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ABSTRACT: A Monte Carlo (MC) study is made of the intrinsic viscosity ½�� and also of the mean-square radius

of gyration hS2i for regular three-arm star freely rotating chains of bond angles � ¼ 109�, 165�, and 175� and with the

Lennard–Jones 6-12 potentials between beads having the parameter values corresponding to the � temperature, in the

range of the total number n of bonds in the chain from 60 to 300. Three kinds of approximate values of ½�� are calcu-
lated by the use of the Kirkwood–Riseman (KR) approximation, the Zimm rigid-body ensemble approximation which

gives an upper bound ½��(U) to ½��, and by the Fixman method which gives a lower bound ½��(L), the KR value of ½��
being designated ½��(KR). On the basis of the three kinds of MC values of ½�� so obtained, the behavior of the ratio g� of

½�� for the star chain to that for the linear one, both having the same n, is examined as a function of the reduced contour

length �L as defined as the total contour length L of the corresponding Kratky–Porod (KP) wormlike chain divided by

its stiffness parameter ��1, the values of �L having been determined from an analysis of the present and previous MC

data for hS2i on the basis of the KP chain. It is found that the KR value g(KR)� of g� as defined by ½��(KR)(star)=
½��(KR)(linear) lies between the values of an upper bound g(U)� and a lower one g(L)� , which are defined by

½��(U)(star)=½��(L)(linear) and ½��(L)(star)=½��(U)(linear), respectively, irrespective of the values of �L. Further, the dif-

ference between the two bounds becomes very small for small �L, indicating that g(KR)� may give a good approximate

value for semiflexible or stiff chains. [doi:10.1295/polymj.PJ2007121]
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The mean-square radius of gyration hS2i and/or the
intrinsic viscosity ½�� as measures of the average chain
dimension of polymers in dilute solution depend
largely on their molecular structure, e.g., linear or
branched. It has therefore been of great interest to in-
vestigate the difference in hS2i or ½�� between linear
and branched polymer chains, and many theoretical
and experimental studies1–9 have already been made.
However, almost all of those studies were of flexible
polymers except for the theoretical one by Mansfield
and Stockmayer,4 the Monte Carlo (MC) one by
Zimm,5 and the experimental one by Goodson and
Novak.9 Mansfield and Stockmayer calculated hS2i
of the Kratky–Porod (KP) wormlike10,11 star chain
(without excluded volume) and examined the behav-
ior of its ratio gS to hS2i of the corresponding linear
one having the same total length of the chain contour
(molecular weight). Zimm evaluated ½�� of ‘‘worm-
like’’ four- and six-arm stars by the use of his rigid-
body ensemble approximation.12 Unfortunately, how-
ever, his calculation is rather limited, as mentioned
by himself that it was a preliminary survey. Goodson
and Novak synthesized three-arm star poly(n-hexyl
isocyanate) by living titanium-catalized coordination
polymerization,9 and then investigated the behavior
of hS2i, ½��, and gS as functions of molecular weight.

In this paper, we make an extensive MC study of ½��
for semiflexible regular three-arm star polymers in the
� state, which has not yet been made.
The regular three-arm star chain model used in this

study is essentially the same as that used in previous
MC studies13,14 of hS2i and the second virial co-
efficient of linear chains with intra- and intermolecu-
lar excluded volume, i.e., the freely rotating chain3,11

with a cutoff version of the Lennard–Jones (LJ) 6-12
potential15 between beads. On the basis of sets of
sample configurations generated by the use of the
Metropolis method16 with the pivot algorithm17–19

for the regular three-arm star and linear chains, both
having the same total chain length, the values of ½��
for the two kinds of chains and then the ratio g� of
the former ½�� value to the latter may be evaluated.
The evaluation of ½�� requires some comments. As

is well known, there is no method for the exact eval-
uation of ½�� since the hydrodynamic interaction be-
tween the segments composing polymer chains cannot
be treated properly. We therefore evaluate ½�� in
the three approximate ways: the Kirkwood–Riseman
(KR) approximation,3,20 the Zimm rigid-body ensem-
ble approximation,12 and the Fixman method.21,22 We
note that the Zimm method gives an upper bound to
½�� and the Fixman method gives a lower bound. On
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the basis of the three kinds of MC values, we examine
the behavior of ½�� and g� as functions of the total
chain length and the chain stiffness.

MODEL AND METHODS

Model
The MC model used in this study is the regular

three-arm star freely rotating chain, each arm com-
posed of m successive bonds of length unity, so that
it is composed of 3m (¼ n) bonds, in total, and 3mþ 1

beads whose centers are located at 3m� 3 junctions
of two successive bonds on the arms, at the three ter-
minal ends, and at the branch point (center), as illus-
trated in Figure 1. The angle between each pair of the
bonds connected to the center is fixed to be 120�, so
that those bonds are on the same plane. For conven-
ience, the three arms are designated the first, second,
and third ones and the m beads on the ith arm (i ¼ 1,
2, 3) are numbered ði� 1Þmþ 1, ði� 1Þmþ 2, � � �, im
from the center to the end, with the center bead num-
bered 0. The ith bond vector li (1 � i � 3m; i 6¼mþ 1,
2mþ 1) connects the centers of the ði� 1Þth and ith
beads with its direction from the ði� 1Þth to ith bead,
and lmþ1 and l2mþ1 are from the 0th to the ðmþ 1Þth
and ð2mþ 1Þth beads, respectively. All the 3m� 3

bond angles � (not supplement) except for those
around the center are fixed, so that the configuration
of the entire chain may be specified by the set
of 3m� 3 rotation angles f�3m�3g ¼ ð�1; � � � ; �m�1;
�mþ1; � � � ; �2m�1; �2mþ1; � � � ; �3m�1Þ apart from its
position and orientation in an external Cartesian coor-
dinate system, where �i is the internal rotation angle
around li.
The linear chain model, the counterpart of the

above star one, is the same as that used in refs 13
and 14, i.e., the freely rotating chain composed of n
bonds of length unity and nþ 1 beads, whose centers
are located at the n� 1 junctions of two successive
bonds and at the two terminal ends. We set n equal
to 3m. The beads are numbered 0; 1; 2; � � � ; n from

one end to the other, and li (1 � i � n) connects the
centers of the ði� 1Þth and ith beads with its direction
from the ði� 1Þth to the ith bead. All the n� 1 bond
angles are fixed at �, so that the configuration of
the linear chain may be specified by the set of n� 2
internal rotation angles f�n�2g ¼ ð�2; �3; � � � ; �n�1Þ
apart from its position and orientation in the external
Cartesian coordinate system.
The total potential energy U of the regular three-

arm star chain as a function of f�3m�3g may be given
by

Uðf�3m�3gÞ ¼
X1
i¼0

X2
j¼iþ1

Xm
k;l¼1

hðk þ l� 4ÞuðRðimþkÞð jmþlÞÞ

þ
X2
i¼0

Xm�4

j¼1

Xm
k¼jþ4

uðRðimþjÞðimþkÞÞ

þ
X2
i¼0

Xm
j¼4

uðR0ðimþjÞÞ

(regular three-arm star) ð1Þ

and that of the linear chain as a function of f�n�2g by

Uðf�n�2gÞ ¼
Xn�4

i¼0

Xn
j¼iþ4

uðRijÞ (linear) ð2Þ

where hðxÞ is a unit step function such that hðxÞ ¼ 1
for x � 0 and hðxÞ ¼ 0 for x < 0 and Rij is the distance
between the centers of the ith and jth beads. We note
that in eqs 1 and 2 the interactions between the third-
neighbor beads along the chain have been neglected,
since they seem to make the chain locally take the
cis conformation to excess. We adopt as the pair po-
tential uðRÞ (of mean force) the cutoff version of the
LJ 6-12 potential given by

uðRÞ ¼ 1 for 0 � R < c�

¼ uLJðRÞ for c� � R < 3�

¼ 0 for 3� � R ð3Þ
where uLJðRÞ is the LJ potential15 given by

uLJðRÞ ¼ 4�
�

R

� �12

�
�

R

� �6
" #

ð4Þ

with � and � the collision diameter and the depth of
the potential well at the minimum of uLJðRÞ, respec-
tively. We note that uðRÞ given by eqs 3 is the LJ
potential cut off at the upper bound 3�. The lower
bound c� in eqs 3 has been introduced for numerical
convenience; the factor c is properly chosen so that
the Boltzmann factor e�uLJ=kBT may be regarded as
numerically vanishing compared to unity, where kB
is the Boltzmann constant and T is the absolute tem-
perature. In practice, in double-precision computation,
we put

120°

θ

0

1
2

m

m+1

2m

2m+1
3m

Figure 1. Illustration of the Monte Carlo model for the regu-

lar three-arm star chain.
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c ¼ ½2=ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 36T�

p
Þ�1=6 ð5Þ

so that e�uLJ=kBT . 2� 10�16 for 0 � R < c�, where
T� is the reduced temperature defined by T� ¼
kBT=�. Further, we put � ¼ 1 for simplicity, as previ-
ously13,14 done.

MC Sampling
The MC simulation algorithm used in this study is

the same as that used in ref 13 and 14 and is essen-
tially the same as the Stellman–Gans18 version of
the pivot algorithm17,19 for a sequential generation
of chain configurations. A brief description is given
of the algorithm for the regular three-arm star chain,
which is in principle the same as that for the linear
chain described previously.13

First, we generate an initial configuration fl3mg ¼
ðl1; l2; � � � ; l3mÞ by trial and error. A trial set of the
rotation angles f�3m�3g are randomly generated in
the interval ½��; ��. The branch point of the star chain
is located at the origin of the external Cartesian coor-
dinate system and the first bond vector limþ1 (i ¼ 0,
1, 2) on the (iþ 1)th arm is laid in the xz plane such
that lT1 ¼ ð0; 0; 1Þ, lTmþ1 ¼ ð

ffiffi
3

p

2
; 0;� 1

2
Þ, and lT2mþ1 ¼

ð�
ffiffi
3

p

2
; 0;� 1

2
Þ, with the superscript T indicating the

transpose. The succeeding bond vector limþj ( j ¼ 2;
3; � � � ;m) on the (iþ 1)th arm may be given by

limþj ¼ Ci � Að�; �imþ1Þ � Að�; �imþ2Þ � � �
Að�; �imþj�1Þ � ð0; 0; 1ÞT

ð6Þ

where Ci (i ¼ 0; 1; 2) is the orthogonal transformation
matrix given by

Ci ¼
�1=2 0

ffiffiffi
3

p
=2

0 1 0

�
ffiffiffi
3

p
=2 0 �1=2

0
B@

1
CA

i

ð7Þ

and Að�; �i�1Þ is the orthogonal transformation matrix
from the ith to the ði� 1Þth localized Cartesian coor-
dinate system11 given by

Að�; �Þ ¼
cos � cos� sin� � sin � cos�

cos � sin� � cos� � sin � sin�

� sin � 0 � cos �

0
B@

1
CAð8Þ

The ith localized system associated with li (2 �
i � 3m; i 6¼mþ 1; 2mþ 1) is defined as follows.
The zi axis is taken along li, the xi axis is in the plane
of li�1 and li with its direction chosen at an acute an-
gle with li�1, and the yi axis completes the right-hand-
ed system, so that �i ¼ 0 in the trans conformation.
Since the branch point is located at the origin, the vec-
tor position rimþj (i ¼ 0; 1; 2; j ¼ 1; 2; � � � ;m) of the
center of the jth bead on the (iþ 1)th arm is given by

rimþj ¼
Xj

k¼1

limþk ð9Þ

If all the distances between the centers of beads are
greater than or equal to c�, the above-given trial con-
figuration is adopted as the initial configuration. If not,
this trial is repeated until an initial satisfactory config-
uration is obtained.
Next the initial configuration fl3mg so obtained is

sequentially changed by the pivot algorithm. A trial
configuration is generated by rotating the chain with
a given present configuration by an angle �� random-
ly chosen in the interval ½��; �� around a bond ran-
domly chosen from the 3m� 3 bonds li (1 � i �
3m� 1; i 6¼m; 2m). If the pth bond is chosen, the
set of rotation angles f�0

3m�3g in the trial configuration
are given by

�0
i ¼ �i þ �ip�� ð1 � i � 3m� 1; i 6¼m; 2mÞ ð10Þ

with �ip the Kronecker delta. Practically, the trial con-
figuration fl03mg is generated from f�0

3m�3g by the use
of the numerical procedure described previously.13

Then, the adoption of the trial configuration so gener-
ated as the next one is determined by the Metropolis
method of importance sampling16 on the basis of the
total potential energy given by eq 1 for the trial and
present configurations, as described previously.13

By the use of the model and algorithm described
above for the regular three-arm star chain and previ-
ously for the linear chain,13 we sample one configura-
tion at every Mnom (nominal) pivot steps, and N con-
figurations in total, for both chains. Then, the
ensemble average hAi of a variable A may be evaluat-
ed on the basis of the N sample configurations so gen-
erated. If A is independent of the orientation of the
chain like the squared radius of gyration S2, it is a
function only of f�	g with 	 being equal to 3m� 3

for the star chain and n� 2 for the linear one, so that
hAi may be evaluated from

hAi ¼ N�1
X
f�	g

Aðf�	gÞ ð11Þ

where the sum is taken over the N sample configura-
tions. If A is dependent on the orientation, on the other
hand, the above average must be evaluated after ran-
domizing the orientation for each sample configura-
tion. Note that N �Mnom pivot steps are required to
carry out a MC run in both cases. All the MC runs
have been carried out at the reduced temperature T� ¼
3:72 (�) at which hS2i=n for the linear chains with
� ¼ 1 and � ¼ 109� becomes a constant independent
of n for very large n.13

All numerical work has been done by the use of a
personal computer with an AMD Athlon XP 2600+
CPU. A source program coded in C has been compiled
by the GNU C compiler version 2.95.3 with real
variables of double precision. For a generation of
pseudorandom numbers, we have used the subrou-
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tine package MT19937 supplied by Matsumoto and
Nishimura23 instead of the subroutine RAND included
in the standard C library.

Mean-square Radius of Gyration
The mean-square radius of gyration hS2i has been

evaluated from eq 11, where S2 for each sample chain
has been calculated from

S2 ¼
1

nþ 1

Xn
i¼0

Si
2 ð12Þ

where Si is the magnitude of the vector distance Si of
the center of the ith bead from the center of mass of
the chain, i.e.,

Si ¼ ri � rc.m. ð13Þ
with rc.m. the vector position of the center of mass of
the sample chain given by

rc.m. ¼
1

nþ 1

Xn
i¼0

ri ð14Þ

Intrinsic Viscosity
The intrinsic viscosity ½�� of the bead model with-

out the contribution of each single-bead (i.e., without
consideration of a distribution of frictional force on
the surface of each bead) may be written in terms of
the (total) frictional force FT

i ¼ ðFix;Fiy;FizÞ exerted
by the ith bead on a surrounding solvent and STi ¼
ðSix; Siy; SizÞ defined by eq 13 as follows,3

½�� ¼ �
NA

2M�0g

Xn
i¼0

hFiySix þ FixSiyi ð15Þ

where NA is the Avogadro constant, M is the molecu-
lar weight, �0 is the viscosity coefficient of the sol-
vent, and g is the velocity gradient of a simple shear
flow field. The frictional force Fi satisfies the follow-
ing hydrodynamic equations,

Fi ¼ 
ðui � v0i Þ � 

Xn
j¼0
6¼i

Tij � Fj

ði ¼ 0; 1; 2; � � � ; nÞ

ð16Þ

where 
 is the friction coefficient of the bead given by
the Stokes relation 
 ¼ 3��0db with db the hydrody-
namic diameter of the bead, ui is the velocity of the
ith bead, v0i is the unperturbed velocity of the solvent
at the center of the ith bead, and Tij is the Oseen ten-
sor representing the hydrodynamic interaction be-
tween the ith and jth beads.
In the numerical evaluation of ½��, the linear simul-

taneous equations 16 are first solved for Fi for the
polymer chain immersed in the solvent having the un-
perturbed flow field,

v0i ¼ gexey � ri ð17Þ

in the external Cartesian coordinate system (ex; ey; ez),
and then the ensemble averages on the right-hand side
of eq 15 are evaluated by the use of the values of Fi so
obtained. Since ½�� cannot be evaluated exactly, as
mentioned already, it has been approximately evaluat-
ed in the three ways: the KR approximation,3,20 the
Zimm rigid-body ensemble approximation,12 and the
Fixman method.21,22 In what follows, we consider
the touched-bead model so that db ¼ 1.

KR Approximation. In the KR approximation, the
polymer chain in the unperturbed flow filed given by
eq 17 is assumed to move with the translational veloc-
ity equal to that of the unperturbed flow at its center of
mass and to rotate around its center of mass with the
angular velocity � 1

2
gez, so that ui in eq 16 may be

given by

ui ¼
1

2
gðexey � eyexÞ � Si ð18Þ

Further, the Oseen tensor defined by

Tij ¼
1

8��0Rij

Iþ
RijRij

Rij
2

� �
ð19Þ

with I the unit tensor and Rij ¼ Sj � Si is replaced by
its ensemble average hTiji, which may be written in
the form,

hTiji ¼
1

6��0
hRij

�1iI ð20Þ

In practice, ½�� in the KR approximation, which we
designate ½��(KR), has been evaluated numerically as
follows: First evaluate the average hRij

�1i by the use
of the N sample chains, then solve the linear simulta-
neous equations 16 with hTiji so obtained in place of
Tij for each sample chain having a random orientation
with respect to the external system, and finally calcu-
late ½��(KR) from eq 15. We note that this numerical
recipe correctly gives ½��(KR), although it seems appa-
rently somewhat different from the original one.3,20

Rigid-Body Ensemble Approximation. The rigid-
body ensemble approximation has been proposed by
Zimm12 in order to evaluate ½�� by MC simulation,
in which each sample chain having a rigid conforma-
tion immersed in the shear flow given by eq 17 is as-
sumed to move with an unknown translational veloc-
ity U and to rotate around its center of mass with the
angular velocity � 1

2
gez under the condition that the

total frictional force F exerted by the chain on the sol-
vent vanishes. Then ui in eq 16 may be given by

ui ¼ Uþ
1

2
gðexey � eyexÞ � Si ð21Þ

In this approximation, Fi and also U are evaluated for
each sample chain having a random orientation by
solving the linear simultaneous equations 16 with ui
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and v0i given by eqs 21 and 17, respectively, along
with the condition,

F ¼
Xn
i¼0

Fi ¼ 0 ð22Þ

Then ½�� may be calculated from eq 15 with Fi so
evaluated.
In the practical evaluation of ½��, we have used the

modified Oseen tensor24,25 Tm;ij defined by

Tm;ij ¼ Tij þ
1

16��0Rij

db

Rij

� �2 1

3
I�

RijRij

Rij
2

� �
ð23Þ

in place of the (original) Oseen tensor Tij in order to
avoid possible numerical troubles, i.e., the Zwanzig
singularities26,27 associated with the touched-bead
model. We note that hTm;iji becomes identical with
hTiji.
Since the rigid-body ensemble approximation gives

an upper bound to ½��, as pointed out by Wilemski and
Tanaka28 and by Fixman,21 ½�� obtained in this ap-
proximation is designated ½��(U).
Fixman Method. Fixman21 has proposed an MC

method for evaluating a lower bound ½��(L) to ½��.
On the basis of a formal expression for ½�� by the
use of the formal solution of the diffusion equation
for the polymer chain, he has derived the following in-
equality,

½�� �
NA

M�0g2kBT
½2hVT � Da

�1 � Vi

� hVT � Da
�1 � D � Da

�1 � Vi�
ð24Þ

where V is the column matrix with the ith element Vi

given by

Vi ¼
1

2
gðexey þ eyexÞ � Si ð25Þ

D is the 3ðnþ 1Þ � 3ðnþ 1Þ (true) diffusion matrix
whose ij element is the 3� 3 matrix Dij defined by

Dij ¼ kBT½
�1�ijIþ ð1� �ijÞTm;ij� ð26Þ

and Da is an approximate expression for D, which is
desired to be easier to handle. Both the two tensors
D and Da are required to be positive definite, symmet-
ric, and divergenceless, and the former given by eq 26
satisfies the requirements. We note that in eq 24
equality holds if Da ¼ D.
For any given expression for Da satisfying the

above requirements, the two kinds of averages on
the right-hand side of eq 24 may be evaluated on
the basis of the MC sample configurations. The re-
maining problem is to find a tractable expression for
Da, for which Fixman has proposed the following ex-
pression,22

Da
�1 ¼ 	ðDp

�1 þ D0
p
�1Þ ð27Þ

In this expression, Dp and D0
p the 3ðnþ 1Þ � 3ðnþ 1Þ

matrices whose ij elements are the 3� 3 matrices
given by

Dp;ij ¼ kBT½
�1�ijIþ ð1� �ijÞhTiji� ð28Þ
D0

p;ij ¼ kBT½ð�
Þ�1�ijIþ ð1� �ijÞhTiji� ð29Þ
respectively, 	 is a constant chosen so that the right-
hand side of eq 24 becomes the maximum, and �
is a constant properly chosen in the range of 0 <
� < 1. Then the desired expression for ½��(L) is given
by the maximum of the the right-hand side of eq 24
with eq 27 and may be written in the form,

½��(L) ¼
NA

M�0g2kBT

hVT � ðDp
�1 þ D0

p
�1Þ � Vi2

hVT � ðDp
�1 þ D0

p
�1Þ � D � ðDp

�1 þ D0
p
�1Þ � Vi

" #
ð30Þ

As for the value of the constant �, it has been shown
by Freire and Rey6 that in the case of Gaussian star
chains ½��(L) given by eq 27 is insensitive to the value
in the range of 0 < � < 1 and therefore � may be set
equal to 0.5. Following them, we have put � ¼ 0:5.

RESULTS AND DISCUSSION

We have carried out MC runs to generate sample
configurations for the regular three-arm star and linear
freely rotating chains with n ð¼ 3mÞ ¼ 60{300 and
� ¼ 109�, 165�, and 175�, with the parameters � and
T� for the LJ potential being fixed to be 1 and 3.72,
respectively. The freely rotating chain with � ¼ 109�

corresponds to a flexible polymer and that with

� ¼ 165� or 175� to a semiflexible or stiff polymer.
The value 3.72 of T� was previously13 determined
so that hS2i=n for the linear chain with � ¼ 109�

became a constant independent of n for very large n,
and therefore it corresponds to the � temperature, as
mentioned in the previous section. For each chain, 5
MC runs have been carried out to obtain 104 sample
configurations, so that 5� 104 sample configurations
have been generated in total. We note that we have
adopted N ¼ 104 in the present study of ½��, which
is one order of magnitude smaller than 105 adopted
in the previous study of hS2i,13 since the computation
time necessary for each sample configuration is much
longer for ½�� than for hS2i.
On the basis of the sample configurations so gener-
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ated, we first examine the behavior of the MC values
of hS2i as a function of n and compare them with the
theoretical values for the ideal freely rotating chain
without interactions between beads, which we call
the ideal chain hereafter, and for the corresponding
KP chain. Then we examine the behavior of gS as a
function of the reduced contour length �L, i.e., the
total contour length L of the corresponding KP chain
divided by its the stiffness parameter ��1 having the
dimension of length. Finally, we examine the behavior
of g� as a function of �L, which is the main purpose
of the present study.

Mean-Square Radius of Gyration
In Table I are given the MC values of hS2i=n for

both the regular three-arm star and linear chains along
with the values of the acceptance fraction, i.e., the
mean number of changes in configuration in the
Mnom pivot steps divided by Mnom. Specifically, for
example, for the regular three-arm star chain with n ¼
60 ðm ¼ 20Þ, 5 independent MC runs have been re-
peated, in each of which 200� 104 pivot steps have

resulted in 59� 104 changes in configuration. The
values of hS2i=n and its statistical error given in the
second column for the star and the fourth for the linear
are those of the mean and the standard deviation, re-
spectively, of the results of the 5 independent MC
runs.
Figure 2 shows double-logarithmic plots of hS2i=n

against n with the present MC data given in Table I
for the regular three-arm star ( ) and linear ( )
chains with � ¼ 109� along with the previous MC data
for the linear chains ( ).13 Although the present num-
ber of sample configurations is smaller than the previ-
ous one, the unfilled and filled triangles seem to form
a single-composite curve, indicating that the present
data are so accurate as the previous ones.
In the figure, the lower and upper solid line seg-

ments connect the theoretical values for the regular
three-arm star and linear ideal chains, respectively.
The former values have been calculated from

hS2i ¼
7

54

1� cos �

1þ cos �
nþ

1

54

31þ 90 cos � � 13 cos2 �

ð1þ cos �Þ2
þ

1

18

19þ 49 cos � þ 71 cos2 � þ 5 cos3 �

ð1þ cos �Þ3
1

nþ 1

�
2ð1þ 2 cos �Þ
ð1þ cos �Þ3

1� ð� cos �Þn=3þ1

nþ 1
þ

1

27

ð1� cos �Þð37� 16 cos � þ cos2 �Þ
ð1þ cos �Þ3

1

ðnþ 1Þ2

�
2ð2þ cos2 �Þ
ð1þ cos �Þ4

1� ð� cos �Þn=3þ1

ðnþ 1Þ2
þ

3

ð1þ cos �Þ4

�
1� ð� cos �Þn=3þ1

�2
ðnþ 1Þ2

(regular three-arm star) ð31Þ

Table I. Results of Monte Carlo simulations for hS2i=n

three-arm star linear

n
hS2i=n (error%)

Acceptance
fraction

hS2i=n (error%)
Acceptance
fraction

� ¼ 109�

60 0.2964 (0.5) 59/200 0.3672 (0.6) 60/100

120 0.3072 (0.4) 174/1000 0.3832 (0.3) 151/300

180 0.3099 (0.4) 243/2000 0.3896 (0.7) 226/500

240 0.3090 (0.7) 459/5000 0.3951 (0.3) 416/1000

300 0.3108 (0.9) 363/5000 0.3960 (0.4) 388/1000

� ¼ 165�

60 1.886 (0.1) 199/200 3.571 (0.1) 99/100

120 3.028 (0.2) 995/1000 5.285 (0.2) 299/300

180 3.816 (0.1) 1979/2000 6.267 (0.3) 498/500

240 4.380 (0.1) 4919/5000 6.910 (0.4) 993/1000

300 4.801 (0.2) 4888/5000 7.349 (0.5) 989/1000

� ¼ 175�

60 2.292 (0.0) 199/200 4.934 (0.0) 100/100

120 4.342 (0.0) 999/1000 9.296 (0.0) 300/300

180 6.289 (0.0) 1999/2000 13.29 (0.1) 500/500

240 8.141 (0.0) 4999/5000 16.97 (0.0) 999/1000

300 9.898 (0.1) 4999/5000 20.34 (0.1) 999/1000
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Figure 2. Double-logarithmic plots of hS2i=n against n for the

regular three-arm star and linear chains, both with � ¼ 109� and

� ¼ 1 at T� ¼ 3:72. The unfilled circles and triangles represent

the present MC data for the regular three-arm star and the linear

chains, respectively, and the filled triangles represent the previous

MC data13 for the latter. The lower and upper solid line segments

connect the theoretical values of the regular three-arm star and lin-

ear ideal freely rotating chains, respectively. The lower and upper

dashed curve represent the theoretical values of the corresponding

KP regular three-arm star and linear chains, respectively.
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which is a special case of the theoretical expression obtained by Guenza et al.29 for regular f -arm star freely ro-
tating chain, and the latter from

hS2i ¼
1

6

1� cos �

1þ cos �
nþ

1

6

1þ 6 cos � � cos2 �

ð1þ cos �Þ2
þ

1

6

�1� 7 cos � þ 7 cos2 � þ cos3 �

ð1þ cos �Þ3
1

nþ 1

�
2 cos2 �

ð1þ cos �Þ4
1� ð� cos �Þnþ1

ðnþ 1Þ2
(linear) ð32Þ

It is seen for both the regular three-arm star and linear chains that the MC values are ca. 20% larger than the cor-
responding ideal-chain values in the limit of n ! 1. This is due to the fact that the unperturbed (�) dimension of
a polymer chain may be considerably enlarged by nonbonded interactions.30

In Figure 2 are also shown the theoretical values for the KP regular three-arm star and linear chains, the lower
and upper dashed curves representing the respective values. The former values have been calculated from

hS2i ¼
7L

54�
�

1

3�2
þ

1

4�3L
þ

1

4�3
ð1� e�2�L=3Þ �

3

16�4L2
ð1� e�4�L=3Þ

(KP regular three-arm star) ð33Þ
which is a special case of the theoretical expression obtained by Mansfield and Stockmayer4 for a general KP star
chain, and the latter from31

hS2i ¼
L

6�
�

1

4�2
þ

1

4�3L
�

1

8�4L2
ð1� e�2�LÞ (KP linear) ð34Þ

In order to plot the KP theoretical values in the figure,
we have converted L to n by the use of the relation

log n ¼ logð�LÞ þ logð��1nLÞ ð35Þ

where nL ¼ n=L is the number of bonds per unit con-
tour length, and used the values 3.01 and 1.24 of ��1

and nL, respectively, which values were previously13

determined in such a way that the theoretical values
of the KP linear chain could most closely reproduce
the previous MC values for the linear chain ( ) with
n & 50.
Figures 3 and 4 show similar plots for the regular

three-arm star and linear chains with � ¼ 165� and

175�, respectively, which values of � correspond to
a semiflexible or stiff chain. All the symbols, line seg-
ments, and curves in the figures have the same mean-
ing as those in Figure 2. It is seen that the MC values
in each figure are almost identical with the corre-
sponding ideal-chain values in contrast to the case
of � ¼ 109� which corresponds to a flexible chain.
This may be arising from the fact that effects of intra-
molecular interactions between beads become small
with increasing chain stiffness if the total chain length
is not very long. We therefore determine the values of
the parameters ��1 and nL of the corresponding KP
chain in each case of � from an analysis of the linear
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Figure 3. Double-logarithmic plots of hS2i=n against n for the

regular three-arm star and linear chains, both with � ¼ 165� and

� ¼ 1 at T� ¼ 3:72. All the symbols, line segments, and curves

have the same meaning as those in Figure 2.
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Figure 4. Double-logarithmic plots of hS2i=n against n for the

regular three-arm star and linear chains, both with � ¼ 175� and

� ¼ 1 at T� ¼ 3:72. All the symbols, line segments, and curves

have the same meaning as those in Figure 2.
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ideal-chain values with n & 102. In each of Figures 3
and 4, the upper dashed curve represents the best-fit
KP values calculated from eqs 34 and 35 with the pa-
rameter values given in Table II. It is seen that the
theoretical values for the KP regular three-arm star
(the lower dashed curve in each figure) calculated
from eqs 33 and 35 with those parameter values
may well reproduce the corresponding MC values.
We note that the ��1 value so determined is 1.3%
larger than the ��1 value calculated from the (ideal)
relation ��1 ¼ 2=ð1þ cos �Þ in the case of � ¼ 109�

and becomes identical with the latter value for
� � 165�.
Now we proceed to examine the behavior of gS as

a function of �L. Values of gS are plotted against
logð�LÞ in Figure 5. The three sets of the five open
circles represent the MC values with the indicated val-
ues of �, calculated from the hS2i values for the regu-
lar three-arm star and linear chains given in Table I
with n converted to �L by the use of eq 35 with the
values of ��1 and nL given in Table II. The solid line
segments associated with each set of the MC data
points connect the corresponding ideal-chain values
calculated from eqs 31 and 32 with n converted to
�L in the above-mentioned manner. The dashed curve
represents the KP theoretical values calculated from
eq 33 and 34, with the upper and lower dotted hori-
zontal lines representing the asymptotic values 7/9
in the (ideal) random-coil limit and 4/9 in the rigid-
rod limit, respectively.
In the cases of � ¼ 165� and 175� (semiflexible

chain), the MC and ideal-chain values are almost
identical with each other as a necessary consequence
of the good agreement between the MC and ideal-
chain values of hS2i (see Figures 3 and 4). A remark-
able point is that the two kinds of gS values for
� ¼ 109� semiquantitatively agree with each other in
spite of the rather large disagreement between the
MC and ideal-chain values of hS2i (see Figure 2).
Both the MC and ideal-chain values for � ¼ 109� mo-
notonically decrease with increasing n and approach
the asymptotic value 7/9 in the limit of n ! 1, while
the KP value monotonically increases.

Intrinsic Viscosity
It is convenient to present MC results for ½�� in

terms of the dimensionless quantity X� defined by

½�� ¼
3�NAn

3=2

2M
X� ð36Þ

As in the case of ½��, the superscript (KR), (U), and (L)
are used to indicate that the X� values have been eval-
uated in the KR approximation, the Zimm rigid-body
ensemble approximation, and the Fixman method, re-
spectively. In Table III are given the values of X(KR)

� ,
X(U)
� , and X(L)

� along with their statistical errors, which
are the mean and the standard deviation, respectively,
of the results of the 5 independent MC runs, for both
the regular three-arm star and linear chains.
Corresponding to the three kinds of X� (or ½��), we

may consider the three kinds of g�, i.e., g
(KR)
� , g(Z)� , and

g(F)� defined by

gðKRÞ� ¼
½��ðKRÞ(star)
½��ðKRÞ(linear)

;

gðZÞ� ¼
½��ðUÞ(star)
½��ðUÞ(linear)

;

gðFÞ� ¼
½��ðLÞ(star)
½��ðLÞ(linear)

ð37Þ

We note that g(Z)� is not an upper bound to g�, nor is
g(F)� a lower bound. Figure 6 shows plots of g(KR)�

( ), g(Z)� ( ), and g(F)� ( ) against logð�LÞ. Three sets
of the data points represent the MC values with the in-
dicated values of �, calculated from eqs 36 and 37
with the three kinds of X� values given in Table III
and with n converted to �L in the above-mentioned
manner. It is interesting to see that the g(Z)� and g(F)�
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Figure 5. Plots of gS against logð�LÞ for the regular three-arm
star. The three sets of the five unfilled circles represent the MC

values with the indicated values of �. The solid line segments as-

sociated with each set of the MC data points connect the corre-

sponding theoretical values of the ideal freely rotating and the

dashed curve represents the KP theoretical values.4 The upper

and lower dotted horizontal lines represent the asymptotic value

7/9 in the (ideal) random-coil limit and 4/9 in the rigid-rod limit,

respectively.

Table II. Values of the KP model parameters

� ��1 nL

109� 3.01
a 1.24

a

165� 5.77 � 10 1.00
175� 5.26 � 102 1.00

aThese values have been determined in the previous study.13
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values almost completely agree with each other irre-
spective of the value of �L, i.e., chain stiffness (�)
and total chain length (n), although the X(U)

� and X(L)
�

values themselves do not. As for g(KR)� , its value agrees
well with the g(Z)� and g(F)� values for very small �L,
i.e., for � ¼ 175� with small n, but deviates upward
from those with increasing �L. In the case of � ¼
109� (flexible chain), g(KR)� values are ca. 5% larger
than the corresponding g(Z)� and g(F)� values.
Available theoretical asymptotic values of g� in the

(ideal) random-coil limit (n ! 1 or �L ! 1) are
0:907 obtained by Zimm and Kilb2 for the (dynamic)
Gaussian spring-bead model with the preaveraged
Oseen tensor and 0.90 obtained by Irurzun32 for the
Gaussian chain in the KR approximation. In Figure 6,
the dotted horizontal line represents the Zimm–Kilb
value 0:907. Naturally, the g(KR)� values for � ¼ 109�

agree well with the Zimm–Kilb value and also with
the Irurzun one. If those MC values were appreciably
different from the theoretical asymptotic values, the
sample configurations of the regular three-arm star
might not have been properly generated.
The approximate relation g� ’ gS

1=2 proposed by
Zimm and Kilb2 for Gaussian branched chains has been
often used in analyses of experimental data. The dash-
ed curve in Figure 6 represents the values of gS

1=2 for
the KP regular three-arm star chain calculated from
eqs 33 and 34. It is seen that the approximate relation
overestimates g� for semiflexible or stiff polymers.
Finally, we consider upper and lower bounds to g�.

From the inequality ½��(L) � ½�� � ½��(U) that holds for
both the regular three-arm star and linear chains, we
have the following two inequalities,

g� � gðUÞ� ¼
½��ðUÞ(star)
½��ðLÞ(linear)

;

g� � gðLÞ� ¼
½��ðLÞ(star)
½��ðUÞ(linear)

ð38Þ

Figure 7 shows the plots of g(KR)� ( ) against logð�LÞ
reproduced from Figure 6, where the upper and lower
ends of each vertical error bar represent the g(U)� and
g(L)� values, respectively, calculated from eqs 36 and
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Figure 6. Plots of g(KR)� , g(Z)� , and g(F)� against logð�LÞ. Three
sets of the five unfilled circles, the five unfilled triangles, and

the five unfilled inverted triangles represent the MC data of

g(KR)� , g(Z)� , and g(F)� , respectively, with the indicated values of �.

The dotted horizontal line represents the Zimm–Kilb2 value

0.907 for the Gaussian chain and the dashed curve the values of

gS
1=2 for the KP chain.

Table III. Values of X(KR)
� , X(U)

� , and X(L)
�

three-arm star linear
n

X(KR)
� (error%) X(U)

� (error%) X(L)
� (error%) X(KR)

� (error%) X(U)
� (error%) X(L)

� (error%)

� ¼ 109�

60 0.3041 (0.3) 0.2724 (0.5) 0.2506 (0.4) 0.3333 (0.3) 0.3069 (0.3) 0.2830 (0.3)

120 0.3212 (0.4) 0.2844 (0.4) 0.2559 (0.4) 0.3528 (0.4) 0.3211 (0.4) 0.2898 (0.5)

180 0.3290 (0.4) 0.2883 (0.4) 0.2566 (0.6) 0.3632 (0.5) 0.3293 (0.6) 0.2931 (0.6)

240 0.3329 (0.5) 0.2903 (0.6) 0.2554 (0.8) 0.3697 (0.2) 0.3350 (0.3) 0.2951 (0.3)

300 0.3360 (0.7) 0.2933 (0.8) 0.2555 (0.9) 0.3743 (0.5) 0.3387 (0.5) 0.2957 (0.6)

� ¼ 165�

60 1.763 (0.3) 1.778 (0.2) 1.726 (0.3) 2.911 (0.5) 2.961 (0.5) 2.880 (0.5)

120 3.217 (0.2) 3.237 (0.3) 3.119 (0.2) 5.022 (0.3) 5.135 (0.3) 4.950 (0.3)

180 4.455 (0.3) 4.478 (0.2) 4.287 (0.3) 6.634 (0.3) 6.765 (0.4) 6.491 (0.4)

240 5.510 (0.4) 5.521 (0.2) 5.264 (0.4) 7.946 (0.7) 8.071 (0.7) 7.721 (0.7)

300 6.413 (0.3) 6.379 (0.3) 6.088 (0.3) 9.062 (0.5) 9.161 (0.5) 8.745 (0.5)

� ¼ 175�

60 2.129 (0.1) 2.127 (0.1) 2.087 (0.1) 3.988 (0.6) 4.020 (0.5) 3.899 (0.5)

120 4.572 (0.2) 4.595 (0.1) 4.468 (0.2) 8.708 (0.3) 8.832 (0.4) 8.516 (0.4)

180 7.263 (0.2) 7.327 (0.2) 7.092 (0.2) 13.80 (0.4) 14.06 (0.3) 13.52 (0.3)

240 10.08 (0.2) 10.23 (0.2) 9.848 (0.3) 19.06 (0.2) 19.49 (0.3) 18.70 (0.3)

300 13.01 (0.2) 13.24 (0.2) 12.71 (0.3) 24.28 (0.3) 24.93 (0.4) 23.87 (0.4)
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38 with the values of X(U)
� and X(L)

� given in Table III
and with n converted to �L in the above-mentioned
manner. The difference between the upper and lower
bounds increases with increasing �L. Although the
differences are unexpectedly large for flexible chains
(� ¼ 109�), they are sufficiently small for semiflexible
or stiff chains (� ¼ 165�, 175�) to let us conclude that
g(KR)� may give a good approximate value for the latter
chains.

CONCLUDING REMARKS

We have examined the behavior of the ratio g� of
the intrinsic viscosity ½�� for the regular three-arm star
chain to that for the linear one, both in the � state and
having the same total chain length, by MC simulation
of freely rotating chains with the LJ 6-12 potentials
between beads in a cutoff version. On the basis of
the values of the upper bound ½��(U) and lower one
½��(L) to ½�� evaluated by the Zimm rigid-body ap-
proximation and by the Fixman method, respectively,
the values of the upper bound g(U)� and lower one g(L)�

to g� have been estimated. It has then been found that
the KR value g(KR)� of g� lies between the two bounds
irrespective of the number n of bonds and the bond
angle � (or the reduced contour length �L). Although
the differences between the two bounds are unexpect-
edly large for flexible chains (� ¼ 109�), they are suf-
ficiently small for semiflexible or stiff chains (� ¼
165�, 175�) to let us conclude that g(KR)� may give a
good approximate value for the latter chains. We
therefore proceed to make a theoretical study of g�
for the unperturbed KP chain in the KR approximation
and to construct an interpolation formula useful for an
analysis of experimental data.
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