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ABSTRACT: A lattice model proposed before for uniaxial stretching of polyethylene films was applied to estimate

the oriented crystallization of ultra-high molecular weight polyethylene (UHMWPE) dry gel films under simultaneous

biaxially stretching. In this model system, the preferred axis associated with the preferred orientation of amorphous

chain segments was chosen along the direction between two successive cross-linked points and the preferred axis

was assumed to deform in an affine fashion with respect to the stretching direction. As the application of the proposed

model, the orientation distribution function of crystallites was calculated on the basis of the lattice model and oriented

crystallization model. The oriented crystallization model is based on the concept that a kinetically determined distri-

bution of crystal chain axes as the normalized distribution of clusters found at the saddle point corresponding to a

non-uniform orientation under conditions of a steady-state nucleation rate. Of course, the crystallites are oriented ran-

domly with respect to the film normal direction. The parameter fitting for the formulated orientation distribution func-

tion of crystallites was done for the film which was prepared by the gelation/crystallization from solution with 0.9 g/

100mL concentration, the solvent being decalin, since the concentration assured the highest drawability under simul-

taneous biaxially stretching. The calculated orientation distribution functions 2�qjðcos �jÞ of the reciprocal lattice vector
of the crystal planes were in good agreement with the observed ones. Thus the numerical calculations indicate that the

orientation of the c-axes depends on that of amorphous chain segments and the orientation behavior of crystallites is

strongly affected by their rotation around the c-axis. [DOI 10.1295/polymj.37.192]
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Segmental orientation in uniaxially deformed elas-
tomatic networks has been treated in terms of gas-like
theories and liquid-like theories.1–4 In the gas-like the-
ories, the chain vector and segment vector distribu-
tions have been estimated theoretically by using ideal-
ized models in which the effect of mutual interference
between chain segments are neglected. On the other
hand, in a liquid-like theory,3,4 the effect of intermo-
lecular interferences relating to orientation-dependent
packing entropy was taken into consideration based
on a lattice model. Erman et al.5,6 have attempted to
improve the liquid-like theory by considering the ef-
fect of chain stiffness on segmental orientation. For
this purpose, they adopted the lattice theory of Flory7,8

for chains with freely jointed rod-like segments and
applied it to a thermotropic system with anisotropic
polarizabilities. Namely, Erman et al. pointed out that
a segment of polyethylene chains with 1–22 bonds
may be viewed as a rod-like object on the basis of
the concept of Flory and Yoon9 that a more rigorous
analysis of the equivalent segment size of a freely

jointed chain for polyethylene by matching the higher
order moments of the end-to-end distance of the real
and freely jointed chain leads to mr=m � 20{22
(mr = the number of segments in a real chain and
m = the number of Kuhn segments). Their treat-
ments5,6 are of interest to understand the detailed phe-
nomena of molecular orientation of actual polymeric
materials under elongation. In their model system,
the length-to-width ratio x of each segment of a chain,
which is a measure of chain stiffness, is incorporated
into the theory of segmental orientation. They intro-
duced intermolecular contributions in networks with
flexible chains as well as thermotropic effects between
segments which result in phase transitions due to ori-
entation upon stretching and formulated the second-
order orientation factor associated with the second
term of the Legendre function.
However, their treatment, which is essentially cor-

rect in terms of Helmholtz free energy, cannot be ap-
plied to polymer films, since the calculated second or-
der orientation factor took a positive value in an un-

yTo whom correspondence should be addressed (Tel&Fax: +81-742-20-3462, E-mail: m-matsuo@cc.nara-wu.ac.jp).

192

Polymer Journal, Vol. 37, No. 3, pp. 192–205 (2005)



deformed state (� ¼ 1) at larger values of x. Of
course, except for films, it is well-known that beyond
a critical axial ratio xc, systems of rod-like particles
spontaneously split into two phases with different ani-
sotropy, since the existing entropic driving forces are
supplemented by an orientation-dependent energetic
contribution. To explain this phenomenon, Flory et
al.7,8 have taken the preferred axis of a given domain
along one of the principle axes of the lattice for liquid
crystal systems and of hard rods dispersed in a dilute
solution. Based on the same concept, Erman et al.5

chose the preferred direction, which allows the prefer-
ential orientation of a segment, to the stretching direc-
tion. This leads to an abnormal phenomenon where
polymer chains within a film are oriented without
elongation in order to minimize the free energy.
In previous paper,10 a modified model was proposed

to solve this contradiction for polymer films, in which
the preferred axis was chosen along the direction be-
tween two successive cross-link points. The modified
model was mainly employed to analyze the orienta-
tion distribution function of amorphous chain seg-
ments of polyethylene during the process of oriented
crystallization. The orientation of the preferred axis
was assumed to behave as an affine fashion under
elongation and the treatment was formulated in terms
of the orientation distribution function with respect to
the stretching direction by the application of the Le-
gendre addition theorem.
The same treatment is applied to the orientation of

crystallites on simultaneous biaxially stretching films,
since analysis of the oriented crystallization of the
film is very important for the production of crystalline
polymer films. In doing so, this paper adopts the
orientation distribution functions of the reciprocal lat-
tice vectors of crystal planes measured elsewhere.11,12

The simultaneous biaxially stretching was carried
out using ultra-high molecular weight polyethylene
(UHMWPE) dry gel films prepared by gelation/crys-
tallization from solutions.11–15

EXPERIMENTAL

Experimental Method
The sample used in this experiment were UHMWPE

(Hercules 1900/90189) with a viscosity-average mo-
lecular weight ( �MMv) of 6� 106. The solvent was dec-
alin. The concentration of UHMWPE was 0.9 g/100
mL assuring the highest draw ratio.11 Decalin solu-
tions were prepared by heating the well-blended poly-
mer-solvent mixture at 135 �C for 40min under nitro-
gen, The solution was stabilized with 3% w/w of
antioxidant (di-t-butyl-p-cresol) against UHMWPE.
The hot homogenized solution was quenched to room
temperature by pouring it into an aluminum tray, thus

generating a gel. The decalin was allowed to evapo-
rate from the gels under ambient conditions. The re-
sulting dry gel film was vacuum-dried for 1 d to re-
move residual trace of decalin. The dry gel film was
cut into a strip of 90� 90 cm, The specimen was held
at 150 �C for 5min and elongated biaxially to the
desired draw ratio using Iwamoto biaxial stretcher.
The X-ray diffraction measurements were carried

out with a 12 kW rotating anode X-ray generator
(Rigaku RDA-rA) operated at 200mA and 40 kV.
The film thickness of the films beyond 6� 6 is less
than 5mm and it is very difficult even to obtain the ori-
entation distribution function concerning the (110)
and (200) planes with very strong diffraction intensity.
Accordingly, we adopted a small but refined instru-
ment to stack a number of thin films as shown in
Figure 1.11 In such a stacked condition, measurements
of the X-ray diffraction intensity could be performed
by using a horizontal scanning type goniometer, oper-
ating at a fixed time step scan of 0.1/40 s over a range
of twice the Bragg angle 2�B from 15 to 60� and from
70 to 79�. The intensity distribution was measured as
a function of a given rotational angle �j by rotating
about the stretching direction at 2–5� intervals fro 0
to 90� in Figure 1a and b, respectively.11

Characteristics of Test Specimens
To facilitate understanding the theoretical analysis,

the characteristics of the original samples are shown
in Table I and Figure 2, although they were shown
elsewhere.10 Table I summarizes change in melting
point and crystallinity as a function of draw ratio.
Upon the initial draw ratio from 1� 1 (un-drawn) to
2� 2, crystallinity and melting point decreases indi-
cating the crystal transformation process from a fold-
ed to a fibrous type. Furthermore, in spite of an in-
crease in crystallinity with increasing draw ratio, the
corresponding melting point decreases indicating that
the crystallites become less unstable.
Figure 2 shows small angle X-ray scattering

(SAXS) and wide angle X-ray diffraction (WAXD)
patterns for the original (un-deformed) dry gel film,
when an incident beam was directed parallel to the
film surface (end view). The WAXD pattern reveals
the preferential orientation of the c-axes perpendicular
to the film surface. The SAXS patterns show that the
dried gel film is composed of crystal lamellae that are
highly oriented with their large flat faces parallel to
the film surface and within the lamellar crystals con-
stituting the gel, the c-axes are oriented perpendicular
to the large flat faces. Thus when the as-cast gel films
are dried by slow evaporation of the solvent, the con-
stituent lamellar crystals become oriented parallel to
the film surfaces in a manner similar to mats of single
crystals.
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Figure 3 shows WAXS patterns (end view) of
drawn films. The (110) and (200) planes with an ori-
entation perpendicular to the film surface tend to ori-
ent parallel to the film surface. At 2� 2, the (200)
plane is oriented at 45� with respect to the film normal
direction. At the maximum draw ratio 8:7� 8:7, the
(200) plane orients parallel to the film surface. In
accordance with the orientational mode of the (200)
plane, the (110) plane takes two modes. This mode
was discussed elsewhere11,16 and the mathematical
geometrical arrangement shall be discussed later in
this paper.

RESULTS AND DISCUSSION

General Concept
To simplify the present concept, efforts have been

made to preserve the notation used in the previous
paper.10 The network chains will be assumed to be
mono-disperse, i.e. composed of the same number m
of rods having an ideal axial ratio x. The later dimen-
sions of the rods will be of the size of solvent mole-
cules or lattice sites. Figure 4a shows an illustrative
network chain consisting of Kuhn segments (i.e., free-
ly jointed rods) between two successive cross-linked
points. The U3 axis parallel to the direction between
the two cross-link points is specified with respect to
the Cartesian coordinate 0-X1X2X3 within the space
of the film, the X3 axis being the film thickness direc-
tion and the X2 and X3 plane being parallel to stretch-
ing directions, in which � is the polar angle between
the U3 and X3 axes. In Figure 4b, the V axis denoting
the direction of a given segment of a network chain is

Table I. Draw ratio dependence of crystallinity and melting

point (listed in ref 11)

Draw ratio
Crystallinity

(%)
Melting point

(�C)

1� 1 85.2 144

2� 2 57.6 141

8:7� 8:7 67.5 141

Figure 2. SAXS and WAXD patterns for the un-drawn dry

gel film.

λλ =2×2 λ =8.7×8.7

Figure 3. WAXD patterns (end view) of films with � ¼ 2� 2

and 8:7� 8:7.

Figure 1. A number of thin stacked films to measure X-ray diffraction intensity distribution as a function of twice the Bragg angle at

(a) � j ¼ 0� (b) � j ¼ 90�.
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defined by the polar angle � and the azimuthal angle
� with respect to the Cartesian coordinate 0-X1X2X3.
The orientation of the segment is specified by the
polar angle � and the azimuthal angle � with respect
to the Cartesian coordinate 0-U1U2U3 as shown in
Figure 4c, in which the U1 and U2 are chosen arbitra-
rily in the plane perpendicular to the U3 axis. Follow-
ing Flory et al., the accommodation of the rod in the
lattice is achieved through its representation by a
sequence of yk ¼ x sin�k sub-molecules, each occu-
pying x=yk sites and oriented along the preferred
direction, U3 axis, as shown in Figure 4d. Thus, yk
characterizes the given rod. It is expressed in terms
of �k and �k as

8

yk ¼ x sin�kðj cos�kj þ j sin�kjÞ ð1Þ

for the rod exhibiting that particular orientation. Ac-
cordingly, the value of yk increases as the rod becomes
disoriented, as pointed out by Erman et al.5 In their
model system for uniaxially stretching, the preferred
direction corresponds to the stretching direction be-
tween the two successive cross-linked points and the
rods orient to the stretching direction without elonga-
tion in order to minimize the free energy of a given
system, when the length-to-width ratio x of the Kuhn
segment is beyond the critical value. Considering the
Helmholtz free energy, this is undoubtedly reasonable

for highly oriented chains to form a liquid crystal sys-
tem and for highly oriented hard rods dispersed in a
dilute solution. In spite of the rigorous treatment for
the above systems in terms of the Helmholtz free en-
ergy, such a preferential orientation has never been
observed for polymer films. To avoid this contradic-
tion, the preferred axis was chosen along the direction
between the two cross-linked points in the previous
paper.10 The treatment is similar to that of freely joint-
ed chains of finite length represented by the distribu-
tion of Langevin.
For simultaneous biaxially stretching, such yk also

characterizes the spatial orientation of a given rod
and is referred to as is disorientation index, the mean
disorientation index, y, for the system of n2 chains is
defined by

y ¼
1

n2m

Xn2
l¼1

nl;kyk ð2Þ

where nl;k indicates the number of segments of the
l-th chain, whose orientation lies within the k-th solid
angle.
The total configurational partition function of a sys-

tem of n2 polymer and n1 solvent molecules in a lat-
tice consisting of n0 sites (n0 ¼ n1 þ mxn2) can be
given by Zm ¼ ZcombZorient, where Zcomb and Zorient

Figure 4. (a) Network chains of Kuhn segments between the two successive cross-linked points O and P. (b) Diagram illustrating the

polar and azimuthal angles � and �, which specify the orientation of a segment of a chain with respect to Cartesian coordinate 0-X1X2X3

fixed within the film space. (c) Polar angle � and azimuthal angle � specify the orientation of a segment of a chain with respect to the

Cartesian coordinate 0-U1U2U3. (d) division of the segment into yk ¼ x sin� sub-molecules, each oriented along the preferred direction.
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are the combinational part of the partial function. The
configuration partition function Zm is used in the eval-
uation of the Helmholtz free energy change of mixing
according to

�Am ¼ �kBT ln Zm ð3Þ

where kB is the Bolzmann constant and T is the
absolute temperature. According to Erman et al.,5

� ln Zcomb is given by

� ln Zcomb ¼ n1 ln v1 þ n2 ln
v2

mx

� �

� ðn1 þ n2myÞ ln 1� v2 1�
y

mx

� �� �

þ n2ðmy� 1Þ � n2ðm� 1Þ lnðz� 1Þ ð4Þ

where v2 is a volume fraction of polymer given as
mxn2=n0.
On the other hand, the orientational partition func-

tion Zorient is given by

Zorient ¼
Yn2
j¼1

m!
Y
k

!
n j;k

k

nj;k!
¼

Yn2
j¼1

ðnj;kÞ
Y
k

!
n j;k

k

nj;k!
ð5Þ

where !k is the fractional range of the solid angle re-
placed by (1=4�Þ sin�kd�k. Here, as discussed be-
fore,10 it is evident that an equilibrium distribution
of segments among different orientations is obtained
by minimizing the free energy of the system with re-
spect to nj;k to find the distribution of the probabilities
of different configurations of segments in the network
between the two cross-link points. The imposition of
external constrains requires the use of Lagrange multi-
pliers to minimize the free energy. Thus,

@

@nj;k
½ln Zm� ¼ 0 ð6Þ

X
nj;k ¼ m ð7ÞX
nj;k cos�kb ¼ h ð8Þ

where b is the length of a segment and h is the dis-
tance between he two cross-link points. From eqs 7
and 8, we have

�
X

�nj;k ¼ 0 ð9Þ

�
X

cos�k�nj;k ¼ 0 ð10Þ

Substituting eqs 9 and 10 into eq 6, it takes the
form

nj;k=m!k ¼ expð� cos�k � ayk � 1Þ ð11Þ

Considering the difficulty in carrying out a double
integration to determine �, the problem can be simpli-
fied to a considerable extent by pre-averaging �k

dependence prior to numerical integration over �k.
Accordingly, yk is given as ð4x=�Þ sin�k and the dis-
tribution of eq 11 reduces to

nj;k=m ¼ ð1=4�Þ expð� cos�k � ayk � 1Þ sin�kd�k

ð12Þ
where a is given by

a ¼ � ln 1� v2 1�
y

x

� �� �
ð13Þ

Accordingly, the distribution of eq 12 reduces to

nj;k=m ¼ ð1=4�Þ expð� cos�k � ayk � 1Þ sin�kd�k

ð14Þ

The coefficients y=x and � in eqs 13 and 14 are
needed to pursue numerical calculation. The compli-
cated method to obtain them are described in Appen-
dix I.

Application to Orientation Distribution Function of
Amorphous Chain Segments under Simultaneous
Biaxially Stretching
For freely jointed chains, the root-mean-square vec-

tor distance h0 in the free state is related to

h0 ¼ mb2 ð15Þ

When the sample is stretched to a draw ratio �
under a simultaneous biaxially elongation mode, the
length h of the segment with the end-to-end vector
of the length h0 in the direction of � in Figure 4a
becomes

h ¼
h0�

fð�6 � 1Þ cos�2 þ 1g
1
2

ð16Þ

Thus the orientation distribution function of the end-
to-end vectors between the two cross-link points be-
comes

gð�Þ ¼
�3

2fð�6 � 1Þ cos2 �þ 1g
3
2

ð17Þ

For further development, it is convenient to have f ð�Þ
(see eq A-2) expanded in a series of spherical har-
monics, i.e.,

f ð�Þ ¼
X1
l¼0

Cl00�lðcos�Þ ð18Þ

and

Cl00 ¼
Z 1

�1

f ð�Þ�lðcos�Þdðcos�Þ ð19Þ

where �lðxÞ is the normalized polynominal. For nu-
merical calculations, f ð�Þ is expanded into the Taylor
series up to the seventh order.
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f ð�Þ ¼ Q0 expf� cos�� ð4xa=�Þ sin�g ¼ Q0ðYÞ

¼ Q0f1þ Y þ ð1=2ÞY2 þ ð1=6ÞY3 þ ð1=24ÞY4

þ ð1=120ÞY5 þ ð1=720ÞY6g ð20Þ

Here we shall define the orientation distribution
function !amðcos �Þ of segments with respect to the
Cartesian coordinate 0-X1X2X3 in Figure 4b. The
function can be represented as a series of Legendre
polynomials, i.e.,

!amðcos �Þ ¼
X1
l¼0

Al00�lðcos �Þ ð21Þ

with

Al00 ¼
Z 1

�1

!amðcos �Þ�lðcos �Þdðcos �Þ ð22Þ

Considering the geometrical arrangement in Figure
4a–c, the angle � between a segment and the stretch-
ing direction is related to �, �, and � by

cos � ¼ cos� cos�þ sin� sin� cos� ð23Þ

Application to the Legendre addition theorem to eq 23
led to

�lðcos �Þ ¼

(
2

2lþ 1

� �1
2 Xl

m¼�l

�m
l ðcos�Þ�m

l ðcos�Þ expð�m�Þ

)
ð24Þ

From eq 22, it is seen that the coefficient Al00 is the average value of �lðcos �Þ for the segments. Therefore, Al00 is
obtained if we multiply of sides of eq 24 by the orientation distribution functions, !amðcos �Þ, gð�Þ, and f ð�Þ and
integrate over the whole range of �, �, �, and �. Hence,

Al00 ¼
2

2lþ 1

� �1
2 Xl

m¼�l

Z 2�

0

Z 1

�1

�m
l ðcos�Þ�m

l ðcos�Þ expð�m�Þgð�Þf ð�Þdðcos�Þdðcos�Þd�

¼ 2�
2

2lþ 1

� �1
2 Xl

m¼�l

1

2�

Z 2�

0

Z 1

�1

f ð�Þ�m
l ðcos�Þ expð�m�Þdðcos�Þd�

� �
�m

l ðcos�Þgð�Þdðcos�Þ

¼ 2�
2

2lþ 1

� �1
2
Z 1

�1

Cl00gð�Þ�m
l ðcos�Þgð�Þdðcos�Þ ð25Þ

Here l and m are even integers. The normalized asso-
ciated Legendre’s polynominal �m

l ðcosXÞ and Al00

can be related to the associated Legendre’s polynomi-
nal Pm

l ðcosXÞ and the coefficient Fl00 as follows:

Pm
l ðcosXÞ ¼

2

2lþ 1

� �1
2

�m
l ðcosXÞ ð26Þ

and

Fl00 ¼
2

2lþ 1

� �1
2

4�2Al00 ð27Þ

Substituting eqs 26 and 27 into eq 21, we have

4�2!amðcos �Þ ¼
1

2
þ 2

X1
l¼2

2lþ 1

2
Fl00Plðcos �Þ ð28Þ

The actual calculation for the orientation distribution
function of the amorphous chain segments was carried
out by using eq 28.
The lattice model of a segmental orientation was al-

so applied by Bahar et al.6 to the thermotropic system
with anisotropic polarizabilities. The treatment was
first proposed by Flory7,8 for thermotropic system with

orientation-dependent interaction, and the theory is
useful to explain the transition between crystallites,
nematic, and isotropic phases for several polymers.
The theory contains a factor of energetic character,
which contributes to a first-order transition from a rel-
atively disordered to a highly oriented structure, upon
imposition of an external perturbation. In the present
system, the new orientation function ftð�Þ can be writ-
ten as10

ftð�Þ ¼ Q0 exp½� cos�� ð4xa=�Þ sin�
þ ST�1P2ðcos�Þ� ð29Þ

In eq 29, all the coefficients are described in Appen-
dix II.
The orientation distribution function !amðcos �Þ can

be obtained by substituting ftð�Þ into eq 25 instead
of f ð�Þ and by using eqs 26 and 27. This method is
quite different from the concepts proposed by Bahar
et al.6 Following their concept, the preferred axis is
fixed in a stable phase whose free energy is at a mini-
mum with respect to the distribution of the orienta-
tion. Their numerical calculation for a thermal and
un-deformed system in the case of chains consisting
of m ¼ 20 segments provided that the excess energy
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of the anisotropic phase gradually decreases and equa-
tes to that of the isotropic phase at x ¼ 6:42, which
means the axial ratio for the first-order phase transi-
tion from the isotropic to the anisotropic state. The
calculation indicated that, for x ¼ 6:42, the free ener-
gy of the anisotropic phase is less than that of the iso-
tropic one and the anisotropic phase is the most stable
phase and the second-order orientation factor was al-
most unity at x > 10, indicating almost perfect orien-
tation. Surely, their treatments have advantage for the
appearance of the appearance of anisotropic phase
such as liquid crystal in the solution but have a prob-
lem to apply the deformation mechanism of polymer
films and fibers.
In the present system, the amorphous chain seg-

ments take a random orientation, although the amor-
phous chain segments are oriented with respect to
a preferred axis to minimize the Helmholtz free ener-
gy. This is due to the fact that for the present system,
there are a number of the preferred axes within the
film but the preferred axes are oriented randomly
within an un-deformed film. Namely, at the large val-
ue of x, there exist partial orientation of amorphous
segments as an assembly but the assemblies are ori-

ented randomly within an un-deformed film. In this
case, the second-order orientation factor is zero in
an un-deformed state.

Application to Oriented Crystallization of Polyethyl-
ene under Simultaneous Biaxially Stretching
Figures 5–7 show the orientation distribution func-

tions 2�qjðcos �jÞ of the reciprocal lattice vector of
nine crystal planes, which can be obtained directly
by X-ray diffraction techniques, in which is a polar
angle of the reciprocal lattice vector of the jth crystal
plane with respect to the film normal direction (see
Figure 8c). The adequacy of the present model can
be judged by comparing the theoretical and experi-
mental results. In doing so, the experimental accuracy
of the measured values of 2�qjðcos �jÞ must be esti-
mated. The estimation was tried by using the re-calcu-
lated method proposed by Roe and Krigbaum.17,18 The
comparison between the experimental and re-calculat-
ed results was done in the previous paper.11 As shown
in the previous paper,11 the re-calculated functions
calculated from the orientation distribution function
of crystallites were in good agreement with the ob-
served functions, indicating that the experimental

Figure 5. Orientation distribution functions 2�qjðcos � jÞ of the reciprocal lattice vectors of the indicated crystal planes of an un-drawn

polyethylene film. Circles: values of 2�qjðcos � jÞ obtained from experimental measurements. Dashed curves: re-calculated by the method of

Roe and Krigbaum, which were shown in ref 11. Solid curves: calculated theoretically from eq 35.
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functions have high accuracy. To facilitate under-
standing the results, thes re-calculated curves are
shown again as dotted curves in this paper. The values
of a mean-square error obtained by the method of Roe
and Krigbaum were 7.5% for � ¼ 1� 1, 8.3% at � ¼
2� 2 and 8.9% at � ¼ 8:7� 8:7, respectively, as list-
ed in the previous paper.11 Accordingly, if the results
calculated on the basis of segmental orientation by us-
ing a lattice model are in good agreement with the ex-
perimental curves, the present lattice model can be
justified.
In previous paper,10 oriented crystallization under

uniaxial stretching was studied by using the lattice
model in terms of the effect of amorphous chain seg-
ments by induced crystallization. The general concept
proposed by Ziabick et al.19–21 is due to the fact that
the crystallization of amorphous chain segments de-
pends on their orientation. This is based on the con-
cept that a kinetically determined distribution of crys-
tal chain axes as the normalized distribution of
clusters found at the saddle point corresponding to a
non-uniform orientation under conditions of a steady-
state nucleation rate.
Following Hashimoto et al.,21 the orientation of the

c-axes, Wcð�Þ, was defined as a kinetically determined
crystal orientation distribution function proportional
to a normalized distribution of clusters with critical
size r� and l�, which is given by

Wcð�Þ ¼Const�!amðcos �Þ exp �
�Fðr�; l�; �Þ

kT

� �
ð30Þ

where �Fðr�; l�; �Þ is the free energy at the saddle
point, associated with the effective driving force of
the cluster growth. In eq 30, the free energy needed
to form a cylindrical cluster is given by

�Fðr; l; �Þ ¼ 2�r2�c þ 2�rl�s

þ �r2l �f �
kT

v0

� �
ln	ð�Þ

� �
ð31Þ

where �c and �s are the end and the side surface free
energies of polyethylene having values of 6:75� 10�6

and 1:3� 10�6 J/cm2,22 respectively, �f is the bulk
free energy of cluster formation, and v0 is the volume
of a single element, 	ð�Þ is proportional to the possi-
bility of finding a single element oriented at an angle �
within some finite tolerance range and is nearly equal
to !amðcos �Þ denoting the orientation function of sin-

Figure 6. Orientation distribution functions 2�qjðcos � jÞ of the reciprocal lattice vectors of the indicated crystal planes of an polyethyl-

ene film (� ¼ 2� 2). Circles: values of 2�qjðcos � jÞ obtained from experimental measurements. Dashed curves: re-calculated by the meth-

od of Roe and Krigbaum, which were shown in ref 11. Solid curves: calculated theoretically from eq 39.
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gle chain elements.
Substituting �Fðr�; l�; �Þ into eq 30, we have

Wcð�Þ ¼ C!amðcos �Þ exp �
8��c�

2
s

Dð�Þ2kT

� �
ð32Þ

where C is the normalization constant. The orienta-
tion-dependent function Dð�Þ can be obtained by using

!amðcos �Þ in eq 21 as follows:

Dð�Þ ¼ �f �
kT

v0

� �
ln	ð�Þ

¼ �f �
kT

v0

� �
ln½4�!amðcos �Þ� ð33Þ

Assuming Kuhn–Grun statistics for the segmental

Figure 7. Orientation distribution functions 2�qjðcos � jÞ of the reciprocal lattice vectors of the indicated crystal planes of an polyethyl-

ene film (� ¼ 8:7� 8:7). Circles: values of 2�qjðcos � jÞ obtained from experimental measurements. Dashed curves: re-calculated by the

method of Roe and Krigbaum, which were shown in ref 11. Solid curves: calculated theoretically from eq 40.

Figure 8. Cartesian coordinate illustrating the geometrical relation (a) Euler angles, �, �, and 
, which specify the orientation of co-

ordinate 0-U1U2U3 of structural unit with respect to coordinate 0-X1X2X3 of specimen. (b) Angles � j and � j which specify the orientation of

the given j-th axis of the structural unit with respect to the coordinate 0-X1X2X3. (c) Angles � j and � j which specify the orientation of the

jth axis of the structural unit with respect to the coordinate 0-X1X2X3.
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orientation under simultaneous biaxially stretching,
we have

�f ¼ �f j�¼1 �
kT

2Nsv0

� �
2�2 þ

1

�4
� 3

� �
ð34Þ

where �f j�¼1 is given by �hðT�0
mÞ=T0

m, where �h is
the density of the heat of fashion and T0

m is the equi-
librium melting point.
In numerical calculations, the following values of

the parameters were used: the enthalpy of melting
per mole of statistical segments, 4.03 kJ/mol and the
equilibrium melting point, 137.5 �C. The volume v0
(¼ �r2l) of a single kinetic element is an unknown pa-
rameter, but the calculated results in the range ð2{4Þ �
10�22 cm3 were insensitive to the value used. Accord-
ingly, we adopted the value 3� 10�22 cm3, which is
similar to the value for rubber, as discussed in the pre-
vious paper.10

To facilitate understanding geometrical arrange-
ment of the crystallites with in the film, a new Cartsi-
an coordinates are proposed. Figure 8a shows a Carte-
sian coordinate 0-U1U2U3 fixed within a structural
unit (crystallite) with respect to another Cartesian
coordinate 0-X1X2X3 fixed in a film. The U3 axis
may be taken along the c-axis. Because of the simul-
taneous biaxially stretched film, the c-axes have a ran-
dom orientation around the X3 axis (the film normal
direction). The orientation of the structural unit within
the space of the film may be specified by three Euler
angles, �, �, and 
. The angles � and �, which define
the orientation of the U3 axes of the unit within the
space, are polar and azimuthal angles, respectively,
and 
 specifies the rotation of the crystal unit around
the c-axis. Under uniaxial orientation, the orientation
function is independent of �. Coordinates (b) and (c)
show a given jth axis rj within the unit, specified by
the polar angle �j and the azimuthal angle �j with
respect to the Cartesian coordinate 0-X1X2X3 and
specified by polar angle �j and �j with respect to
the 0-U1U2U3 of the unit.
Crystalline polymers are generally heterogeneous

and are composed of polymer chains aggregated ran-
domly to form amorphous regions along with more
or less regular regions comprising several different or-
ders of crystalline structural units. Therefore, defor-
mations such as rotation of a crystal unit due to strain-
ing of tie-chains must be taken into consideration in
addition to the simple orientation of the c-axes given
in eq 32. If the orientation of the crystallites actually
followed a random orientation around the c-axis as
given by eq 32, then all of the orientational functions
for the (h; k; 0) planes would show the same profile.
However, the observed X-ray patterns for the (h; k; 0)
planes have unique characteristics for drawn poly-
ethylene films and the present specimens also exhibit

this characteristic behavior as is discussed below. A
possible source of the rotational distortion is provided
by the strain energy of anisotropic crystallites in a
stress field in a deformed network. Thus, the orienta-
tion distribution function of the crystallites in the
deformed sample may be formulated empirically by
allowing rotation of the crystallites around the c-axis.
Based on the X-ray diffraction pattern shown in

Figure 2 and the curves in Figure 5, the orientation
distribution function of crystallites in un-deformed
state is given by

!ð�; 
Þ ¼C0Wcð�Þf1þ�1 cos
2ðJA�1Þ �þ�2 sin

2ðJB�1Þ 
g
ð35Þ

where Wcð�Þ is a constant independent of � at � ¼ 1.
The second term on the right side represents the orien-
tation of the crystallites, in which the c-axes are ori-
ented parallel to the film normal direction but the
crystallites are oriented randomly around the c-axis.
The third term is the random rotation of the c-axis.
The third term represents a random orientation com-
ponent of the c-axis and the preferential orientation
of the a-axis perpendicular to the plane formed by
the c-axis and the film normal direction. With increas-
ing the values of parameter JA, the possibility of find-
ing crystallites becomes higher at � ¼ 0�. The param-
eters �1 and �2 express the ease of the rotation, and JB
represents the sharpness of the distribution.
As discussed in the previous paper,10 the orientation

factors Fl0n of the crystallites may be obtained as fol-
lows:

Fl0n ¼
Z 2�

0

Z �

0

!ð�; 
ÞPn
l ðcos �Þ cos n
 sin � d� d
 ð36Þ

The orientation factor Fj
l0 of the jth crystal plane can

be obtained by using Fl0n,

F
j
l0 ¼ Fl00P

n
l ðcos�jÞ

þ 2
Xl

n¼2

ðl� nÞ!
ðlþ nÞ!

Fl0nP
n
l ðcos�jÞ cos n�j ð37Þ

where �j and �j are the polar and azimuthal angles
specifying the orientation of the reciprocal lattice vec-
tor with respect to the Cartesian coordinate of a crystal
unit (see Figure 8c). Thus, the orientation distribution
function 2�qjðcos �jÞ of the reciprocal lattice vector of
the jth crystal plane is observed by substituting eq 37
into the following equations:

2�qjðcos �jÞ ¼
1

2
þ 2

X1
l¼2

2lþ 1

2
F

j
l0Plðcos �jÞ ð38Þ

Figure 5 shows the observed orientation functions
2�qjðcos �jÞ (open circles) with the calculated func-
tions (solid curves). The numerical calculation was
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continued until a best fit was achieved within the ca-
pacity of the simplex method. As the result, the fol-
lowing parameters yielded the best fit: �1 ¼ 24:386,
�2 ¼ 0:0823, JA ¼ 5 and JB ¼ 15. The functions
2�qjðcos �jÞ are essentially in good agreement with
the experimental results (open circles).
Based on the experimental curves of 2�qjðcos �jÞ at

� ¼ 2� 2 shown in Figure 6, the function !ð�; 
Þ is
given by

!ð�; 
Þ
¼ C0Wcð�Þf1þ �1 cos

2ðJA�1Þ � þ �2 sin
2ðJB�1Þ 


þ �3ð� � 1Þðsin � cos �Þ2ðJC�1Þ cos2ðJD�1Þ 
g
ð39Þ

The parameter fitting by simplex method provided
the best fit: �1 ¼ 0, �2 ¼ 0, �3 ¼ 830200, JC ¼ 9,
JD ¼ 5. The second and third terms on the right side
represent the orientation of crystallites in un-deformed
state (see eq 35) and the fourth term is associated with
the deformation representing the preferential orienta-
tion of the c-axis at � ¼ 45�. In this process, the rota-
tion of crystallites around the c-axis acquire the great
possibility of the orientation of the a-axis to be in the
plane formed by the c-axis and the film normal direc-
tion. The preferential orientation of the c-axis at � ¼
45� indicates the orientation of the c-axis by the shear
stress occurred under the elongation up to 2� 2. The
parameter expresses the ease of the rotation and JC

and JD represent the sharpness of the distribution.
The functions 2�qjðcos �jÞ are fairly in good agree-
ment with the experimental results (open circles) but
among them the functions from the (110), (210) and
(310) are not good. This indicates that the orientation
behavior of crystallites represented by eq 39 is too
simple to justify the real orientation behavior of crys-
tallites of UHMWPE dry gel films.
Based on the experimental curves of 2�qjðcos �jÞ at

� ¼ 8:7� 8:7 shown in Figure 7, the function !ð�; 
Þ
is given by

!ð�; 
Þ
¼ C0Wcð�Þf1þ �1 cos

2ðJA�1Þ � þ �2 sin
2ðJB�1Þ 


þ �3ð� � 1Þ sin2ðJC�1Þ � cos2ðJD�1Þ 


þ �4ð� � 1Þ cos2ðJE�1Þ 


þ �5ð� � 1Þðsin � cos �Þ2ðJF�1Þ sin2ðJG�1Þ 
g
ð40Þ

The parameter fitting by simplex method provided
the best fit: �1 ¼ 0, �2 ¼ 0, �3 ¼ 0:1185, �4 ¼ 4:437,
�5 ¼ 8:3394, JC ¼ 2, JD ¼ 9, JE ¼ 12, JF ¼ 9 and
JG ¼ 2. In eq 40, the second and third terms on the
right side represent the orientation of crystallites in
un-deformed state (see eq 35) and the other terms

are associated with the deformation. The fourth term
represents the preferential orientation of the c-axis
with respect to the stretching direction, while the fifth
and sixth terms, the random orientation. Judging from
the maximum values of these terms at 
 ¼ 0�, the a-
axis are oriented in the plane formed by the c-axis
and the film normal direction. The seventh term
means the preferential orientation of the c-axis at � ¼
45� and 
 ¼ 90�, indicating that the orientation of the
c-axes by shear stress under elongation becomes most
significant when the a-axis are oriented predominantly
perpendicular to the plane formed by the c-axis and
the film normal direction.
Equations 39 and 40 indicates the different orienta-

tional modes. Especially, the great opportunity to take
the preferential orientation of the c-axis at � ¼ 45� is
quite different. The great possibilities occurred at 
 ¼
0� and 90� for the films with � ¼ 2� 2 and 8:7� 8:7,
respectively. As discussed above, the a-axes are ori-
ented within the plane formed by the c-axis and the
film normal direction at � ¼ 2� 2, while the a-axes
are oriented perpendicular to the plane. This indicates
that the orientational mode of crystallites changed un-
der the elongation up to higher draw ratio.
Figures 9a, b and c show contour maps of the orien-

tation distribution functions !ð�; 
Þ of the crystallites
at � ¼ 1, 2� 2 and 8:7� 8:7, respectively. At � ¼ 1,
the magnitude is the highest at � ¼ 0� but no 
-
dependence because of very smaller value of �2 than
�1 in eq 35. The function !ð�; 
Þ estimated experi-
mentally (see Figure 14a in ref 11) is different from
the function !ð�; 
Þ represented by eq 35.
At � ¼ 2� 2 and 8:7� 8:7, the maps are similar to

those shown in the previous papers (see Figure 14 in
ref 11). Namely, the density in map (b) is the highest
at � ¼ 45� and 
 ¼ 0�, indicating that the c-axes ori-
ents at � ¼ 45� with respect to the film normal direc-
tion (or the stretching direction) by rotating around
their b-axes, leading to the occurrence of shear stress.
Map (c) shows a density maximum at � ¼ 90� and

 ¼ 0�, indicating that the c-axes orient predominant-
ly parallel to the film surface by the rotation of crys-
tallites around the b-axes with further elongation from
� ¼ 2� 2 to 8:7� 8:7.
Comparing Figure 9 with Figure 14 (see ref 11),

the orientation distribution functions described by
eqs 35, 39 and 40 are too simple to represent real ori-
entations of crystallites. Even so, the essential tenden-
cies for the highest density are the same. Accordingly,
the orientation behavior of UHMWPE dry gel film by
simultaneous biaxially stretching can be represented
as each simple mode represented in eqs 39 and 40.
In spite of slightly different profiles of 2�qjðcos �jÞ

and !ð�; 
Þ between experimental and theoretical
curves, it may be expected that the essential behavior
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can be justified by the estimation of segmental orien-
tation in deformed polymer networks using a lattice
model as well as by a model concerning steady-state
nucleation rate under the oriented crystallization of
the segments under the elongation.

CONCLUSIONS

A lattice model was adopted to estimate the orient-
ed crystallization of UHMWPE dry gel films under si-
multaneous biaxially stretching. The preferred axis as-
sociated with the preferred orientation of amorphous
chain segments was chosen along the direction be-
tween two successive cross-linked points and the pre-
ferred axis was assumed to deform in an affine fashion
with respect to the stretching direction. Accordingly,
the orientation of amorphous chain segments was for-
mulated in terms of the distribution function with re-
spect to the stretching direction by using the Legendre
additional theorem. Of course, the Helmholtz free en-

ergy of the anisotropic phase is less than the isotropic
phase and the preferential orientation of the amor-
phous chain segments with respect to the direction be-
tween two successive cross-linked points achieves,
when the length-to-width ratio of each chain segment
increases beyond the critical point. As the application
of the proposed model, the orientation distribution
function of crystallites was calculated for UHMWPE
dry gel film on the basis of the lattice model. The pa-
rameter fitting for the formulated orientation distribu-
tion function of crystallites was done for the film
which was prepared by the gelation/crystallization
from solution with 0.9 g/100mL concentration, since
the concentration assured the highest drawability un-
der simultaneous biaxially stretching. The calculated
orientation distribution functions 2�qjðcos �jÞ of the
reciprocal lattice vector of the crystal planes were in
good agreement with the observed ones. Thus the nu-
merical calculations indicated that the orientation of
the c-axes depends on that of amorphous chain seg-

Figure 9. Orientation distribution functions of crystallites 4�2!ð�; 
Þ calculated by eqs 35, 39 and 40 (a) un-drawn film (b) drawn film

with � ¼ 2� 2 (c) drawn film with � ¼ 8:7� 8:7.
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ments and the orientation behavior of crystallites is
strongly affected by their rotation around the c-axis.

APPENDIX I

By using the condition imposed by the constrains,
we have

h

bm

¼

Z �

0

exp½� cos�k � ð4xa=�Þ sin�k� cos�k sin�k d�kZ �

0

exp½� cos�k � ð4xa=�Þ sin�k� sin�k d�k

ðA-1Þ

Judging from eq 14, the orientation distribution func-
tion can be represented by omitting the dummy sub-
script k, which is as follows:

f ð�Þ ¼ Q0 expb� cos�� ð4xa=�Þ sin�c ðA-2)

where Q0 is a normalized constant given by

Q0 ¼ 1

�Z �

0

exp½� cos�� ð4xa=�Þ sin��d� ðA-3)

By expanding both the numerator and denominator in
eq A-1 into Taylor series and keeping only the linear
term of a and � reduces to

h

mb
¼

�

3ð1� axÞ
ðA-4)

Based on y ¼ ð4x=�Þ sin�, we have

y

¼

Z �

0

ð4x=�Þ exp½� cos�� ð4xa=�Þ sin�� cos� sin� d�Z �

0

exp½� cos�� ð4xa=�Þ sin�� sin� d�

ðA-5Þ

By expanding the exponential part of both the numer-
ator and the denominator in eq A-5 up to the second
order in a and �, we have

y

x
¼

1� ð32ax=�2Þ þ ð�2=8Þ þ ð2a2x2=�2Þ
1� axþ ð1=6Þ�2 þ ð16a2x2=3�2Þ

¼ 1þ axf1� ð32=3�2Þg � �2=24 ðA-6Þ

Using the approximation, we have

a ¼ � ln 1� v2 1�
y

x

� �� �
¼ v2 1�

y

x

� �
ðA-7)

From eqs A-6 and A-7, we have

a ¼
1

2x
2�

d

x

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d

x

� �2

�
4d

x

s8<
:

9=
; ðA-8)

where

d ¼ 24 1�
xv2

xa

� �
m2b2

9v2h2
ðA-9)

and

xa ¼
1

32

3�2

� �
� 1

ðA-10)

APPENDIX II

In eq 29, S and T are given by

S ¼

Z 2�

0

ftð�ÞP2ðcos�Þ sin� d�Z 2�

0

ftð�Þ sin� d�

ðB-1)

and

T�1 ¼
kBT

x

Czcð��Þ2

r:6

� ��1

ðB-2)

where zc is the number of first neighbors surrounding
the segments. r: is the distance between subsegments
for dense packing, and C is a constant.
By using a derivation similar to eqs A-6 and A-7, a

is given by

a ¼
1

2x
2�

D

U
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

U

� �2

�4
D

U

� �s8<
:

9=
; ðB-3)

where

D ¼
dx

8

� �
� dd0 1�

T�1

5

� �
ðB-4Þ

U ¼ d0 1�
T�1

5

� �
þ

9dh2

15m2b2

� �
x ðB-5Þ

d0 ¼ 8 1�
xv2

xa

� ��
Tv2 ðB-6Þ

Using the same treatment as shown in eqs A-5 and
A-6, we have

y

x
¼ 1þ ax 1� ð32=3�2Þ

	 

� �2=24� ST�1=8 ðB-7)

From eq B-1, we have

S ¼
ax

8
þ

�x

15

� ��
1�

T�1

5

� �
ðB-8)
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