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ABSTRACT: A theory of drop-wise addition polymerization is developed. Because of the linear increase of the

reaction volume V , the system gives rise to a new type of distribution function for cyclic species that can be expressed

by the sum of two terms: the conventional distribution term and a extra term due to the dilution effect. The present

result is an extension of the conventional homogeneous polymerization that corresponds to a special case without

the extra term. Making use of the result we derive the gel point formula for this unique polymerization. The theoretical

result is compared with recent observed data. [doi:10.1295/polymj.PJ2007071]
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Organic chemists often make use of the technique
of the drop-wise addition. When the synthesis of mac-
rocyclic compounds is designed, the drop-wise addi-
tion has been employed frequently: ‘Together with
use of a large amount of solvents a technique is intro-
duced that a reagent is added slowly keeping the sys-
tem in high dilution, since the molecule is more likely
to react with itself than with other molecules in high
dilution.’ In contrast, the same technique has rarely
been employed in polymer chemistry where construct-
ing intermolecular bonds in longer sequence is neces-
sarily required; intramolecular bonds simply waste
valuable functional units, thus giving useless, unwel-
come cyclic by-products.
Quite recently an interesting synthetic architecture

of the drop-wise addition polymerization was put
forth by Turkish group.1 It has been known earlier that
aliphatic isocyanates (-NCO) react with aliphatic
amines (-NH2) more than one thousand times faster
than with alcohols (-OH). Making full use of this ve-
locity difference between amines and alcohols, Yilgor
and coworkers investigated the polymerizability of
diisocyanates and diamines in isopropyl alcohol
(IPA). Typically an IPA solution of a diisocyanate
and that of a diamine are prepared separately; the di-
amine solution is introduced into the reaction vessel
and the diisocianate solution the addition funnel; then
the diisocianate solution is slowly added drop-wise
onto the diamine solution. They found that the reac-
tion is very fast at room temperature and yields clear
and homogeneous polymer solutions of high molecu-
lar weight.
To date no theoretical treatment has been put forth

for the drop-wise addition polymerization. The pur-
pose of this paper is to construct the theory for this in-
teresting polymerization. First we discuss the molecu-

lar size distribution of linear polymers without rings
using kinetic arguments, then extend the result to the
branched polymers. It has been shown that the size dis-
tribution for tree clusters can be derived beautifully by
the statistical-mechanics approach.2 In order to gain
deep insights into the drop-wise addition polymeriza-
tion, however, the kinetic treatment is essential. We
show that the resultant distribution function is equiva-
lent to that of the multiple link system.3 Then we de-
rive the size distribution of cyclic species, showing
that because of the continuous change of the system
volume in the drop-wise addition polymerization, a
new type of distribution function arises. Making use
of the result together with the known formalism,4 final-
ly we derive the gel point equation. The theoretical
result is examined in light of the recent observations.

THEORETICAL

The basic assumption of the drop-wise addition
polymerization is that
1. a solution of R–Af molecules is added drop-wise

onto a solution of R–Bg molecules;
2. the velocity of reaction is sufficiently slow so that

the complete mixing is achieved before the reac-
tion starts; as a result the principle of equireactiv-
ity is fulfilled;
quite conversely

3. the velocity of reaction must be sufficiently fast
in the time scale of the dropping interval (�u),
so that all the R–Af molecules contained in one
droplet must be consumed completely within �u
forming A–B bonds. As a result the system is
always comprised of the (BB–AA)nBB type
molecular species alone (n represents the number
of R–Af molecules and n ¼ 0; 1; 2; � � �).

yTo whom correspondence should be addressed (Tel/Fax: +81 (0) 593 26 8052, E-mail: suematsu@m3.cty-net.ne.jp).
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Ideal Drop-wise Addition Polymerization
We consider the limiting case that each droplet con-

tains only one molecule; namely, a single R–Af mole-
cule is added drop-wise onto the solution of the R–Bg

monomers.
Consider the transition from u to uþ �u drops

(�u ¼ 1). In this minute interval, the following set of
elementary reactions should occur.

(BB{AA)x�1BBþ AA ! (BB{AA)x ð1Þ
(BB{AA)j þ (BB{AA)x�j�1BB

! (BB{AA)x�1BB ð2Þ
(BB{AA)x ! ring� (BB{AA)x ð3Þ

with x ¼ 1; 2; 3; � � �. Eq. (2) (intermolecular reaction)
competes with eq. (3) (cyclization reaction). An es-
sential point is that the above set of reactions
(1)–(3) must be completed within �u. So these reac-
tions constitute a unit chemical cycle. The drop-
wise addition polymerization proceeds repeating
this cycle.
Molecular Size Distribution in Linear Process.

First consider the linear system without rings. Let
MB denote the total number of R–Bg units in the sys-
tem. Let NBAx

represent the number of (BB–AA)x
molecules and NBBx�1

the number of (BB–AA)x�1BB
molecules, respectively. Then their variations are for
eq. (1)

�NBAx
¼

2NBBx�1
� 2NAA

2MBð1� DBÞ � 2NAA

for (BB{AA)x; ð4Þ

�NBBx�1
¼

�2NBBx�1
� 2NAA

2MBð1� DBÞ � 2NAA

for (BB{AA)x�1BB;

ð5Þ
and for eq. (2)

�NBBx�1

¼

Xx�1

j¼1
�NBAj

� 2NBBx�j�1
� 2NBBx�1

X1

k¼1
�NBAk

2MBð1� DBÞ
X1

k¼1
�NBAk

;

ð6Þ
where DB the extent of the advancement of reaction of
B functional units (FU’s). NAA represents the number
of R–Af monomers in a single droplet. By the defini-
tion of the ideal drop-wise addition, NAA ¼ 1 andP1

k¼1 �NBAk
¼ 1. Combining eqs. (4) and (5) with

eq. (6), we have

�NBBx�1

¼

Xx�1

j¼1

�
NBBj�1

MBð1� DBÞ

�
� 2NBBx�j�1

� 4NBBx�1

2MBð1� DBÞ
�u:

ð7Þ
Eq. (7) may be recast in the familiar form:

�NBBx�1

¼

1

2

Xx�1

j¼1
NBBj�1

NBBx�j�1
� NBBx�1

MBð1� DBÞ

1

2
fMBð1� DBÞg2

�u:

ð8Þ
The (BB–AA)x�1BB unit is produced by way of the
formation of two bonds. So DB ¼ 2u=2MB. Now
eq. (8) is soluble by means of the sequential opera-
tion:
1. for x ¼ 1

�NBB0
¼

�2NBB0

ð1� DBÞ
�DB;

which yields

NBB0
¼ MB 1� DBð Þ2: ð9Þ

2. for x ¼ j

Let the equation

NBBj�1
¼ MBD

j�1
B ð1� DBÞ2 ð10Þ

be true for x ¼ j (� 2). Then substituting eq. (10) into
eq. (8), we have

�NBBx�1
þ

2NBBx�1

1� DB

�DB

¼ ðx� 1ÞMBD
x�2
B 1� DBð Þ2�DB:

ð11Þ

Multiply both sides of eq. (11) by the integrating fac-
tor � ¼ ð1� DBÞ�2 to yield

1� DBð Þ�2�NBBx�1
þ

2NBBx�1

1� DBð Þ3
�DB

¼ ðx� 1ÞMBD
x�2
B �DB:

ð12Þ

Now our equation is exact. Integrating eq. (12), we
have

NBBx�1
¼ MBD

x�1
B ð1� DBÞ2; ð13Þ

which is just eq. (10). Thus eq. (13) is true for all x’s.
The probability of finding (x� 1)-mers is then

pBBx�1
¼

NBBx�1X1

x¼1
NBBx�1

¼ Dx�1
B ð1� DBÞ; ð14Þ

where x ¼ 1; 2; 3; � � �.
It is more convenient to recast eq. (14) in the form:

pBBn
¼ Dn

Bð1� DBÞ; n ¼ 0; 1; 2; 3; � � �ð Þ: ð15Þ

Now eq. (15) represents the distribution of the (BB–
AA)nBB molecules having n AA units.

Molecular Size Distribution in Branching Process.
We seek the distribution function of the (BB–AA)nBB
type branched molecules having n R–Af monomers
(n ¼ 0; 1; 2; � � �). Consider a tree molecule without
rings. This molecule comprises

Gel Formation in Drop-wise Addition Polymerization

Polym. J., Vol. 39, No. 12, 2007 1329



number of A type molecules: n

number of B type molecules: fð f � 1Þnþ 1g

number of unreacted A FU’s: 0

number of unreacted B FU’s: �n ¼ gþ fð f � 1Þðg� 1Þ � 1gn

number of reacted A FU’s: fn (� number of reacted B FU’s): ð16Þ

General birth-death formula for the number, Nn, of n-
mers is

�Nn=�u ¼ Pbirth � Pdeath: ð17Þ

The first term of the right hand side represents the
birth probability of n-mers and the second term the
death probability. The birth-death equation has the an-
alytic expression of the formy:

�Nn

�u
¼

1

f !

Xn�1

fk‘g¼0

Y f

‘¼1
�k‘Nk‘

1

f !
fgMBð1� DBÞg f

�

1

ð f � 1Þ!
�nNn � fgMBð1� DBÞg f�1

1

f !
fgMBð1� DBÞg f

;

ð18Þ

where the summation of the first term is over all com-
binations that satisfies k1 þ k2 þ � � � þ kf ¼ n� 1
along with 0 � k‘ � n� 1 (‘ ¼ 1; 2; � � � ; f ). For in-
stance, for the simplest case of f ¼ 2, eq. (18) reduces
to the familiar form:

�Nn

�u
¼

1

2

Xn�1

j¼0
�jNj � �n�j�1Nn�j�1

1

2
fgMBð1� DBÞg2

�
�nNn � fgMBð1� DBÞg
1

2
fgMBð1� DBÞg2

:

Using the equality, fu=gMB ¼ DB, it is easy to show
that N0 ¼ MBð1� DBÞ�0 . We expect the solution of
eq. (18) is generally of the form:

Nk ¼
MB

ð f � 1Þk þ 1
!kD

k
Bð1� DBÞ�k ; ð19Þ

where

!k ¼ g
�k þ k � 1ð Þ!
k! � �k!

ðk ¼ 0; 1; 2; � � �Þ:

Assume that eq. (19) is true for a given k. Then sub-
stituting this equation into eq. (18) we have

�Nn þ
�nNn

1� DB

�DB

¼
g

f
MB

Xn�1

fk‘g¼0

Yf
‘¼1

1

ð f � 1Þk‘ þ 1

� �k‘!k‘D
n�1
B ð1� DBÞ�n �DB:

ð20Þ

Multiplying eq. (20) by the integrating factor, � ¼
ð1� DBÞ��n , and with the help of the equality

1

f

Xn�1

fk‘g¼0

Yf
‘¼1

1

ð f � 1Þk‘ þ 1

�k‘ þ k‘ � 1

k‘

� �

�
1

ð f � 1Þnþ 1

�n þ n� 1

n� 1

� �
;

ð21Þ

we have

Nn ¼
MB

ð f � 1Þnþ 1
!nD

n
Bð1� DBÞ�n ; ð190Þ

which is just eq. (19). Thus, since eq. (19) was true
for k ¼ 0, it is true for all k’s (k ¼ 0; 1; 2; � � �). We
see that eq. (19) is equal to the cluster distribution
function for the multiple link system,3,4 if we simply
replace f (functionality of the A type monomer) with
J (number of B FU’s necessary to form a junction
point). And for f ¼ 2 eq. (19) reduces to the known
formula of the R–Af model. This is the reason why
no one has so far addressed the theory of the drop-
wise addition polymerization. Analogy between the
drop-wise addition polymerization and the multiple
link system, however, ends at this point. The situation
changes at once when one takes into consideration the
formation of rings.

Distribution of Cyclic Species. Let Cf ;i ¼ fMA=VA

be the initial functional unit (FU) concentration of
the R–Af monomer solution before mixing, Cg;i ¼
gMB=VB the corresponding quantity of the R–Bg

monomer solution, and C the total monomer con-
centration. In concentrated solutions of large C, we
can approximate that all clusters are made up from
the tree structure. Suppose an m-tree which has m

yTo check the validity of eq. (18), carry out the summation over all

molecular species from n ¼ 0 to 1 to yield:

��0 ¼ �
X1

n¼0
Nn ¼ �ð f � 1Þ�u;

which satisfies the Euler relation: �0 ¼ MB � ð f � 1Þu, in support

of eq. (18).
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unreacted A FU’s on the root (see Figure 1). The
number of B FU’s is then for the xth generation on this
tree

NðBÞx ¼ ð f � mÞðg� 1Þ½ð f � 1Þðg� 1ÞDB�x�1:

So, the number of chances, �x;m, of x-ring formation is

�x;m ¼ m� ð f � mÞðg� 1Þ
� ½ð f � 1Þðg� 1ÞDB�x�1ð1� DBÞ:

ð22Þ

Let P be the probability that one end on an x-chain
enters the small volume v around another end on the
same chain. Then the velocity of x-ring formation is
_ P�x;m, while the velocity of intermolecular reac-
tion is _ gMBð1� DBÞ � mðv=VÞ. In concentrated solu-
tions, the fraction of an x-ring to be formed for this
special tree can be approximated by the relative veloc-
ity of the form:4

�NRx;m ¼�
Pmð f � mÞðg� 1Þ½ð f � 1Þðg� 1ÞDB�x�1ð1� DBÞ

gMBð1� DBÞ � mðv=VÞ
�u: ð23Þ

The total fraction is

X1
x¼1

NRx
¼
X1
x¼1

Z
u

Xf�1

m¼1

�NRx;m
¼
X1
x¼1

Z u

0

V
f ð f � 1Þ

2

’xðg� 1Þ½ð f � 1Þðg� 1ÞDB�x�1ð1� DBÞ
gMBð1� DBÞ

du; ð24Þ

where ’x ¼ P=v. An essential point is that the system
volume, V , varies with the advancement of reaction;
i.e., the system is diluted successively with the addi-
tion of the R–Af solution. Since the volume element
to be added during the unit interval (�u ¼ 1) is, by
definition, �V ¼ VA=MA and fu=gMB ¼ DB, the total
volume at u is

V ¼
Z u

0

ðVA=MAÞdu ¼
gMB

fMA

DB

� �
VA þ VB; ð25Þ

From eqs. (24) and (25), together with fdu=gMB ¼
dDB and �0 ¼ ð f � 1Þðg� 1ÞDB, we have for C ! 1

�½ �C!1 ¼
X1
x¼1

NRx
=V

¼ �1

X1
x¼1

’x
�x
0

2ðxþ 1Þ
þ �2

X1
x¼1

’x
�x
0

2x
;

ð26Þ

where

�1 ¼
�f ;iDB

�g;i þ �f ;iDB

and �2 ¼
�g;i

�g;i þ �f ;iDB

with �f ;i (¼ C�1
f ;i ) and �g;i (¼ C�1

g;i ) being the initial in-
verse-concentration of respective FU’s before mixing.
The first term of the right hand side in eq. (26) repre-
sents the extra term due to the dilution effect of the
drop-wise addition. The conventional homogeneous
polymerization is a special case of �1 ¼ 0. It is note-
worthy that ½� � varies depending on the initial mono-
mer concentration ð�g;i; �f ;iÞ; more exactly, it depends
on the dilution ratio r ¼ �f ;i=�g;i so that �1 ¼ rDB

1þrDB

and �2 ¼ 1
1þrDB

(cf. Remark 2), in strong contrast to
the conventional polymerization.4

General Drop-wise Addition Polymerization
A more realistic model is that each droplet contains

a mass of the R–Af monomer. Let every droplet con-
tain L R–Af molecules (L is a large number!) which
are injected drop-wise onto the R–Bg solution. And
consider the case L 	 NA (Avogadro number), so that
each of the R–Af molecules reacts independently of
the others. Assume that the mixing is complete and
the principle of equireactivity is assured (Figure 2).

Size Distribution of Cyclic Species. Consider again
a tree with m-unreacted A FU’s on the root. The num-
ber of B FU’s on the xth generation after k drops is
then

NðBÞx ¼ ð f � mÞðg� 1Þ½ð f � 1Þðg� 1ÞDB�x�1; ð27Þ

where

DB ¼
ðk � 1Þ fLþ f 	

gMB

ð0 � 	 � L; and k ¼ 1; 2; � � �Þ:
ð28Þ

L  molecules

1     2     3     4                                  L-2  L-1   L

reaction 
      flow

δ

Figure 2. Representation of unit reaction. Each droplet con-

tains L R–Af molecules.

f  m g 1
m

first generation

Figure 1. Representation of an m-tree of the R–Af + R–Bg

branching model.
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The quantity 	 expresses the number of R–Af mole-
cules that have reacted in the interval from k to

k þ 1 (Figure 2). The number of chances, �x, of x-ring
formation is thus for the m-tree in question

�x;m ¼ m� ð f � mÞðg� 1Þ½ð f � 1Þðg� 1ÞDB�x�1ð1� DBÞ: ð29Þ

The rate of the ring formation can be expressed in the form:

vR / P
X1
x¼1

m� ð f � mÞðg� 1Þ½ð f � 1Þðg� 1ÞDB�x�1ð1� DBÞ ð30Þ

while the rate of intermolecular reaction is

vL / m� gMBð1� DBÞðv=VÞ: ð31Þ

In concentrated solutions, the fraction of rings to be formed per unit reaction (�	 ¼ 1) may be approximated as
�NR ¼� ðvR=vLÞ�	.4 By eq. (28), we have f �	 ¼ gMB �DB, which leads us to

�NR ¼ ðV= f Þ
Xf�1

m¼1

X1
x¼1

’xð f � mÞðg� 1Þ½ð f � 1Þðg� 1ÞDB�x�1 �DB;

¼ ðV=2Þ
X1
x¼1

’xð f � 1Þðg� 1Þ½ð f � 1Þðg� 1ÞDB�x�1 �DB: ð32Þ

where ’x ¼ P=v. Let � ¼ fL=gMB. Then, with the equality V ¼ kL
MA

VA þ VB in mind, integrate eq. (32) from
DB ¼ ðk � 1Þ� to k� to yield

�NRðkÞ ¼ ðV=2Þ
X1
x¼1

Z k�

ðk�1Þ�
’xð f � 1Þðg� 1Þ½ð f � 1Þðg� 1ÞDB�x�1 dDB

¼
kL

MA

VA þ VB

� �X1
x¼1

’x
1

2x
½ð f � 1Þðg� 1DB�x

�����
k�

ðk�1Þ�

¼
X1
x¼1

’x

1

2x
½ð f � 1Þðg� 1Þ��xsðkÞ; ð33Þ

where

sðkÞ ¼
kL

MA

VA þ VB

� �
kx � ðk � 1Þxf g: ð34Þ

The total number of rings accumulated from k ¼ 1 to n drops is therefore

NRðnÞ ¼
Xn
k¼1

�NRðkÞ ¼
X1
x¼1

’x
1

2x
½ð f � 1Þðg� 1Þ��xS ðnÞ: ð35Þ

Here, the inner sum of the r.h.s. has the form:

S ðnÞ ¼
Xn
k¼1

sðkÞ ¼
L

MA

fnxþ1 � 0x þ 1x þ 2x þ � � � þ ðn� 1Þxð ÞgVA þ nx VB

¼
L

MA

nx n�
Xn�1

k¼0

k=n
� �x !

VA þ nx VB: ð36Þ

Remark 1. As n ! 1, eq. (36) can be approximated
as

S ðnÞ ;
L

MA

nx n�
Z n

0

ðk=nÞxdk
� �

VA þ nx VB

¼
nL

MA

x

xþ 1
nxVA þ nx VB:

ð37Þ

Substituting eq. (37) into eq. (35), we have

NRðnÞ ;
nL

MA

VA

X1
x¼1

’x

1

2ðxþ 1Þ
½ð f � 1Þðg� 1Þn��x

þ VB

X1
x¼1

’x

1

2x
½ð f � 1Þðg� 1Þn��x:

ð38Þ
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Using the equality, n� ¼ DB, divide eq. (38) by VðnÞ ¼
nL
MA

VA þ VB to yield

�½ � �
NRðnÞ
VðnÞ

; �1

X1
x¼1

’x

1

2ðxþ 1Þ
½ð f � 1Þðg� 1ÞDB�x

þ �2

X1
x¼1

’x

1

2x
½ð f � 1Þðg� 1ÞDB�x; ð260Þ

which is just eq. (26), since ð f � 1Þðg� 1ÞDB ¼ �0. For a
large n limit, the general drop-wise addition polymerization
converges on the ideal drop-wise addition polymerization.

Remark 2. The physical meaning of eq. (26) is as fol-
lows:

1. If �f ;i 
 �g;i (r ! 1)
The R–Bg monomer is, for instance, in non-sol-
vent state, into which the large amount of the
R–Af dilute solution is injected. Thus cyclization
occurs mainly due to the dilution effect by the R–
Af solution: �1 ¼ 1 and �2 ¼ 0.

2. If �g;i 
 �f ;i (r ! 0)
The R–Bg monomer is in dilution state, onto
which a small volume of the concentrated R–
Af solution is added. Thus the system approxi-
mately retains a constant volume so that V ¼� VB

throughout the entire branching process: �1 ¼ 0
and �2 ¼ 1.
Hence the concentration of cyclic species is var-
iable from

P1
x¼1 ’x

�x
0

2ðxþ1Þ to
P1

x¼1 ’x
�x
0

2x
.

Gel Point Estimation
The branching probability, �, is defined as the prob-

ability that a A FU leads to the next A FU. Let pRB
be

the fraction of cyclic bonds to all possible bonds for
the R–Bg monomer so that pRB

¼ NRðDBÞ=gMB; let
pRA

be the corresponding quantity for the R–Af mono-
mer. Figure 3 shows a typical (BB–AA)xBB type
cluster formation from three BB clusters and one R–
A3 monomer (x ¼ p� 1þ 1þ qþ r). In this case
we put unreacted B FU’s on the root. Note that cycli-
zation is possible only for unreacted A FU’s on the R–
A3 monomer in question which are just added to the
system for this unit reaction, contrary to the conven-

tional homogeneous polymerization.4 �, thus, should
be written in the form:

� ¼ DBDA

Xf�1

m¼0

m
f � 1

m

� �

� 1�
pRA

DA

� �m pRA

DA

� � f�1�m

ðg� 1Þ;

ð39Þ

where DA denotes the extent of the advancement of
reaction for A FU’s. The gelation occurs at � ¼ 1,
which, with the equality

pRA
DA

� pRB
DB

together with
DA ¼ 1 (the condition of the drop-wise addition),
yields

DBc
¼

1

ð f � 1Þðg� 1Þ
þ

NRðDBc
Þ

gMB

: ð40Þ

For a large n, we can approximate that NRðDBc
Þ ;

NRðncÞ. And we have

DBc ;
1

ð f � 1Þðg� 1Þ
þ

NRðncÞ
gMB

: ð400Þ

Eq. (40) is of the form:

DBc � DðinterÞ þ DðringÞ; ð41Þ

as expected.
To apply eq. (35) beyond DB ¼ DBco, expand

NRðncÞ with respect to nc ¼ nco to yield

NRðncÞ ¼� NRðncoÞ þ
�NRðncoÞ

�
ðDBc

� DBco
Þ: ð42Þ

With the help of eqs. (49) and (50) in Appendix 1,
and substituting eq. (42) into eq. (40), we have

DBc ¼
1

ð f � 1Þðg� 1Þ

1�
�
r þ ð f � 1Þðg� 1Þ

2

X1

x¼1
’x
AðxÞ
x

�
1

2

X1

x¼1
’x
BðxÞ
x

�
� �g;i

1�
r þ ð f � 1Þðg� 1Þ

2

X1

x¼1
’x
AðxÞ
x

� �g;i

8>>><
>>>:

9>>>=
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where r ¼ �f ;i=�g;i is the dilution ratio,

AðxÞ ¼ nco 1�
nco � 1

nco

� �x� �
and BðxÞ ¼ r 1�

Xnco�1

k¼0

kx

nxþ1
co

� �
þ ð f � 1Þðg� 1Þ

� �
:

Eq. (43) is a general expression of the gel point in the drop-wise addition polymerization. Unfortunately the solu-
tion is not very easy to use, since it contains double sum of x and k. So, it is more convenient to approximate

root
unreacted A FU

Figure 3. Representation of a typical x-cluster formation from

one R–Af monomer and three BB clusters.
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eq. (43) by the limiting case of n ¼ 1 (see eq. (44)). Fortunately this is possible, because n is often very large and
the difference between eq. (43) and eq. (44) is almost negligible.

Remark 3. As n ! 1, AðxÞ ! x and BðxÞ ! frð x
xþ1

Þ þ ð f � 1Þðg� 1Þg. Then eq. (43) leads to

DBc ¼
1

ð f � 1Þðg� 1Þ

1�
�
r

2

X1

x¼1
’x

�
1�

1

xþ 1

�
þ

ð f � 1Þðg� 1Þ
2

X1

x¼1
’x

�
1�

1

x

��
� �g;i

1�
r þ ð f � 1Þðg� 1Þ

2

X1

x¼1
’x � �g;i

8>>><
>>>:

9>>>=
>>>;
: ð44Þ

Now the gel point is a function of the dilution ratio, r, and the initial dilution, �g;i. Since r is given as an experimental con-
dition, the gel point is calculable from the first principle (see Appendix 2).

COMPARISON WITH EXPERIMENT

To evaluate DBc
as a function of �g;i, we must cal-

culate the cyclization frequency: ’x. In concentrated
solutions, we can expect the ideal behavior of
branched molecules (no ring formation and no exclud-
ed volume), as mentioned earlier.4 Then ’x can be ex-
pressed by the incomplete gamma function of the
form:

’x ¼ ðd=2
d=2‘ds NAÞ
Z d=2�x

0

t
d
2
�1e�tdt; ð45Þ

where

hr2x i� ¼ �x‘
2
s ¼ CF�ex‘

2
s ; ð46Þ

is the end-to-end distance for an x-chain in the � re-
gime; ‘s denotes the length (1.37 Å) of the N–C bond
in the urea moiety (‘3 in Figure 4), CF the Flory char-
acteristic ratio, �e the effective bond number defined
earlier,4 and x the number of repeating units.
In this paper, we take up the polyaddtion reaction of

bis(4-isocyanatocyclohexyl)methane (HMDI: R–A2

CH2[(C6H10)NCO]2) and poly(oxyalkylenetriamine)
(TRI: R–B3).

1 To carry out the numerical estimate
of ’x, we must determine CF and �e.

There is little information about the expansion fac-
tor of poly(urea). It is important to notice that, accord-
ing to eq. (44), the location of the gel point depends
on the macroscopic quantity of cyclic species, namely,
the total amount, but not on the microscopic detail of
the distribution function. The quantity CF, as a result,
operates as an ajustment parameter for the total quan-
tity of cyclic species. Then it is readily found through
the numerical simulation that when we apply CF ¼
4:5, close to the value employed to the poly(urethane)
homologue, a good result is obtained. The numerical
estimate of 4.5 seems reasonable, but is not yet con-
clusive; the validity should be verified by another ex-
perimental observations.
To calculate the effective bond number, �e, let us

examine the stereochemistry of the dicyclohexane
moiety on HMDI. There are two known conformations
of the cyclohexane ring convertible to each other, the
skew and the chair. The chair form represents the low-
est energy minimum, while the skew is in higher ener-
gy state because of the presence of the steric hindrance
(�E ¼ 22:6 kJ/mol) due to the two axial 1,4-hydrogen
atoms,5 with the statistical weight, expð��E=RTÞ �
10�4, showing that the cyclohexane ring exists, in
equilibrium, exclusively in the chair form. Then con-
sider the configuration of 1,4-dimethyl cyclohexane.
According to the MM2 model calculation, there are
three configurational states having energy minima that
correspond to: equatorial-equatorial in which the
two methyl moieties are splayed out (�E ¼ 0 kJ),
equatorial-axial in which one methyl sticks up or
down to the structure and the other is splayed out
(�E ¼ þ7:29 kJ), and axial-axial in which both the
methyls stick up and down to the structure (�E ¼
þ14:48 kJ). As expected, the equatorial-equatorial
configuration is the most stable, and has the statistical
weight of 18.68, which amounts to � 95% population
of all configurations. Hence we may conclude that the
dicyclohexane moiety exists almost exclusively in the
equatorial-equatorial configuration. From this consid-
eration, we obtain the imaginary bond length, ‘1 ¼
‘! ’ 5:83 Å. Making use of this result, we can deter-
mine all the parameters (see Table I).

Figure 4. Representation of the smallest ring to be produced

in the polymerization of HMDI and TRI. The dicyclohexane moi-

ety is assumed to take the equatorial-equatorial conformation.
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With the help of the parameters of Table I, together
with the observed dilution ratio, r ¼ �f ;i=�g;i ¼ 0:89
(Table II), we can plot eq. (44) as a function of �g;i.
In Figure 5, open circles represents experimental
points by Unal and coworkers, and the solid line the
theoretical line by eq. (44). The general trend of the
theory is in good accord with the observations.

DISCUSSION

Interpretation of Results
As one can see, however, there is appreciable numer-

ical difference between the theory and the experiments.
Fortunately this can be explained on the basis of (i) side
reactions and (ii) deviation from the basic assumptions.
It has been known earlier that isocyanates (–NCO)

react with alcohols (–OH) to form urethane bonds
(–NHCOO–). Hence, in the system cited above,1 the
poly(urea) formation must always be accompanied
by the urethane bond formation that wastes FU’s be-
cause of the use of isopropyl alcohol as the reaction
solvent. This necessarily shifts the gel point upwards.
In light of the observations6 of the cyclotrimeriza-

tion of bisphenol-A dicyanateyy, it is probable that

the alcoholysis of HMDI as a side reaction causes
most of the discrepancy in question.
There might be other factors that cause the devia-

tion. For instance, the theory has been derived on
the assumption that the mixing is sufficient to assure
the principle of equireactivity, while a set of reactions
(1)–(3) must be completed within the minute interval
of the unit cycle, so the system always comprises (BB-
AA)nBB type molecules alone. This poses a problem
because the system has to obey, on one hand, a very
slow reaction with respect to the realization of the suf-
ficient mixing; it has to obey, on the other hand, a very
fast reaction with respect to the instantaneous comple-
tion of the reaction cycle (1)–(3); it is clear that a del-
icate balance is required to realize the genuine drop-
wise polymerization, deviation from which should
shift the gel point upwards.
Taking these circumstances into consideration, it is

by no means unreasonable to conclude that there is a
satisfactory agreement between the theory and the ex-
periments.

Comparison with Conventional Branching Process
It will be of interest to inquire the question, ‘If all

R–Af molecules are added at once, where is the gel
point observed ?’ The gel point in that conventional
polymerization has been found to obey the equation:4

DAc
¼

ffiffiffi
1

s

r
1� ð1þ �Þ

ffiffi
s

p X
x
ð1� 1=2xÞ’x�

1� ð1þ �Þ
ffiffi
s

p X
x
’x�

( )
; ð47Þ

Table I. Parameters for the HMDI-TRI Branched Poly(urea)

parameters unit values

Molecular Weight HMDI ¼ 262

TRI ¼ 440

f 2

g 3

d 3

CF 4.5

�e 56

‘s (Å) 1.37

Cyclization Frequency (mol/l)P1
x¼1 ’x 0.135P1
x¼1 ’x

1
x

0.069P1
x¼1 ’x

1
ðxþ1Þ 0.039

0 1 2 3 4
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 5. Concentration dependence of gel points in the drop-

wise addition reaction for f ¼ 2, g ¼ 3. : observed points by

Unal and coworkers;1 solid line (–): theoretical line by eq. (44).

Table II. Experimental Data in the Drop-wise Addition of HMDI onto TRI1

HMDI [NCO] TRI [NH2] �g;i r Gel Point

(mol/l) (equiv/l) (mol/l) (equiv/l) initial dilution dilution ratio (DBc
)

0.80 1.60 0.47 1.41 1/1.41 0.88 0.591

0.63 1.26 0.37 1.12 1/1.12 0.89 0.625

0.47 0.93 0.28 0.83 1/0.83 0.89 0.648

0.31 0.61 0.18 0.55 1/0.55 0.90 0.717

0.23 0.46 0.14 0.41 1/0.41 0.89 0.803

0.15 0.30 0.09 0.27 1/0.27 0.90 no gelation

yyThere is a good example of the effect of side reactions on the shift

of gel points.6 The presence of H2O moisture in the reactor is
known to cause the hydrolysis of bisphenol-A dicyanate leading

to the complicated side reactions and shifts the gel point upwards
to a large extent, from the correct value 0.508 to 0.6 or higher val-

ues.
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where s ¼ ð f � 1Þðg� 1Þ=�, � ¼ gMB=n fL (� 1) as
defined earlier, and ��1 ¼ n fLþgMB

V
. By eq. (25) we

have V ¼ VBð1þ r=�Þ. Substituting this into eq. (47)
together with some rearrangement, we have

DBc
¼

ffiffiffiffi
1

s0

r
1� ð1þ r=�Þ

ffiffiffi
s0

p X
x
ð1� 1=2xÞ’x�g;i

1� ð1þ r=�Þ
ffiffiffi
s0

p X
x
’x�g;i

( )
;

ð48Þ

where s0 ¼ �ð f � 1Þðg� 1Þ, r ¼ �f ;i=�g;i and �g;i is the
reciprocal of the initial B FU’s concentration before
mixing as defined in the text.
In this simulation, we make use of the compositions

at the gel points; i.e., we mix exactly ncL moles of the
R–Af monomer (the quantity at the gel point of the
drop-wise addition polymerization) at once with MB

moles of the R–Bg monomer so that � corresponds
to the reciprocal of the gel point in the drop-wise ad-
dition polymerization. We then compare the result for
the respective �g;i values shown in Table II.
If the gelation is possible, DBc

calculated by
eq. (48) must be less than 1=� ¼ nc fL=gMB, since this
is the ratio of the total amounts of the respective
monomers to be mixed. The calculation of eq. (48)
has shown that DBc

¼ 0:595 for 1=� ¼ 0:591, 0.632
for 1=� ¼ 0:625 and so forth. It was found that for
all examples, the gel points of the conventional poly-
merization exceed those (1=�) of the drop-wise addi-
tion polymerization. In terms of DAc

, this is equivalent
to say that DAc

> 1 for all examples, which is entirely
impossible. The calculation tells us that the gelation
will never occur in the conventional polymerization,
if the reaction is carried out under the same composi-
tions as those employed in the drop-wise addition
polymerization. In order for the gelation to occur,
more concentrated circumstances are needed. In other
words, the system in the drop-wise addition polymer-
ization behaves as if the cyclization is less frequent
than in the conventional branching process.

APPENDIX 1

At n ¼ nco, since nco �ð f � 1Þðg� 1Þ ¼ 1, we have

�NRðncoÞ
�

¼
X1
x¼1

’x
1

2x
ðr þ ð f � 1Þðg� 1ÞÞnco

� 1�
nco � 1

nco

� �x� �
VB

�
r þ ð f � 1Þðg� 1Þ

2

X1
x¼1

’x
AðxÞ
x

VB; ð49Þ

NRðncoÞ ¼
1

ð f � 1Þðg� 1Þ

X1
x¼1

’x

1

2x

� r 1�
Xnco�1

k¼0

kx

nxþ1
co

 !
þ ð f � 1Þðg� 1Þ

( )
VB

�
1

ð f � 1Þðg� 1Þ

X1
x¼1

’x

BðxÞ
2x

VB; ð50Þ

where r ¼ �f ;i=�g;i as defined in the text.

APPENDIX 2

For �g;i 
 �f ;i (that is, r ! 0), eq. (44) reduces to

lim
r!0

eq. (44) ! DBc ¼
1

ð f � 1Þðg� 1Þ

�
1�

ðf � 1Þðg� 1Þ
2

X
x
’xð1� 1=xÞ�g

1�
ð f � 1Þðg� 1Þ

2

X
x
’x�g

8>>><
>>>:

9>>>=
>>>;
:

ð51Þ

And in the limit of the infinite concentration, �g ! 0,
we recover the classical relation:

lim
�g!0

eq. (44) ! DBco ¼
1

ð f � 1Þðg� 1Þ
: ð52Þ
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