Award Account | Published:

Size Shrinkage of Methacrylate-based Terpolymer Latexes Synthesized by Free Radical Polymerization: Kinetics and Influence of Main Reaction Parameters

Polymer Journalvolume 38pages786798 (2006) | Download Citation

Subjects

Abstract

Monodisperse PMMA-based terpolymer particles were synthesized by surfactant-free free radical emulsion polymerization. Particles with a wide and controllable range of size and polymer content were prepared by varying monomer amount, reaction temperature and initiator concentration. A kinetic study of the evolution of the terpolymer colloid composition and morphology reveals a mechanism of fast homogeneous nucleation. Copolymerization of the three monomers yields particles whose composition changes continuously during the reaction, which impacts polymer properties. Temperature and monomer amount are key parameters, particularly in the nucleation and growth stages of the reaction. A linear relationship between the particle size and reaction temperature is observed. This is attributed to the fact that the concentration of small, nucleated primary particles with high surface area, initiated at higher temperatures, is too large for efficient stabilization and hence they are more prone to aggregation. The linear relationship between the volume of the colloids and the ratio of main monomer to water in the reaction batch is due to the growth of the particles that continues while there is MMA available. The initiator concentration is not significant in terms of size and concentration of methacrylate-based colloids since primary particles are formed very early during polymerization and they are not dependent on the number of growing chains. The resulting “tailor-made” latexes are promising for a number of unique biotechnological and IC manufacturing applications.

References

  1. 1

    D. Philp and J. F. Stoddard, Angew. Chem., Int. Ed., 35, 1154 (1996).

  2. 2

    W. Bows, Investors Chronicle, 139, 30 (2002).

  3. 3

    C. Pichot, T. Delair, A. Elaissari, and J. M. Asua, “Polymeric Dispersions: Principles and applications,” Kluwer Boston, 1997, p 515.

  4. 4

    N. Kawahashi and M. Hattori, MRS Spring Meeting Proc. 2001.

  5. 5

    S. Armini, V. Terzieva, and K. Maex, AlChE Annual Conference Proc., Austin (TX)-November 2004.

  6. 6

    G. Guven, A. Tuncel, and E. Piskin, Colloid Polym. Sci., 282, 708 (2004).

  7. 7

    H. Tamai, I. Fuji, and T. J. Suzawa, Adv. Colloid Interface Sci., 118, 1176 (1987).

  8. 8

    A. R. Goodall, M. C. Wilkinson, and J. Hearn, in “Polymer Colloids,” R. M. Fitch, Ed., Plenum, New York, 1980, p 629.

  9. 9

    A. O’Neil and J. M. Torkelson, Trends in Polym. Sci., 5, 349 (1997).

  10. 10

    K. Nishimoto, M. Hattori, and N. Kawahashi, U. S. patent 6 582 761 (2000).

  11. 11

    W. Ming, F. N. Jones, and S. Fu, Polym. Bull., 40, 749 (1998).

  12. 12

    T. Allen, “Particle size measurement,” 3rd ed., Chapman and Hall, 1981, p 4.

  13. 13

    R. B. Seymour and C. E. Jr. Carraher, “Polymer Chemistry,” Marcel Dekker, NY, 1981.

  14. 14

    G. Odian, “Principles of Polymerization,” 3rd ed., Wiley, 1991.

  15. 15

    R. De Vries, C. C. Co, and E. W. Kaler, Macromolecules, 34, 3233 (2001).

  16. 16

    D. Horak and P. Shapoval, J. Polym. Sci., 38, 3855 (2000).

  17. 17

    J. Lyklema, “Fundamentals of Interface and Colloid Science,” Academic Press: London, 1991, p 2.

  18. 18

    S. Armini and K. Maex, in preparation.

  19. 19

    G. Zhang, A. Niu, S. Peng, M. Jiang, Y. Tu, M. Li, and C. Wu, Acc. Chem. Res., 34, 249 (2001).

  20. 20

    D. J. Kahn and H. H. Horowitz, J. Polym. Sci., 54, 363 (1961).

  21. 21

    F. R. Mayo and C. Walling, Chem. Rev., 46, 225 (1950).

  22. 22

    J. P. Mercier, “Polymerisation des monomers vinyliques,” Presses polytechniques romandes, Lausanne, Suisse, 1983.

  23. 23

    J. Kennedy, T. Kelen, and F. Tudos, J. Polym. Sci., 13, 2277 (1975).

  24. 24

    R. Santanu and D. Surekha, J. Appl. Polym. Sci., 62, 1509 (1966).

  25. 25

    H. Ma, X. Wan, X. Chen, and Q. Zhou, J. Polym. Sci., Part A: Polym. Chem., 41, 143 (2003).

  26. 26

    M. Zhang, Z. Weng, Z. Huang, and Z. Pan, http://preprint.chemweb.com/macrochem/0204001.

  27. 27

    R. M. Fitch, M. B. Prenosil, and J. S. Karen, J. Polym. Sci. Part C, 27, 95 (1969).

  28. 28

    K. P. Lok and C. K. Ober, Can. J. Chem., 63, 209 (1985).

  29. 29

    R. Pelton, PhD thesis, University of Bristol, 1976.

  30. 30

    M. Egen and R. Zentel, Macromol. Chem. Phys., 205, 1479 (2004).

  31. 31

    J. W. Goodwin, R. H. Ottewill, and R. Pelton, Colloid Polym. Sci., 61, 257 (1979).

  32. 32

    J. W. Goodwin, J. Hearn, C. C. Ho, and R. H. Ottewill, Colloid Polym. Sci., 252, 464 (1974).

  33. 33

    A. Tuncel, Polymer, 41, 1257 (2000).

Download references

Author information

Affiliations

  1. IMEC, Kapeldreef 75, Leuven, B-3001, Belgium

    • Silvia Armini
    • , Caroline Mary Whelan
    • , Salvador Eslava
    •  & Karen Maex
  2. Electrical Engineering Department, KU Leuven, Heverlee, B-3001, Belgium

    • Silvia Armini
    • , Salvador Eslava
    •  & Karen Maex
  3. Chemistry Department, KU Leuven, Celestijnenlaan 200F, Heverlee, B-3001, Belgium

    • Mario Smet

Authors

  1. Search for Silvia Armini in:

  2. Search for Caroline Mary Whelan in:

  3. Search for Mario Smet in:

  4. Search for Salvador Eslava in:

  5. Search for Karen Maex in:

Corresponding author

Correspondence to Silvia Armini.

About this article

Publication history

Received

Accepted

Published

Issue Date

DOI

https://doi.org/10.1295/polymj.PJ2005184