Living Radical Polymerization of Methyl Methacrylate with a Rhodium(III) Complex-Organic Halide System in Dimethyl Sulfoxide

Noriyuki KAMEDA ${ }^{\dagger}$
College of Science and Technology, Nihon University, Narashinodai, Funabashi 274-8501, Japan

(Received November 24, 2005; Accepted January 19, 2006; Published May 17, 2006)

Abstract

The polymerization of methyl methacrylate (MMA) with the rhodium(III) complex dihydrido(1,3diphenyltriazenido)bis(triphenylphosphine)rhodium(III) $\left[\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ as a catalyst and an organic halide $\left(\mathrm{CCl}_{4}, \mathrm{BrCCl}_{3}\right.$, or $\left.\mathrm{CBr}_{4}\right)$ as an initiator in dimethyl sulfoxide (DMSO) was studied. For the CCl_{4} initiator system, a kinetic study of MMA polymerization indicated that polymerization follows first-order kinetics with respect to the monomer and that the number-average molecular weight $\left(M_{\mathrm{n}}\right)$ of the polymers produced increases in direct proportion to the monomer conversion. Monomer-addition experiments showed that after addition of further MMA, the M_{n} of the polymers continues to increase in direct proportion to the monomer conversion. These results confirmed that the polymerization of MMA in the CCl_{4}-initiated system proceeds in a living radical manner. In contrast, the systems involving the bromo compounds BrCCl_{3} or CBr_{4} did not show such a living radical nature. For all these initiator systems, the polymers produced had broad molecular-weight distributions. The catalytic activities are discussed in relation to the reaction product between $\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ and DMSO. [doi:10.1295/polymj.PJ2005176]

KEY WORDS Living Polymerization / Free Radical Polymerization / Methyl Methacrylate /
Rh(III) Complex / Halomethane / Dimethyl Sulfoxide / Molecular Weight /

Free-radical polymerization is one of the most widely used techniques for producing polymers. However, in conventional radical-polymerization processes, it is rarely possible to control the molecular weight or the molecular-weight distribution of the product. Recently, the chemistry of such less-easily controlled reactions has been changed by progress in transition metal-mediated living or controlled radical polymerization systems that permit the control of molecular weights and their distribution. Such catalyst systems were first reported independently by Sawamoto and his co-workers ${ }^{1}$ and Wang and Matyjaszewsky ${ }^{2}$ in 1995. Sawamoto and his co-workers reported that methyl methacrylate (MMA) is polymerized homogeneously in toluene in the presence of a carbon tetrachloride-ruthenium complex system, $\left(\mathrm{CCl}_{4}\right) /$ $\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}$, and a Lewis acid activator (methylaluminum bis(2,6-di-tert-butylphenoxide). ${ }^{1}$ Wang and Matyjaszewsky reported the bulk polymerization of styrene in the presence of a system consisting of 1phenylethyl chloride $/ \mathrm{CuCl}$ and $2,2^{\prime}$-bipyridyl. ${ }^{2}$ Since then, systems based on other low-valent transitionmetal complexes of iron(II), ${ }^{3-16}$ nickel(II), ${ }^{17-21}$ rhodium(I), ${ }^{22-24}$ and palladium(II) ${ }^{25}$ have been found to be effective in similar living or controlled radical polymerizations. The transition-metal complex plays an indispensable role as a halogen carrier, through a series of consecutive reversible oxidation and reduction reactions involving single-electron transfers.

In a previous paper, ${ }^{26}$ the trivalent rhodium complex dihydrido(1,3-diphenyltriazenido)bis(triphenylphosphine)rhodium(III) $\quad\left[\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right] \quad$ in conjunction with CCl_{4} was shown to be effective as an initiator system for the polymerization of MMA. Under the conditions used previously, the polymerization of MMA to a very high monomer conversion was not attempted and only incomplete kinetic data were obtained. There have been no previous reports on living or controlled radical polymerizations involving $\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}$.

This paper reports the $\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ in conjunction with CCl_{4} induces the living radical polymerization of MMA. This initiating system gives polymers with a controlled molecular weight, but with broad molecular-weight distributions ($M_{\mathrm{w}} / M_{\mathrm{n}}>2$).

EXPERIMENTAL

Materials

Methyl methacrylate (MMA) from Wako Chemicals was washed with a saturated sodium hydrogen sulfite solution to remove inhibitor and then with 10% sodium hydroxide solution. The MMA was dried over anhydrous sodium sulfate, distilled twice over calcium hydride under a reduced pressure of nitrogen, and stored at 253 K . Bromotrichloromethane $\left(\mathrm{CBrCl}_{3}\right)$ $(99+\%)$ from Wako Chemicals and carbon tetrabromide $\left(\mathrm{CBr}_{4}\right)(99 \%)$ from Aldrich were used as re-

[^0]ceived without purification. Carbon tetrachloride $\left(\mathrm{CCl}_{4}\right)$ from Wako Chemicals was dried over calcium chloride and double distilled over phosphorus pentoxide $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$. Dimethyl sulfoxide (DMSO) from Wako Chemicals was distilled twice over calcium hydride under a reduced pressure of nitrogen. Triphenylphosphine $\left(\mathrm{PPh}_{3}\right)$ from Wako Chemicals was purified by dissolving it in benzene and pouring the solution into ethanol to precipitate the PPh_{3}. 1,3-Diphenyltriazene $(\mathrm{PhNHN}=\mathrm{NPh})$ from Aldrich was recrystallized from petroleum ether. Dihydrido(1,3-diphenyltriazenido)bis(triphenylphosphine)rhodium(III) $\quad\left[\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)-\right.$ $\left(\mathrm{PPh}_{3}\right)_{2}$] was prepared according to the literature. ${ }^{27}$

Polymerization

All reactions were performed under nitrogen in a glass tube equipped with a side arm, the inlet of which was fitted with a serum cap and capped by a two-way stopcock.

The general procedure was as follows. The required amounts of the $\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}(2.0 \mathrm{mmol})$ and DMSO $\left(8.9 \mathrm{~cm}^{3}\right)$ were placed in the glass tube. The tube was then deaerated three times by freeze-pump-thaw cycles to remove oxygen, and nitrogen was admitted to a pressure of 1 atm . A mixture of MMA (1.0 mol) and the initiator ($1.0-4.0 \mathrm{mmol}$) was then introduced through the serum cap by means of a syringe. The total volume of the reaction mixture was thus $10.0 \mathrm{~cm}^{3}$. The reaction mixture was sealed in the glass tube under nitrogen and the tube was then heated to the desired temperature in a water bath. After the required time, the tube was opened and the contents were dried under a vacuum at 313 K .

Characterization

The monomer conversion was determined gravimetrically. The polymer was dissolved in THF and then the solution was vigorously stirred with activated $\mathrm{Al}_{2} \mathrm{O}_{3}$ to remove the catalyst. The number- and weight-average molecular weight $\left(M_{\mathrm{n}}\right.$ and M_{w}, respectively) and the molecular-weight distribution $\left(M_{\mathrm{w}} / M_{\mathrm{n}}\right)$ of the polymer were determined by sizeexclusion chromatography (SEC) in THF at 303 K on three styrene-divinylbenzene copolymer particle gel columns (Waters Styragel HR 0.5, HR 4E, and HR 5E) that were connected to a Waters ALC/GPC 201A liquid chromatograph and a Waters R401 re-fractive-index detector. PMMA standards were used for calibration.

Infrared Spectra Measurement

Infrared (IR) spectra were recorded on a JASCO FT/IR-8000 FT/IR spectrophotometer by the diffuse reflectance method. Powdered KBr was used as the dispersant.

RESULTS AND DISCUSSION

Polymerization of $M M A$ with the $\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)$ -$\left(\mathrm{PPh}_{3}\right)_{2}-$ Organic Halide System

The polymerization of MMA was first attempted in DMSO solution at 323 K with $\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ in the absence of an organic halide: in this case the conversion reached only 5% in 24 h . In the absence of organic halide, $\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ was found to be almost inactive for the polymerization of MMA. Under similar conditions, the polymerization of MMA was carried out with $\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ as the catalyst and one of three organic halides $\left(\mathrm{CBr}_{4}, \mathrm{CBrCl}_{3}\right.$, or CCl_{4}) as the initiator in a homogeneous mixture. Figure 1 shows plots of the monomer conversion with time. All three organic halide initiating system induced a smooth polymerization without an induction phase. The CCl_{4} initiating system caused rapid polymerization and the monomer conversion reached 94% after 24 h . The CBrCl_{3} initiating system produced rapid polymerization similar to that of the CCl_{4} initiating system in the early stages, but the polymerization slowed down in the later stages and the monomer conversion reached 89% in 24 h. Similarly, polymerization with the CBr_{4} initiating system preceded relatively quickly in the early stages, but leveled off at a monomer conversion of around 50%. Figure 2 shows the M_{n} and $M_{\mathrm{w}} / M_{\mathrm{n}}$ values of the PMMA samples obtained with $\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ in the presence of the three organic halide initiating systems. With the CCl_{4} initiating system, the M_{n} increased in direct proportion to the monomer conversion.

In the CBrCl_{3} initiating system, the M_{n} increased with increasing monomer conversion in the early stages, but approached a constant value at higher monomer conversions. Thus, the polymerization is ill controlled under these conditions.

In the CBr_{4} initiating system, the M_{n} is independent of the monomer conversion: this result is in agreement with a conventional free-radical polymerization mechanism. When the halides of bromo-derivatives RBr (CBr_{4} or CBrCl_{3}) used as the initiator, $\mathrm{Rh}(\mathrm{I})$ complex catalyzes the activation of one of the carbon-bromine bonds in RBr to form the one-electron oxidized species, a $\mathrm{Rh}(\mathrm{II}) \mathrm{Br}$ complex and free radicals $\left(\mathrm{R} \bullet: \mathrm{CBr}_{3} \bullet\right.$ or $\mathrm{CCl}_{3} \bullet$). In general, bromides are much more reactive than the corresponding chlorides. This $\mathrm{Rh}(\mathrm{II}) \mathrm{Br}$ complex may be reacts with RBr in preference to MMA and converts into irreversible $\mathrm{Rh}(\mathrm{III}) \mathrm{Br}$ complex. Therefore, living radical polymerization is only possible with CCl_{4} as the initiator.

Effects of the $\left[\mathrm{CCl}_{4}\right] /\left[\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ Ratio

To clarify the role of CCl_{4} in the polymerization of

Figure 1. Time-conversion curves for the polymerization of MMA with $\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}$-organic halide system in DMSO at $323 \mathrm{~K} ;[\mathrm{MMA}]: 1.0 \mathrm{~mol} / \mathrm{dm}^{3} ;\left[\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]: 2.0 \mathrm{mmol} / \mathrm{dm}^{3}$; [Organic halide]: $2.0 \mathrm{mmol} / \mathrm{dm}^{3}$; Organic halide: $\mathrm{CCl}_{4}(\bigcirc), \mathrm{CBrCl}_{3}$ ($\mathbf{~}), \mathrm{CBr}_{4}$ (■).

Figure 2. Dependence of M_{n} and $M_{\mathrm{w}} / M_{\mathrm{n}}$ of PMMA on the conversion in DMSO at 323 K ; [MMA]: $1.0 \mathrm{~mol} / \mathrm{dm}^{3}$; $\left[\mathrm{RhH}_{2}-\right.$ $\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}$]: $2.0 \mathrm{mmol} / \mathrm{dm}^{3}$; [Organic halide], $2.0 \mathrm{mmol} /$ dm^{3}; Organic halide: $\mathrm{CCl}_{4}, M_{\mathrm{n}}(\bigcirc), M_{\mathrm{w}} / M_{\mathrm{n}}(\bigcirc) ; \mathrm{CBrCl}_{3}, M_{\mathrm{n}}$ $(\triangle), M_{\mathrm{w}} / M_{\mathrm{n}}(\triangle) ; \mathrm{CBr}_{4}, M_{\mathrm{n}}(\square), M_{\mathrm{w}} / M_{\mathrm{n}}(\square)$.

MMA with $\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}$, the ratio of the concentration of CCl_{4} to that of $\left[\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ was varied between $2: 1$ and $1: 2$, while the ratio of MMA to $\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ was kept constant at a value of 500:1.

Figure 3 shows a plot of the monomer conversion with time. At higher concentrations of $\mathrm{CCl}_{4}\left(\left[\mathrm{CCl}_{4}\right]\right.$ / $\left.\left[\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]=2: 1\right)$, the overall polymerization rate was almost the same as in the case of an equal ratio $\left[\mathrm{CCl}_{4}\right] /\left[\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]=1: 1$, and the monomer conversion reached 98% in 24 h . On the other hand, at a lower concentration of CCl_{4} $\left(\left[\mathrm{CCl}_{4}\right] /\left[\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]=1: 2\right)$, the polymerization proceeded relatively quickly in the early
stages, but slowed down in the later stages and the monomer conversion reached only 70% in 24 h .

Figure 4 shows the M_{n} and $M_{\mathrm{w}} / M_{\mathrm{n}}$ of the PMMA samples thus obtained. At higher concentrations of $\mathrm{CCl}_{4}\left(\left[\mathrm{CCl}_{4}\right] /\left[\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]=2: 1\right.$ or $\left.1: 1\right)$, the M_{n} increased with increasing monomer conversion. On the other hand, at a lower concentration of $\mathrm{CCl}_{4}\left(\left[\mathrm{CCl}_{4}\right] /\left[\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]=1: 2\right), M_{\mathrm{n}}$ increased with increasing monomer conversion up to about 40% conversion, but then became constant. Larger M_{n} values were obtained at a lower concentration of CCl_{4} than at a higher concentration of CCl_{4}. A [CCl $\left.{ }_{4}\right]$-to- $\left[\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right.$ ratio of 1:1 gave a narrower molecular-weight distribution than that obtained at higher or lower concentrations of CCl_{4}. Therefore, a $\left[\mathrm{CCl}_{4}\right]$-to- $\left[\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ ratio of $1: 1$ gives the best control of the molecular weight and its distribution. Table I display the dependence of $M_{\mathrm{n}, \exp }$ from SEC calibrated versus $M_{\mathrm{n}, \mathrm{th}}$, calculated by means of following eq 1 for polymerization performed.
$M_{\mathrm{n}, \mathrm{th}}=[\mathrm{M}]_{0} /\left[\mathrm{CCl}_{4}\right] \times \mathrm{MW}_{\mathrm{MMA}} \times$ Conversion
A linear increase of molecular weight with increasing monomer conversion is observed. However, the obtained molecular weights are lower than calculated value assuming that one molecular of CCl_{4} generates one polymer chain. CCl_{4} not only serves as an initiator but as a chain transfer agent as well. The deviation of molecular weight is presumably due to the chain transfer reactions. ${ }^{12}$

[^1]

Figure 3. Effects of the $\left[\mathrm{CCl}_{4}\right] /\left[\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ ratio on the polymerization of MMA with $\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}-\mathrm{CCl}_{4}$ system in DMSO at $323 \mathrm{~K} ;[\mathrm{MMA}]: 1.0 \mathrm{~mol} / \mathrm{dm}^{3} ;\left[\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]: 2.0 \mathrm{mmol} / \mathrm{dm}^{3} ;\left[\mathrm{CCl} l_{4}\right] /\left[\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]=2: 1, M_{\mathrm{n}}(\boldsymbol{\nabla}) ;\left[\mathrm{CCl}_{4}\right] /$ $\left[\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]=1: 1, M_{\mathrm{n}}(\bullet),\left[\mathrm{CCl}_{4}\right] /\left[\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]=1: 2, M_{\mathrm{n}}(\bullet)$.

Figure 4. Dependence of M_{n} and $M_{\mathrm{w}} / M_{\mathrm{n}}$ on the conversion and the $\left[\mathrm{CCl}_{4}\right] /\left[\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ ratio in the polymerization of MMA with $\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}-\mathrm{CCl}_{4}$ system in DMSO at 323 K ; [MMA]: $1.0 \mathrm{~mol} / \mathrm{dm}^{3}$; $\left[\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]: 2.0 \mathrm{mmol} / \mathrm{dm}^{3}$; $\left[\mathrm{CCl}_{4}\right] /\left[\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]=2: 1, M_{\mathrm{n}}(\nabla), M_{\mathrm{w}} / M_{\mathrm{n}}(\nabla) ;\left[\mathrm{CCl}_{4}\right] /\left[\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]=1: 1, M_{\mathrm{n}}(\bigcirc), M_{\mathrm{w}} / M_{\mathrm{n}}(\bigcirc) ;\left[\mathrm{CCl}_{4}\right] /$ $\left[\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]=1: 2, M_{\mathrm{n}}(\diamond), M_{\mathrm{w}} / M_{\mathrm{n}}(\diamond)$.

Table I. Dependence of molecular weight of PMMA on the conversion with $\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}-\mathrm{CCl}_{4}$ system in DMSO at $323 \mathrm{~K}^{\mathrm{a}}$

Time (h)	Conversion (\%)	$M_{\mathrm{n}, \mathrm{h}}{ }^{\mathrm{b}}$	$M_{\mathrm{n}, \exp }$
1	34	17000	7200
2	45	22500	9500
4	59	29500	11100
8	72	36000	13600
16	86	43000	14600
24	94	47000	16400

${ }^{\mathrm{a}} \mathrm{MMA}, 1.0 \mathrm{~mol} / \mathrm{dm}^{3} ; \mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}, 2.0 \mathrm{mmol} / \mathrm{dm}^{3}$; $\mathrm{CCl}_{4}, 2.0 \mathrm{mmol} / \mathrm{dm}^{3} .{ }^{\mathrm{b}} \mathrm{Calculate}$ on the basis of eq 1.
merization of MMA with the $\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}-$ CCl_{4} system at a $\left[\mathrm{CCl}_{4}\right]$-to- $\left[\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ ratio of $1: 1$ in DMSO at 323 K . Figure 5 shows the semilogarithmic plot of $\ln \left([\mathrm{M}]_{0} /[\mathrm{M}]\right.$) (where $[\mathrm{M}]_{0}$ and $[\mathrm{M}]$ denote the monomer concentrations at time 0 and time t, respectively), against time t. This plot is linear, indicating that the polymerization is firstorder with respect to the monomer and that the concentrations of the active species remain constant during the polymerization.

A volume of monomer equal to the initial volume of the monomer was added to the reaction mixture

Figure 5. First-order kinetic plot of $\ln \left(\left[\mathrm{M}_{0} /[\mathrm{M}]\right)\right.$ versus time for the polymerization of MMA with $\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}-\mathrm{CCl}_{4}$ system in DMSO at $323 \mathrm{~K} ;[\mathrm{MMA}]: 1.0 \mathrm{~mol} / \mathrm{dm}^{3} ;\left[\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]: 2.0 \mathrm{mmol} / \mathrm{dm}^{3} ;\left[\mathrm{CCl}_{4}\right]: 2.0 \mathrm{mmol} / \mathrm{dm}^{3}$.

Figure 6. $M_{\mathrm{n}}, M_{\mathrm{w}} / M_{\mathrm{n}}$ and molecular-weight distribution curves for PMMA obtained from monomer addition experiments with $\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}-\mathrm{CCl}_{4}$ system in DMSO at $323 \mathrm{~K} ;[\mathrm{MMA}]: 1.0 \mathrm{~mol} / \mathrm{dm}^{3} ;\left[\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]: 2.0 \mathrm{mmol} / \mathrm{dm}^{3} ;\left[\mathrm{CCl}_{4}\right]: 2.0 \mathrm{mmol} /$ $\mathrm{dm}^{3}, M_{\mathrm{n}}(\bullet), M_{\mathrm{w}} / M_{\mathrm{n}}(\mathrm{O})$.
when the conversion had reached 94% in 24 h and the initial charge of the monomer had been consumed. The added monomer was smoothly polymerized. As shown in Figure 6, after the addition of additional MMA, the M_{n} of the obtained polymers increased in direct proportion to the monomer conversion and the polydispersity was unimodal. This suggests that polymerization of MMA with the $\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}-$ CCl_{4} system proceeds in a living fashion. However, the molecular-weight distribution shifted toward a higher molecular weight with increasing conversion, and became broader.

Reaction of $\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ with DMSO
These polymerizations are most probably the result of the formation of an active catalyst through reaction between $\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ and DMSO, as suggested by the color changes that occurred in the deaerated tube containing $\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ in DMSO solution. After deaeration by three consecutive freeze-pump-thaw cycles to remove oxygen from the tube, the color of the solution changed from orange-red to dark greenish brown. When the DMSO was removed under a reduced pressure at 313 K , a dark greenish brown solid residue was obtained. The IR spectrum

Domant Speacies
Active Speacies
$\mathrm{x}=1$ or 2
DMS $=$ Dimethyl Sulfide

Scheme 1.

of this solid showed bands at 1190,1281 , and 1591 cm^{-1}, which could be assigned to the presence of a monodentate 1,3-diphenyltriazenido ligand, ${ }^{28}$ and a band at $1121 \mathrm{~cm}^{-1}$ assignable to $\nu(\mathrm{S}-\mathrm{O})$. It is an established fact ${ }^{29}$ that the direction of the $\mathrm{S}-\mathrm{O}$ stretching mode shift of bonded DMSO in comparison with the free ligand $\left[\nu(\mathrm{S}-\mathrm{O})=1055 \mathrm{~cm}^{-1}\right.$] always indicates whether coordination has taken place through sulpher or through oxygen donor. From the IR spectrum suggest the sulpher bonded DMSO. ${ }^{30}$ The solid showed no IR band ascribable to $\nu(\mathrm{Rh}-\mathrm{H})$. The IR spectrum indicated that $\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ as a $\mathrm{Rh}(\mathrm{III})$ complex is converted into the $\mathrm{Rh}(\mathrm{I})$ complex, $\mathrm{Rh}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)$ $\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{DMSO})_{x}(x=1$ or 2$)$. Production of $\mathrm{Rh}(\mathrm{I})$ complex can be more favorable at higher concentration of DMSO since sulfoxide ligand is expected to stabilize the lower valent state. ${ }^{31}$ Such coordinating solvent $-\mathrm{Rh}(\mathrm{I})$ complexes, e.g., $\left[\mathrm{Rh}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right.$. 2THF] (THF $=$ tetrahydrofuran), have been previously reported. ${ }^{28}$

Mechanism of Initiation of Polymerization of MMA with the $\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(P \mathrm{Ph}_{3}\right)_{2}-\mathrm{CCl}_{4}$ System

Among the possible oxidation states of rhodium, which range from +4 to -3 , the most common are +1 and $+3 .{ }^{32}$ A previous paper ${ }^{33}$ reports that $\mathrm{Rh}(\mathrm{I})$ complexes such as $\mathrm{RhCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ induce the radical polymerization of MMA in the presence of organic halides. In the presence of CCl_{4}, the polymerization of MMA proceeds in an ordinary free-radical fashion. $\mathrm{RhCl}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ is converted into $\mathrm{RhCl}_{3}(\mathrm{CO})$ $\left(\mathrm{PPh}_{3}\right)_{2}$ by oxidative addition of CCl_{4}, and oxidation states of rhodium changes from +1 to +3 . However, $\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ induces living radical polymerization of MMA in the presence of CCl_{4}. When DMSO is used as the solvent, $\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ is converted into $\mathrm{Rh}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{DMSO})_{x}$ and the oxidation state of rhodium is changed from +3 to +1 .

Complexes containing coordinated solvent molecules (solvento-complexes) are themselves often useful as catalysts precursors. ${ }^{10} \mathrm{Rh}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}(\mathrm{DMSO})_{x}$ is therefore considered to be an active catalyst. A possible mechanism for the polymerization of MMA with the $\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}-\mathrm{CCl}_{4}$ system is shown in Scheme 1. The $\mathrm{Rh}(\mathrm{I})$ complex, $\mathrm{Rh}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2^{-}}$ (DMSO) x_{x}, interacts with the initiator, CCl_{4}, to form the one-electron oxidized species, a $\mathrm{Rh}(\mathrm{II})$ complex. Subsequently, this $\mathrm{Rh}(\mathrm{II})$ complex reacts with MMA, followed by the formation of growing radicals. However, the growing radical is reversibly generated from a dormant species with a carbon-chlorine covalent bond, which is derived from CCl_{4}. During this process, the oxidation state of rhodium undergoes a reversible growing radical one-electron redox reaction from $\mathrm{a}+2$ state to $\mathrm{a}+1$ state, or vice versa. The molecular weight is probably controlled by the growing radical and its dormant counterpart being in an exchange equilibrium that favors the covalent side i.e. the concentration of the dormant species is greater than that of the growing radical. ${ }^{34}$ The broad molecu-lar-weight distribution of the polymers produced with this initiating system is due to slow interconversion between the radical and dormant species in comparison to propagation. The radicals terminate by either coupling or disproportionation or reversibly deactivated by the $\mathrm{Rh}(\mathrm{II})$ complex. Further investigation is required to elucidate the polymerization mechanism.

CONCLUSION

$\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ employed as catalyst and CCl_{4} as an initiator are effective in initiating the living radical polymerization of MMA to form polymers with a controlled molecular weight. An investigation on the effect of the $\left[\mathrm{CCl}_{4}\right] /\left[\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(\mathrm{PPh}_{3}\right)_{2}\right]$ ratio on the living radical polymerization of MMA
showed that the best control of molecular weight is achieved for the case of $\left[\mathrm{CCl}_{4}\right] /\left[\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right]=1: 1$. Although CBr_{4} and CBrCl_{3} can be used as initiators, the polymers obtained do not have a controlled molecular weight. With all these initiator systems, the polymers produced had broad molecularweight distributions.

REFERENCES

1. M. Kato, M. Kamigaito, M. Sawamoto, and T. Higashimura, Macromolecules, 28, 1721 (1995).
2. J. S. Wang and K. Matyjaszewski, J. Am. Chem. Soc., 117, 5614 (1995).
3. T. Ando, M. Kamigaito, and M. Sawamoto, Macromolecules, 30, 4507 (1997).
4. K. Matyjaszewski, M. Wei, J. Xia, and N. E. McDermott, Macromolecules 30, 8161 (1997).
5. Y. Kotani, M. Kamigaito, and M. Sawamoto, Macromolecules, 32, 6877 (1999).
6. M. Teodorescu, S. G. Gaynor, and K. Matyjaszewski, Macromolecules, 33, 2335 (2000).
7. Y. Kotani, M. Kamigaito, and M. Sawamoto, Macromolecules, 33, 3543 (2000).
8. J. Louie and R. H. Grubbs, Chem. Commun., 1479 (2000).
9. B. Göbelt and K. Matyjaszewski, Macromol. Chem. Phys., 201, 1619 (2000).
10. S. Zhu and D. Yan, Macromolecules, 33, 8233 (2000).
11. S. Zhu and D. Yan, Macromol. Rapid Commun., 21, 1209 (2000).
12. S. Zhu, D. Yan, G. Zhang, and M. Li, Macromol. Chem. Phys., 201, 2666 (2000).
13. M. Wakioka, K.-Y. Baek, T. Ando, M. Kamigaito, and M. Sawamoto, Macromolecules, 35, 330 (2002).
14. V. C. Gibson, R. K. O'Reilly, W. Reed, D. F. Wass, A. J. P. White, and D. J. Williams, Chem. Commun., 1850 (2002).
15. V. C. Gibson, R. K. O'Reilly, D. F. Wass, A. J. P. White,
and D. J. Williams, Macromolecules, 36, 2591 (2003).
16. V. C. Gibson, R. K. O'Reilly, D. F. Wass, A. J. P. White, and D. J. Williams, Dalton Trans., 2824 (2003).
17. H. Uegaki, M. Kamigaito, and M. Sawamoto, J. Polym. Sci., Part A: Polym. Chem., 37, 3003 (1999).
18. C. Granel, Ph. Dubois, R. Jérôme, and Ph. Teyssié, Macromolecules, 29, 8576 (1996).
19. H. Uegaki, Y. Kotani, M. Kamigaito, and M. Sawamoto, Macromolecules, 30, 2249 (1997).
20. H. Uegaki, Y. Kotani, M. Kamigaito, and M. Sawamoto, Macromolecules, 31, 6756 (1998).
21. P. Li and K. Y. Qiu, Polymer, 43, 5873 (2002).
22. V. Percec, B. Barboiu, A. Neumann, J. C. Ronda, and M. Zhao, Macromolecules, 29, 3665 (1996).
23. G. Moineau, C. Granel, Ph. Dubois, R. Jérôme, and Ph. Teyssié, Macromolecules, 31, 542 (1998).
24. M. G. L. Petrucci, A.-M. Lebuis, and A. K. Kakkar, Organometallics, 17, 4966 (1998).
25. Ph. Lecomte, I. Drapier, Ph. Dubois, Ph. Teyssie, and R. Jerome, Macromolecules, 30, 7631 (1997).
26. N. Kameda and E. Ishii, Nippon Kagaku Kaishi, 1196 (1983).
27. K. R. Laing, S. D. Robinson, and M. F. Uttley, J. Chem. Soc., Dalton Trans., 1205 (1974).
28. W. H. Knoth, Inorg. Chem., 12, 38 (1973).
29. F. A. Cotton, R. Francis, and W. D. Horrocks, Jr., J. Phys. Chem., 64, 1534 (1960).
30. D. K. Dutta and M. M. Singh, Transition Met. Chem., 5, 244 (1980).
31. B. R. James, F. T. T. Ng, and G. L. Rempel, Can. J. Chem., 47, 4521 (1969).
32. S. Komiyama and A. Fukuoka, in "Synthesis of Organometallic Compounds," S. Komiyama, Ed., John Wiley \& Sons, Chichester, West Sussex, 1997, pp 219-246.
33. N. Kameda and N. Itagaki, Bull. Chem. Soc. Jpn., 46, 2597 (1973).
34. T. Ando, M. Kamigaito, and M. Sawamoto, Tetrahedron, 53, 15445 (1997).

[^0]: ${ }^{\dagger}$ To whom correspondence should be addressed (E-mail: norikameda@mtj.biglobe.ne.jp).

[^1]: Living Polymerization with the $\mathrm{RhH}_{2}\left(\mathrm{Ph}_{2} \mathrm{~N}_{3}\right)\left(P \mathrm{Ph}_{3}\right)_{2}-$ CCl_{4} System

 To examine the living radical nature of the poly-

