & \varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}\right)(12)+v\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(8)+v\left(\mathrm{C}_{6}-\mathrm{N}\right)(7)+ \\ & \varphi\left(\mathrm{N}-\mathrm{C}_{1}-\mathrm{C}_{2}\right)(6)+v\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(6) \end{aligned}$ |
| 57 | 0.341 | 0.30 | 101 | $\begin{aligned} & \varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}\right)(18)+\varphi\left(\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(13)+ \\ & \varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}\right)(12)+v\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(8)+v\left(\mathrm{C}_{6}-\mathrm{N}\right)(7)+ \\ & \varphi\left(\mathrm{N}-\mathrm{C}_{1}-\mathrm{C}_{2}\right)(7)+v\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(6) \end{aligned}$ | 0.35 | 103 | $\begin{aligned} & \tau\left(\mathrm{C}_{6}-\mathrm{N}\right)(35)+\tau\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)(29)+\tau\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(17)+ \\ & \tau\left(\mathrm{N}-\mathrm{C}_{1}\right)(14) \end{aligned}$ |
| 23 | 0.335 | 0.30 | 24 | $\begin{aligned} & \tau\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)(26)+\tau\left(\mathrm{C}_{6}-\mathrm{N}\right)(19)+\tau\left(\mathrm{C}_{4}-\mathrm{C}_{5}\right)(16)+ \\ & \tau\left(\mathrm{N}-\mathrm{C}_{1}\right)(13)+\tau\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(10)+\tau\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(8) \end{aligned}$ | 0.35 | 23 | $\begin{aligned} & \varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}\right)(17)+\varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}\right)(12)+ \\ & \varphi\left(\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}\right)(11)+\varphi\left(\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(11)+ \\ & \varphi(\mathrm{C}-\mathrm{N}-\mathrm{C})(11)+\varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(11)+\varphi\left(\mathrm{N}-\mathrm{C}_{1}-\mathrm{C}_{2}\right)(6) \end{aligned}$ |
| 0 | 0.335 | 0.30 | 24 | $\begin{aligned} & \varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}\right)(17)+\varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}\right)(12)+ \\ & \varphi\left(\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}\right)(11)+\varphi\left(\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(11)+ \\ & \varphi(\mathrm{C}-\mathrm{N}-\mathrm{C})(11)+\varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(11)+\varphi\left(\mathrm{N}-\mathrm{C}_{1}-\mathrm{C}_{2}\right)(6) \end{aligned}$ | 0.035 | 25 | $\begin{aligned} & \tau\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)(26)+\tau\left(\mathrm{C}_{6}-\mathrm{N}\right)(19)+\tau\left(\mathrm{C}_{4}-\mathrm{C}_{5}\right)(16)+ \\ & \tau\left(\mathrm{N}-\mathrm{C}_{1}\right)(13)+\tau\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(11)+\tau\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(8) \end{aligned}$ |
| 30 | 0.176 | 0.15 | 38 | $\begin{aligned} & \varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}\right)(25)+\varphi\left(\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}\right)(12)+\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}\right)(11) \\ & +\varphi\left(\mathrm{N}-\mathrm{C}_{1}-\mathrm{C}_{2}\right)(8)+\varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(7)+ \\ & \varphi\left(\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(7)+\varphi(\mathrm{C}-\mathrm{N}-\mathrm{C})(7) \end{aligned}$ | 0.20 | 38 | $\begin{aligned} & \tau\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(23)+\tau\left(\mathrm{N}-\mathrm{C}_{1}\right)(11)+\tau\left(\mathrm{C}_{4}-\mathrm{C}_{5}\right)(9)+ \\ & \tau\left(\mathrm{C}_{6}-\mathrm{N}\right)(8)+\tau\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)(8)+\tau\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(8)+ \\ & \tau\left(\mathrm{C}_{5}-\mathrm{C}_{6}\right)(7)+\omega(\mathrm{N}-\mathrm{H})(6)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(5) \end{aligned}$ |
| 0 | 0.176 | 0.15 | 35 | $\begin{aligned} & \tau\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(23)+\tau\left(\mathrm{C}_{4}-\mathrm{C}_{5}\right)(10)+\tau\left(\mathrm{N}-\mathrm{C}_{1}\right)(10)+\tau\left(\mathrm{C}_{6}-\mathrm{N}\right) \\ & (9)+\tau\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)(8)+\tau\left(\mathrm{C}_{5}-\mathrm{C}_{6}\right)(8)+\tau\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(7)+ \\ & \omega(\mathrm{N}-\mathrm{H})(6)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(6) \end{aligned}$ | 0.20 | 35 | $\begin{aligned} & \varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}\right)(25)+\varphi\left(\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}\right)(12)+\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}\right)(11) \\ & +\varphi\left(\mathrm{N}^{2}-\mathrm{C}_{1}-\mathrm{C}_{2}\right)(8)+\varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(7)+ \\ & \varphi\left(\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(7)+\varphi(\mathrm{C}-\mathrm{N}-\mathrm{C})(7) \end{aligned}$ |
| 30 | 0.113 | 0.10 | 33 | $\begin{aligned} & \tau\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(23)+\tau\left(\mathrm{C}_{4}-\mathrm{C}_{5}\right)(12)+\tau\left(\mathrm{C}_{6}-\mathrm{N}\right)(11)+ \\ & \tau\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)(8)+\tau\left(\mathrm{C}_{5}-\mathrm{C}_{6}\right)(8)+\tau\left(\mathrm{N}-\mathrm{C}_{1}\right)(8)+ \\ & \varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(6)+\omega(\mathrm{N}-\mathrm{H})(5) \end{aligned}$ | 0.15 | 38 | $\begin{aligned} & \varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}\right)(25)+\varphi\left(\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}\right)(12)+ \\ & \varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}\right)(11)+\varphi\left(\mathrm{N}^{2}-\mathrm{C}_{1}-\mathrm{C}_{2}\right)(8)+ \\ & \varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(7)+\varphi\left(\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(7)+\varphi(\mathrm{C}-\mathrm{N}-\mathrm{C})(7) \end{aligned}$ |
| 0 | 0.113 | 0.10 | 29 | $\begin{aligned} & \varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}\right)(18)+\varphi\left(\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}\right)(11)+v\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(8)+ \\ & \varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(8)+\varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}\right)(7)+v\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(6)+ \\ & v\left(\mathrm{C}_{6}-\mathrm{N}\right)(6) \end{aligned}$ | 0.15 | 35 | $\begin{aligned} & \tau\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(23)+\tau\left(\mathrm{C}_{4}-\mathrm{C}_{5}\right)(10)+\tau\left(\mathrm{N}-\mathrm{C}_{1}\right)(10)+ \\ & \tau\left(\mathrm{C}_{6}-\mathrm{N}\right)(9)+\tau\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)(8)+\tau\left(\mathrm{C}_{5}-\mathrm{C}_{6}\right)(8)+ \\ & \tau\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(7)+\omega(\mathrm{N}-\mathrm{H})(6)+\varphi(\mathrm{H}-\mathrm{C}-\mathrm{C})(6) \end{aligned}$ |
| 23 | 0.072 | 0.05 | 22 | $\begin{aligned} & \tau\left(\mathrm{N}-\mathrm{C}_{1}\right)(20)+\tau\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(18)+\tau\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)(16)+ \\ & \omega(\mathrm{C}=\mathrm{O})(10)+\omega(\mathrm{N}-\mathrm{H})(9)+\tau\left(\mathrm{C}_{6}-\mathrm{N}\right)(7) \end{aligned}$ | 0.10 | 29 | $\begin{aligned} & \varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}\right)(18)+\varphi\left(\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}\right)(11)+v\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(8)+ \\ & \varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(8)+\varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}\right)(7)+v\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(6)+ \\ & v\left(\mathrm{C}_{6}-\mathrm{N}\right)(6) \end{aligned}$ |
| 0 | 0.072 | 0.05 | 15 | $\begin{aligned} & \varphi\left(\mathrm{C}_{5}-\mathrm{C}_{6}-\mathrm{N}\right)(15)+\varphi\left(\mathrm{C}_{3}-\mathrm{C}_{4}-\mathrm{C}_{5}\right)(10)+\varphi\left(\mathrm{C}_{1}-\mathrm{C}_{2}-\mathrm{C}_{3}\right)(9) \\ & +v\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(9)+\varphi\left(\mathrm{C}_{2}-\mathrm{C}_{3}-\mathrm{C}_{4}\right)(7)+v\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(6)+ \\ & v\left(\mathrm{C}_{6}-\mathrm{N}\right)(6)+\varphi\left(\mathrm{C}_{4}-\mathrm{C}_{5}-\mathrm{C}_{6}\right)(6) \end{aligned}$ | 0.10 | 21 | $\begin{aligned} & \tau\left(\mathrm{N}^{2} \mathrm{C}_{1}\right)(18)+\tau\left(\mathrm{C}_{2}-\mathrm{C}_{3}\right)(17)+\tau\left(\mathrm{C}_{1}-\mathrm{C}_{2}\right)(14)+ \\ & \tau\left(\mathrm{C}_{6}-\mathrm{N}\right)(9)+\omega(\mathrm{N}-\mathrm{H})(9)+\omega(\mathrm{C}=\mathrm{O})(8)+ \\ & \tau\left(\mathrm{C}_{3}-\mathrm{C}_{4}\right)(6)+\tau\left(\mathrm{C}_{4}-\mathrm{C}_{5}\right)(5) \end{aligned}$ |

Note: 1. ${ }^{\text {a }}$ marked $\delta$ corresponds to crossing point.
2. ${ }^{\mathrm{b}}$ marked $\delta$ corresponds to points before/after crossing.


Figure 3. Variation of heat capacity of $\alpha$ NY6 as a function of temperature. [Theoretical values ( - ) and experimental data ( )]
neighbouring amide groups. This can be treated on the basis of perturbation theory using the 'intramolecular interactions ${ }^{, 28}$ between the adjacent peptide groups in the same chain and similar interchain peptide interactions in the neighbouring chains. As a consequence of these interactions the separation of $v(0, \pi)$ and $v$ $(\pi, 0)$ modes is not very large. It is approximately $20-25$ wave numbers. These crystal field splittings do not have significant change on dispersion profiles. Intermolecular interactions are important in another way. They give rise to low frequency lattice modes which have to be considered in the evaluation of heat capacity. This would involve calculation of the dispersion curves for a three-dimensional unit cell. The 3D system can be treated in an analogous manner. Even for this the calculation for an isolated chain are very important. Apart from lattice modes, the heat capacity is also very sensitive to skeletal and torsional modes which have been considered in the present work. Consideration of 3 D problem would increase the dimensionality of the problem manifold and would also render the visualization of the force field very difficult. In spite of the above unavoidable limitations, the present work using the isolated chain provides a good deal of information on the vibrational dynamics of $\alpha$ NY6. These studies may also prove useful for study of other Nylon derivatives.

## CONCLUSION

All the characteristic features of the dispersion curves such as region of high density of states, crossing between the various pairs of modes have been well interpreted from the vibrationl dynamics of Nylon-6 ( $\alpha$ NY6). In addition the heat capacity as a function of temperature in the region 70 to 310 K is in good agreement with the experimental data.

## REFERENCES

1. D. R. Holmes, C. W. Bunn, and D. J. Smith, J. Polym. Sci., 17, 159 (1955).
2. H. Armito, M. Ishibashi, M. Hirai, and Y. Chatani, J. Polym. Sci., 3, 317 (1965).
3. H. G. Urey and C. A. Bradley, Phys. Rev., 38, 1969 (1931).
4. T. Shimanouchi, J. Chem. Phys., 17, 245 (1949).
5. J. Jakes and S. Krimm, Spectrochim. Acta, Part A, 27, 19 (1971).
6. J. Jakes, P. Schmidt, and B. Schneider, Collect. Czech. Chem. Commun., 30, 996 (1965).
7. P. J. Hendra, D. S. Watson, M. E. A. Cudby, H. A. Willis, and P. Holliday, Chem. Commun., 1970, 1048 (1970).
8. P. J. Hendra, W. F. Maddams, I. A. M. Royaud, H. A. Willis, and V. Zichy, Spectrochim. Acta, Part A, 46, 747 (1990).
9. P. Papanek, J. E. Fischer, and N. S. Murthy, Macromolecules, 29, 2253 (1996).
10. P. Papanek, J. E. Fischer, and N. S. Murthy, Macromolecules, 35, 4175 (2002).
11. H. Tadokoro, M. Kobayashi, H. Yoshidome, K. Tai, and D. Makino, J. Chem. Phys., 49, 3359 (1968).
12. P. Schmidt, M. R. Fernadez, J. M. Pastor, and J. Roda, Polymer, 38, 2067 (1997).
13. W. Qian, N. G. Mirikin, and S. Krimm, Chem. Phys. Lett., 315, 125 (1999).
14. E. B. Wilson, J. C. Decius, and P. C. Cross, "Molecular vibrations: The theory of infrared and Raman vibrational spectra," New York, Dover Publications 1980.
15. P. W. Higgs, Proc. R. Soc. London, Ser. A, 220, 472 (1953).
16. B. Mannfors, K. Palmo, and S. Krimm, J. Mol. Struct., 556, 1 (2000).
17. R. M. Misra, R. Agrawal, P. Tandon, and V. D. Gupta, Eur. Polym. J., 40, 1787 (2004).
18. L. Burman, P. Tandon, V. D. Gupta, S. Rastogi, and S. Srivastava, Biopolymers, 38, 53 (1996).
19. W. T. King, I. M. Mills, and B. L. Crawford, J. Chem. Phys., 27, 455 (1957).
20. R. Pan, Verma-M. Nair, and B. Wunderlich, J. Therm. Anal., 35, 955 (1989).
21. B. Lebedev and A. Yevstropov, Macromol. Chem., 185, 1235 (1984).
22. V. Porwal, R. M. Misra, P. Tandon, and V. D. Gupta, Indian J. Biochem. Biophys., 41, 34 (2004).
23. S. Pande, P. Tandon, and V. D. Gupta, J. Macromol. Sci., Phys., 26, 161 (2001).
24. N. K. Misra, D. Kapoor, P. Tandon, and V. D. Gupta, Polymer, 41, 2095 (2000).
25. A. Gupta, P. Tandon, V. D. Gupta, and S. Rastogi, Polymer, 38, 2389 (1997).
26. M. Tasumi and T. Shimanouchi, J. Mol. Spectrosc., 9, 261 (1962).
27. Athas data bank 1993.
28. R. Agrawal, R. M. Misra, P. Tandon, and V. D. Gupta, Polymer, 45, 5307 (2004).

[^0]:    ${ }^{\dagger}$ To whom correspondence should be addressed (E-mail: poonam_tandon@hotmail.com).

